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Abstract 
We calculate the ground state energies of a system of electrons in one-dimensional infinitely deep square 
well potentials. We analyze the cases when the wells are regularly spaced and when they are clustered 
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We calculate the ground state energies of a system of electrons in one-dimensional

infinitely deep square well potentials. We analyze the cases when the wells are

regularly spaced and when they are clustered together to form one single large well.

These potentials are intended to physically describe the interaction of electrons and

nuclei in a continuum model. We investigate which potential yields the minimum

ground state energy using elements of interpolation potential in quantum mechanics

derived from first principles. We also mention models of crystalline formation that

are related to this problem.

PACS – 73.21.Fg, 73.22 Dj

I. INTRODUCTION

We study a system of electrons in infinitely deep square well potentials in two situations. In the first situation

the potential consists of M regularly spaced wells, each of them having the form

Vr(x) =





0 for (j − 1)(b + a) ≤ x ≤ j(b + a)− a

∞ for x = (j − 1)(b + a) and x = j(b + a)− a
(1)

for j = 1, 2, 3, ..., M .

In the second situation, the M wells are all clustered together forming one single large well. The corre-

sponding potential is

Vc(x) =





0 for 0 < x < M(b + a)− a

∞ for x = 0 and x = M(b + a)− a.
(2)

The potential (1) is intended to represent electrons bound to individual nuclei arranged in an orderly pattern,

whereas potential (2) is intended to represent electrons bound to the set of nuclei.

We are interested in the ground state of a system of N electrons in potentials (1) and (2), and we would like
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to compare the ground state energies in these potentials in order to determine whether the lowest ground

state energy corresponds to the configuration of potential (1) or of potential (1). The ordered arrangement

of potential (1) is interpreted as corresponding to crystallization or existence of a period ground state.

This is a very simplified version of a much broader problem of understanding crystallization in continuum

models and of determining whether crystallization is in any way induced by the discrete character of the

lattice models in which this phenomenon has been observed1,2. At low temperatures, matter displays a

crystalline structure. The particles of matter are arranged in an orderly pattern that is repeated throughout

the material. This arrangement is associated with a minimum energy of the system.

One of the lattice model of crystalline formation is the Falicov-Kimball model. This a lattice model in

which ions are fixed at the lattice sites and spinless electrons move about and interact with the ions only

when they both happen occupy the same site. There is no interaction between electrons. For certain values

of the ion-electron interaction and for certain values of the number of particles present, the ions display a

checkerboard pattern in the ground state of the model. This regular configuration of the ions is associated

with the existence of periodic ground states. See3 for details and further results on this model.

In the present case, the question is immediately raised whether it is legitimate to compare ground state

energies for two different potentials. It is clear that if we consider two energy states for the same potential,

then the state with lower energy is the ground state. We show that the comparison of ground state energies

in this case is meaningful. The key ingredient is a varying parameter that will provide a transition from

potential of Eq. (2) to that of Eq. (1) thus allowing for the comparison of ground state energies. This is

carried out in section II.

Next in section III we find that the ground state energy for potential (1) is always higher than that

for potential (2) and hence the minimum ground state energy does not correspond to the arrangement of

electrons in potential (1).

II. THE INTERPOLATION POTENTIAL

The comparison of energies for the different potentials of Eqs. (1) and (2) is meaningful because the potential

Vh shown in Fig. 1 interpolates between these two cases, with h →∞ being potential (1) and h → 0 being

potential (2).

For electrons on an interval [p, q], let H[p,q] be the Hilbert space of single-electron states. For spinless

electrons, H[p,q] = L2 ([p, q], dx). It follows that for finite h single-electron states under the potential of Fig.

1 lie on H[0,2b+a] = L2 ([0, 2b + a], dx), and a vector state of a system of N electrons will lie on the closed
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FIG. 1: This potential interpolates between potentials of Eqs. (1) and (2) when

M = 2 as the height h is sent to infinity or zero respectively.

antisymmetric subspace HN
[0,2b+a] of

HN
[0,2b+a] = H[0,2b+a] ⊗ · · · ⊗ H[0,2b+a]︸ ︷︷ ︸

N times

.

For N normalized single-electron states Ψαν
h ∈ H[0,2b+a] for ν = 1, 2, . . ., N the anti-symmetrization operator

A is given by

A (Ψα1
h ⊗ · · · ⊗ΨαN

h ) =
1√
N

∑
π∈SN

επΨ
απ(1)

h ⊗ · · · ⊗Ψ
απ(1)

h , (3)

where SN is the permutation group of N elements and επ equals±1 according to the parity of π. In coordinate

space the wave-function for a system of N electrons is given by the well-known Slater determinant

Ψα
h(x1, . . ., xN) =

1√
N

∑
π∈SN

επΨ
απ(1)

h (x1)⊗ · · · ⊗Ψ
απ(1)

h (xN) . (4)

If HN
h is the Hamiltonian of N non-interacting electrons under the potential of Fig. 1, then HN

h acts in the

antisymmetric subspace HN
[0, 2b+a] as

HN
h =

N∑
ν=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
ν−1 times

⊗Hh ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−ν times

,

where Hh is the single-electron Hamiltonian (without spin interactions)

Hh = − ~
2

2µ
∇2 + Vh , (5)

acting on H[0, 2b+a], with µ being the mass of the electron.
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What happens now when the limit h −→ ∞ is taken? If Ψα
h ∈ H[0, 2b+a] is a normalized wave-function of a

single electron under the potential Vh of Fig. 1 then, when h → ∞, due to exponential damping of Ψα
h on

the interval [b, b + a], one has

Ψα
h

h→∞−→ c1φ
α
1 + c2φ

α
2 (6)

where φα
i for i = 1, 2 are the normalized wave-functions defined in each of the potential wells obtained from

Fig. 1 after h goes to infinity.

According to our notation φα
1 lies on H[0, b] and φα

2 lies on H[b+a, 2b+a]. Due to the normalization condition

in (6), the coefficients satisfy |cα
1 |2 + |cα

2 |2 = 1. According to our notation, φα
1 lies on H[0,b] and φα

2 lies on

H[b,2b+a]. Both H[0,b] and H[b,2b+a] are closed orthogonal subspaces of H[0,2b+a] and the sums in (6) can be

interpreted as direct sums.

On the other hand, the single-electron Hamiltonian Hh in (5) converges, in the limit h −→ ∞, to a direct

sum Hh = H1 +H2 acting on H[0,b]⊕H[b,2b+a], where H1 and H2 are the single-electron Hamiltonians − ~2
2µ

d2

dx2

restricted, respectively, to the intervals [0, b] and [b, 2b + a].

The crucial observation to make is that if Ψα
h are normalized eigenstates of Hh, i.e. HhΨ

α
h = Eα

h Ψα
h , then

it is not necessarily true that the states φα
i in (6) are eigenstates of Hi. However, due to the exponential

damping of Ψα
h on the interval [b, b + a] that, in the limit h −→∞,

Eα
h = (Ψα

h , HhΨ
α
h) −→ |cα

1 |2 (φα
1H1φ

α
1 ) + |cα

2 |2 (φα
2H2φ

α
2 ) , (7)

where the right-hand side above is a convex linear combination of the expectation values (φα
1 H1φ

α
1 ) and

(φα
2 H2φ

α
2 ).

It now follows that in the resulting symmetric potential of Fig. 1 obtained after taking the limit h −→ ∞
we have Eα

1 = (φα
1 H1φ

α
1 ) = Eα

2 = (φα
2 H2φ

α
2 ) = Eα, so that

Eα
h = (Ψα

h , HhΨ
α
h) −→ (φα

i Hiφ
α
i ) = Eα. (8)

For the case of multi-particle states A (Ψα1
h ⊗ · · · ⊗ΨαN

h ), with Ψαν
h being eigenstates of Hh, the total energy

is
∑N

ν=1 Eαν
h . In this case, (7) now converges, as h →∞, to

N∑
ν=1

Eαν
h −→

N∑
ν=1

[
|cαν

1 |2 (φαν
1 , H1φ

αν
1 ) + |cαν

2 |2 (φαν
2 , H2φ

αν
2 )

]
.

The same observations made above about φα
i being eigenstates and the fact that the resulting potentials are

symmetric now lead, when h →∞, to

Eα
h =

N∑
ν=1

Eαν
h −→

N∑
ν=1

(φαν
1 , H1φ

αν
1 ) =

N∑
ν=1

Eαν . (9)
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The results (8) and (9) allow us to obtain a lower bound to Eα
h by taking respectively the minimum value

of Eα and Eαν in these expressions. The important point is that the minimum value of the right-hand

side of (9) is exactly the energy of the system of electrons which is obtained by successively filling up the

single-electron energy levels of potential of Eq. (1) from the lowest levels up in each infinite well (Section

III).

This lower bound to the energy of the system of electrons for the potential of Eq. (1) will be compared

with an upper bound to the energy of the system of electrons for the potential of Eq. (2) (the case h = 0)

to show that the energy of the electrons is minimized for the potential Vc. Since the parameter h provides

a smooth transition from the potential of Eq. (1) to the potential of Eq. (2) when it varies from zero to

infinity, we are justified in comparing system energies in the two different potentials.

III. THE GROUND STATE ENERGIES

The corresponding single-electron energies for the potential Eq. (1) are given by4

er =
( π

kb

)2

q2 (10)

for q = 1, 2, 3, . . ., where b is the length of each well, k2 = 2µ/~2, and µ is the mass of the electrons. The

ground state energy of a system of N electrons in potential (1) is the sum of the lowest energies in Eq. (10)

in each well. In this case, it is convenient to write the total number of electrons as N = nM +m for integers

n and m, where m (m < M) is the remaining number of electrons after each of the M wells have been filled

with n electrons.

The ground state energy is then

Er =
( π

kb

)2[
M

(n3

3
+

n2

2
+

n

6

)
+ m(n + 1)2

]
. (11)

Eq. (11) says that after n electrons have been distributed in the M wells, each of the remaining m electrons

will be placed on the next higher energy level.

The single-electron energies for the potential of Eq. (2) admit upper bounds given by

ec =
( π

Mkb

)2

q2 (12)

for q = 1, 2, 3, . . ..

The ground state energy of a system of N electrons is again the sum of the successive lowest energies in
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Eq. (12). We obtain

Ec =
∑

ec =
( π

Mkb

)2(N3

3
+

N2

2
+

N

6

)
. (13)

By substituting N = nM + m into the above equation, we write

Ec =
( π

kb

)2
{

M

3
n3 +

2m + 1

2
n2 +

1 + 6m + 6m2

6M
n +

m + 3m2 + 2m3

6M2

}
.

To compare the ground state energies, we calculate ∆E = Er − Ec and obtain

∆E =
( π

kb

)2[
M

(n3

3
+

n2

2
+

n

6

)
+ m(n + 1)2

]
−

( π

Mkb

)2(N3

3
+

N2

2
+

N

6

)

=
( π

kb

)2

(xn2 + yn + z), (14)

where

x =
1

2
(M − 1)

is always positive for M > 1,

y =
M

6
+ 2m− m2

M
− m

M
− 1

6M
=

M2 + 6m(M − 1) + 6m(M −m)− 1

6M
> 0

under the conditions M > 1 and m < M , and

z = m− m + 3m2 + 2m3

6M2
=

6mM2 − (2m3 + 3m2 + m)

6M2
>

m (M2 −m2)

M2
> 0

for M > 1 and m < M .

We thus conclude that ∆E in Eq. (14) is a positive quantity and the energy of the system for Eq. (2) is

always lower than for Eq. (1) for all values of the parameters n,M and m under the given conditions of the

problem.

The potentials studied here are of course too simple to answer the fundamental question of crystallization

in continuum models. Important interactions have been left out (this is also true of more elaborate models,

as the Falicov-Kimball model). But they do allow for a definite answer to the problem posed within the

simplified assumptions made.
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