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A first introduction to basic features of renormalisation group applied to critical phenomena is
presented. As an illustration, 1D Ising model and Gaussian model are considered .Understanding
of universality and scheme to compute critical exponents are also given.

I INTRODUCTION

Developments in Science owes itself to a miracle:
miracle being phenomena in different length scales
decouple.Without this feature, science would not have
even taken off.

Let us understand this statement by taking fluids as
illustration. Fluids have properties like viscosity, surface
tension, and all of these features of fluids have been
well studied. Now consider the description of fluids at
different length scales. At 1m distance, description is as
a continuous medium in terms of density and velocity
and obeying Euler equations. At 10−5m description
will be as granular material.At 10−10m it is described
by atoms/molecules following quantum mechanics.At
10−15 description is in terms of nucleus applying strong
interaction physics.At still smaller distance of 10−34m,
laws of still unknown quantum gravity effects will show
up.

Fortunately to study fluids at 1m scale we do not have
to know,the still to be discovered quantum gravity laws
at 10−34m.If that were so, even Newton might have to
wait for quantum gravity to be solved ,to understand
basic properties of matter.This is the miracle alluded
to above: phenomena at different scales decouple, and
each can be studied independently.Physics at each
short distance scale only contributes to the values of
the parameters in the succeeding larger scale.If those
parameters are taken from experiments, then they can
be studied independently. In the example above, strong
interaction effects provide nuclear parameters, atomic
physics provide atomic and molecular parameters.The
molecular parameters provide macroscopic parameters
of properties of matter like viscosity.

Difficulty arises when different length scales do not
decouple.This happens close to critical point in contin-
uous (or second order)phase transition.1In this transi-
tion order parameter increases from zero at Tc contin-
uously to its maximum value at T = 0 as temperature
is reduced.Recall that near TC there are fluctuations in
the order parameters in length scale given by correlation
length ξ.Correlation length is the maximum distance to
which spins are correlated.This means that fluctuations
in the order parameter are from distance 0 to ξ.At TC ,

since the correlation length diverges, the fluctuations are
from 0 to all the way up to infinity.The degrees of freedom
at different fluctuation length scale are entangled.Thus
degree of freedoms associated with all length scales have
to be taken into account.

This feature is also seen well in fluid system at
criticality. The order parameter in this case is the
density difference between liquid and vapour.Near Tc

the fluctuations of all length scale shows up by the
presence of liquid drops and vapor bubbles of varying
sizes, all mingled within each other.Fluid has not made
up its mind whether to condense or not.This density
fluctuations is experimentally seen in scattering of
light.When the fluid is scattered by light,it looses its
transparent nature and there will be a white milkish
patch ,due to scattering of wavelengths of order few
thousand Angstrom. Since this is much larger than
lattice spacing, lattice cannot be the cause.It happens
only at critical temperature.Hence the large fluctuations
are the culprits causing it. This is known as critical
opalescence. Mathematically this is due to divergence
in the density-density correlation function, equivalently
compressibility, at critical point.

Similar feature also occurs in quantum field the-
ory.Virtual particles of arbitrary energy scales are emit-
ted and absorbed owing to uncertanity principle.There
is fluctuation in energy in all scales contributing to the
loop diagram.

The problems of these kind needs renormalisation
group (RG) method to handle.This procedure, to handle
these kinds of problem was developed by K.G.Wilson,
who was awarded the Nobel prize for this contribution2.
The method is to systematically eliminate the degree of
freedoms at short distances and obtain effective theory
for long distance.This will, as we will see, provide rela-
tion between parameters of theory at one length scale to
another scale. More broadly speaking , Wilson scheme
provides long distance effective description, wherein,
short distance effects have been taken care of by suit-
able redefinition of the parameters valid for long distance.

How is this problem avoided in most of the system?For
most of the systems, the correlation length is only a small
number and whole system is superposition of small sys-
tems with very small correlation length. Since the de-
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grees of freedom within the correlation length is small ,
approximation methods works.
In the following ,first we illustrate the RG procedure

for 1d Ising model, followed by Gaussian model(defined
below).Then the general procedure of RG will be ab-
stracted, explaining Scaling and Universality. Finally we
conclude how RG has given a new vantage point to under-
stand quantum field theory.Some earlier reviews on RG
are 3,4,5. There are several excellent books on Renormal-
isation group and critical phenomena.A few recent ones
include,6,7

II REAL SPACE RG OF 1D ISING MODEL

The 1D Ising model is defined by the Hamiltonian

H = −J
∑
i

sisi+1 +
H

2
(si + si+1) (1)

whose partition function is

Z =
∑
s1

∑
s2

..
∏
i

exp ksisi+1 −
h

2
(si + si+1) (2)

where k = βJ, h = Hβ The above equation(2) can be
written as

Z =
∑
si

∏
i

K(si, si+1) (3)

whereK(si, si+1) = exp(ksisi+1 − h
2 (si + si+1)) Note the

parameters of the model are temperature T, Magnetic
field H. Instead of summing over spins at all sites at one
go, the spirit of RG is to first sum spin degrees at all even
sites only.8

∑
s2=±

K(s1, s2)K(s2, s3) (4)

The above will be a function only of s1, s3. It is

= exp{k(s1 + s3)− (h/2)(s1 + s3 + 2)}
+exp{−k(s1 + s3)− (h/2)(s1 + s3 − 2) ≡ K̃(s1) (5)

The other even sites elimination by summing over it
will also have similar structure. Next we demand that
equation(3) to have the same structure as the original
Ising model but for a different set of parameters k′, h′.

K(s1.s3) = exp k′(s1s3)− h′/2(s1 + s3) (6)

Similar structure follows for all other even site spins.
Next we get an explicit relation between old parameters
(before even site spins were eliminated) and new ones
(after they eliminated ). K̃(s1, s3) is a 2X2 symmetric
matrix with s1, s3 taking ± value.

K̃(+1,+1) = exp(2k − 2h) + exp−2k (7)

K̃(+1,−1) = K(−1,+1) = exp−h+ exph (8)

K̃(−1,−1) = exp(−2k) + exp(2k + 2h) (9)

Similarly matrix elements of the symmetric 2X2 ma-
trix equation(6) are

K(+1,+1) = exp(k′ − h′) (10)

K(+1,−1) = exp−k′ (11)

K(−1,−1) = exp(k′ + h′) (12)

By equating equations(7) and (10) we get the relation
between primed parameters and unprimed ones:

exp(−2h′) = exp(−2h)
cosh(2k − h)

cosh(2k + h)

exp(4k′) =
cosh(2k − h)cosh(2k + h)

cosh2h
(13)

Thus there is a reduction of degrees of free-
dom(elimination of N/2 even spins) and concomitant
change in parameters.

The second step is to rescale the distance in units of lat-
tice spacings to bring it back to the original system.With
even site spins eliminated the lattice spacing between the
remaining spins is twice the original spacing.To compare
with the original system , we must rescale the distance
by half so that the lattice spacing is the same.Though in
general scaling may require scaling spin degrees also , in
this example there is no necessity for it. This process can
be repeated with parameters changing under each itera-
tion. Next we find the fixed point of the transformation.

It is convenient to define x = exp(−4k) and y =
exp(2h) then equation(13) is

x′ = f(x, y) = x
(1 + y)2

(1 + yx)(y + x)

y′ = g(x, y) = y
x+ y

1 + xy
(14)

These equations provide the recurrence relations be-
tween the parameters. Next we have to identify the fixed
point of the transformation.These are the solutions of the
equation :x′ = x, y′ = y i.e,

x = x
(1 + y)2

(1 + yx)(y + x)

y = y
x+ y

1 + xy
(15)

The solutions are
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1.

x = 1, y (16)

which is T → ∞, describing paramagnetic phase
and has zero correlation length and hence not a
critical point.

2.

x = 0, y = 1 (17)

This is T = 0,H = 0, which is a critical point and
has infinite correlation length.This critical fixed
point is what we will be interested in.

We will study the behavior of the fixed point of criti-
cal point.Taylor expand the recurrence relation equation
(14)around critical fixed point x⋆ = 0, y⋆ = 1.

x′ = x⋆ +
∂f

∂x
δx+

∂f

∂y
δy (18)

y′ = y⋆ +
∂g

∂x
δx+

∂g

∂y
δy (19)

Where δx = x−x⋆ and δy = y⋆−y, similarly for δx′ and
δy′. This gives using equation(15)

δx′ = 4δx (20)

δy′ = 2δy (21)

This gives the deviation from fixed point after each it-
eration.Since ,by summing over all even sites spins, we
have effectively increased the distance by 2 the above is
actually

δx′ = 22δx (22)

δy′ = 2δy (23)

In general if b units were scaled for a variable A,then we
have δA′ = blAδA
For Ising model this gives lt = 2 and lh = 1.As we shall

see this can be used to calculate the critical exponents.
As the RG transformations were done on spins on a

lattice sites in 1d coordinate space, this is real space RG.
Next we consider RG in momentum space as opposed to
real space.

III MOMENTUM SPACE RG OF GAUSSIAN
MODEL

Gaussian model is defined by the Hamiltonian

βH =

∫
ddx

1

2
[▽ϕ.▽ ϕ+ r0ϕ.ϕ] (24)

Note the fields appear quadratically in the Hamiltonian,
hence the name Gaussian.5 In momentum space ,this
Hamiltonian is

βH =
1

2

∫
ddk

[2π]d
(k2 + r0)ϕ(k)ϕ(k)

∗ (25)

Z =

∫ ∏
k

dϕ(k) exp(−βH) where 0 < k < Λ (26)

Divide k into two regions 0 < k < Λ/s and Λ/s < Λ
Note this is a sharp division of wave vectors into two
divisions. Divide the field ϕ(k) = ϕ′(k) + σ(k) where
ϕ(k) = ϕ′(k) 0 < k < Λ/s
ϕ′(k) = 0 Λ/s < k < Λ
σ(k) = 0 0 < k < Λ/s
ϕ(k) = σ(k) Λ/s < k < Λ
Also

∫
dkϕ′(k)σ(k) = 0 since there is no overlap in non

vanishing region .Define d̄k = ddk
(2π)d

βH =
1

2

∫
d̄k|ϕ′ + σ|2(k2 + r0) (27)

=
1

2

∫
d̄k(ϕ′ϕ′ + σσ)(k2 + r0) (28)

Z =

∫
dϕ′e−

∫
d̄k 1

2 (k
2+r0)|ϕ′|2

∫
dσe−

∫
d̄k 1

2 (k
2+r0)|σ(k)|2(29)

Observe there is no interference between low and high
wave vector modes and they factorize as we have only
Gaussian model.If interaction like ϕ4 is added, this fea-
ture will fail.

Denote by Z>(Z<) contribution of σ(k)(ϕ′) field. We
are after the long wave vector modes.The contribution
of Z> is only for the free energy and not for the recur-
sion relation between parameter r0 .Hence we can ignore
them.

Z = Z>

∫ Λ/s∏
k=0

exp−
∫

d̄k
1

2
(k2 + r0)|ϕ′|2 (30)

The next part of the recipe of RG is to rescale k such
that it goes over to the same range i.e, between 0&Λ. k
scales as k → sk so that rescaled k ranges from 0to Λ.
The third part of RG is, ϕ′ has to be scaled correspond-
ingly so that the k2 coefficient remains 1

2 .

ϕ′(k) → ϕ(k) = (1/z)′ϕ(k) (31)

Scaling k → k′ = sk, we regain the same range for k′ ie;
0 → Λ.This scales H to

d̄′ks−d(k′2s−2 + r0)z
2ϕ′(′k) (32)

Keeping the coefficient of kinetic energy term (without
dimensional parameter) invariant gives

k′2ϕ′s−d−2z2 = k′2ϕ′ (33)

gives z = s
d
2+1 (34)

r0 → r′0 = s−dz2 = s−d+d+2r0 = s2r0 ≡ r(s) (35)
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This equation(35) relates the (only) parameter in the the-
ory at different scales.For infinitismal change of momen-
tum scale

r(s+ ds) = (s+ ds)2r0

r(s) +
dr

ds
ds+ .. = s2r0 + 2sr0ds+ ..

dr(s)

ds
= 2sr0

s
dr

ds
= 2s2r0

s
dr

ds
= 2r(s)

dr

d ln s
= 2r(s)

This equation represents ′flow ′of the r0 under RG
transformation.
The fixed point of the transformation is solution

of dr
d ln s = 0.ie r ≡ r∗ = 0 This fixed point is Gaus-

sian fixed point.Once the RG transformation reaches this
point , r will remain stay put-ie;fixed.
Two remarks are in order
1)In Gaussian model no new terms are generated un-

der RG transformation. In this case it is similar to 1d
Ising model. In general, new terms will be generated,
with coefficients dependent on wave vectors too.
2)When we refer as coupling constant, the word constant
makes us take them to be a universal number like Plancks
constant or π.But thats not correct, as the extension
’constant’ is a misnomer.It is more a coupling function
, whose value depends on the length scale at which it is
measured.The recursion relation provides the change in
the value of the so called constant as we change the scale
at which we observe.Electrons charge, as listed in tables,
is related to the coupling constant at zero k .

IV GENERAL FEATURES

GENERAL FEATURES

The issues RG tries to explain include:a) Universality
of critical exponents b)calculation scheme for calculating
exponents.

Recipe for RG

Ingredients Required:
a)Hamiltonian with an order parameter ( or field)
b) a method for introducing cut-off (there is no unique
choice: for real space , it is lattice, for momentum space,
it can be sharp cut-off, like theta function, or smooth
cut-off
c) a scheme for taking degrees of freedom associated with

short distances/large wave-vectors.If the scheme has a
controlled approximation it is better.
Procedure:
Take the given Hamiltonian with the chosen cut-off
method. Integrate the short distance degrees of freedom
by applying the scheme chosen: this can be ,in real space
by majority rule/avarage spin for the block spin, in k-
space perturbatively integrate over the high momentum
modes of the field. Let the momenta integrated by be-
tween Λ > k > Λ/s. The resulting Hamiltonian contains
fields for modes of momenta of only k < Λ/s.But we
cannot compare this with the starting system , as they
are defined in reduced range of k-space.To bring them
back to their original range, scale momentum /coordi-
nate. This ,in general, needs rescaling of field, ie change
in the magnitude of the field. The net result of these
three operations is that the original Hamiltonian,with a
given set of couplings, transforms to a Hamiltonian with
different coupling constant and ( in general)new set of
couplings .This provides the relationship between the two
set of parameters.Take the relationship between the orig-
inal set of couplings and new set of couplings.
Serve it hot for consumption!

Classification of Scaling variables

Given an order parameter field and a symmetry ,
we can consider the most general Hamiltonian involving
them consistent with the symmetry.Each term will have a
coupling parameter.Note here though the coefficients are
referred to as ’coupling constants’, it is better to regard
them as parameters in the theory.Define a Hamiltonian
space , which is the space of coupling constants.If one
wishes to call Hamiltonians with different couplings as
different theories,then this space is a ’theory space’.For
eg; scalar order parameter case,

H = | ▽ ϕ|2 + rϕ2 + uϕ4 + g1ϕ
6 + g2| ▽ ϕ|2ϕ2 + ... (36)

Thus in general it has infinite number of couplings.To
make it better to handle, we will consider a sub-
space , which is m dimensional, with couplings Kα =
{K1,K2, ..Km}.This set of values ofK can be represented
as a point in m−dimensional space. Under RG transfor-
mation, the set of couplings will change to another value,
which can be pictured as a point in theory space moving
to a different space.

Kα → K ′
α = Rα(K1, ..Km) (37)

Thus, by repeated RG transformation K → K ′ → K ′′..
The transformation is said to reach a fixed point if
K → K∗ → K∗. ie point in theory space stops moving
further under RG flow.K∗

α are the couplings at the fixed
point. The correlation length scales under RG transfor-
mation, since one of the action of RG is to scale the
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distances/momenta. Correlation length in extrinsic unit
like cm is invariant.But in units of intrinsic length scale
changes.ξ(K) → ξ′(K ′).At fixed point,ξ(K∗) → ξ(K∗) =
l(−d)ξ(K∗). ξ under scaling must remain invariant.No
finite number will be invariant.Only 0,∞ will remain
so.Hence fixed point physics must correspond to these
two values of ξ.The value 0 correspond to stable bulk
phase as in that phase, degrees of freedom have only
short range correlation.ξ = ∞ case represents the (un-
stable) critical phase.
Given the fixed point,the couplings are expanded about

it.

K ′
α = Rα(K) (38)

K∗
α + δK ′

a = Rα(K
∗ + δK) (39)

= Rα(K
∗) +

dRα

dKβ
δKβ (40)

= K∗ +
dRα

dKβ
δKβ (41)

define
dRα

δKβ
≡ Mαβ(l) (42)

δK∗ = M(l)δK (43)

Note Mαβ is m × m matrix and is not assured to be
symmetric.Let V (σ), lσ(l) be the right eigenvector and
corresponding eigen value.σ = 1, ..m.
Expanding K. in terms of the eigenvectors

δKα = a
(σ)
αβ V

(σ)
β

δK ′
α = a

′(σ)
αβ V

(σ)
β (44)

a′(σ) = l(σ)(l)a(σ) (45)

Now what can we say about lσ,eigenvalues of M? The
RG transformation obeys three axioms of group: a) ex-
istence of identity-l = 1 gives M = I
b)Existence of product rule .If represents Matrices as-
sociated with integrating momentas Λ → Λ/l1 →
Λ/l2which can be achieved directly Λ → Λ/(l1l2). Hence
M(l1)M(l2) = M(l1l2)
c)Ofcourse associativity is satisfied as it is a matrix. Im-
portantly inverse does not exist.Once we trace out some
degrees of freedom , we cannot uniquely fix the original
configuration.This is like given a matrix we can tell its
trace, but if I give you trace of a matrix, can you tell me
a unique matrix which has this trace?
Hence the transformation does not form a group in the

precise sense.It is sometimes referred to as semi-group.
These three properties of the group restricts the

eigenvalue lσ(l) = ldσ The eigenvalue is given by dσ.
The eigenvector V σ is called Relevent if the associated
eigenvalue dσ > 0, Irrelevant if ds < 0, Margininal
if dσ = 0 Why are they called so?By repeated RG
transformation , for relevent eigenvector its contribution
to couplings Kα will go on increasing as dσ > 0.Hence

they are relavent. Similarly contribution of irrelevent
eigenvectors will be decreasing.Hence it is irrelevent.
Marginal variable does not contribute at linear order and
hence to look at it contribution one should go beyond
linear order.
Let K1,K2..Kn(n < m) be the couplings which are
relevant and the remaining irrelevant. For simplicity we
consider there is no marginal variable. This classification
of relevant,irrelevant and marginal will turn out to be
important to understand universality and calculation of
exponents.These definitions are with respect to a fixed
point.The same variable with respect to a different fixed
point can change their relevancy.

Universality

1. To understand, how systems with different TC and
different microscopics share the same exponents
near criticality.

2. Definition:critical surface : In the m dimensional
theory space, critical surface is a subspace, defined
by setting all relevent couplings to zero.This is like
in 3d space we can define a 2d surface,xy plane,
by setting z = 0.The main feature of the Critical
surface is the fixed point is contained in it. Since
relevant parameters are zero and the effect of irrel-
evant ones will die down ,any point on the critical
surface will flow under RG to the fixed point.This is
the importance of the critical surface. The dimen-
sion of the critical surface is m− n.The number of
conditions required to define this critical surface is
known as co-dimension, which is n here.In the case
of magnetic system, we will see that the relevant
variables are temperature and the magnetic field,
and hence the codimension of the critical surface is
two.

3. On the theory space we are going to define two
kinds of transformation: one a physical transforma-
tion ,which can be done in principle by a ”knob”in
experiment.This transformation will bring the sys-
tem to its critical point. The second is a mathemat-
ical RG transformation, which cannot be achieved
by experimentalists by tuning ”knobs” of appara-
tus, but it exits only as theorists construction.

4. Consider a line piercing the critical surface at
a point P .This change is effected by physical
transformation, and the system is tuned to be
at the point P .For eg in magnetic system this
physical transformation is achieved by tuning the
system to be at its T = TC H = 0 .Similarly
a different system will be piercing the critical
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surface at a different point Q. The critical surface
contains fixed point.Hence both the points P,Q
which are on the critical surface, and are at their
respective critical point, under RG flow to the
fixed point.(fig-1)
What happens if the system is slightly off the
critical surface? This is done by the physical
transformation by tuning the system close to the
critical point. Under RG transformation this
point p′ will flow close to the fixed point.Since
the system is not exactly on critical surface, the
relevant variable is not exactly zero, but close to
it.Near the fixed point , due to their relevance ,
RG effects amplify their effect, and the trajectory
moves away from the fixed point.Similar behavior
is expected for the system Q′ which represent the
system Q slightly away from the critical point. For
eg; these two points can represent elements Ni and
iron.(fig-2) In fact for all points slightly off the
critical surface will undergo similar behavior.

This explains that all points on the critical surface
will have universal behavior as their long distance
effective description will be governed by the same
fixed point.The critical exponents are provided by
the eigenvalues of relevant variable of this fixed
point. This has been seen in earlier examples.
To summarise: all systems on the critical surface,ie
Hamiltonians having these m − n irrelevant cou-
plings will all share the same exponents and have
the same long distance behavior.The microscopic
parameters which distinguish the different systems
sharing the same universal class, are irrelevant in
the RG sense, explaining universality. It explains
the universality by staying close to TC , it is the
long distance ”cooperative behavior” and not short
distance dirty details that are dominating.

SCALING

1. At criticality there are fluctuations of order param-
eter at all length scales.Hence there is no specific
length scale which shows up. To whatever length
scale we zoom in the system will appear the same.
The scale invariance shows up in this way.

2. Mathematically it shows up in correlation function
G(x,y). Correlation function must be decreasing
function of the distance between the points.It can
be exponentially falling or power law dependance.
But exponential functions are not scale invariant.

exp(λx) ̸= λ exp(x) (46)

But power law functions have this property.

1

(λx)p
= λ−p 1

xp
(47)

This means there is self-similarity as the distances
are scaled. Correlation function at criticality is a
power law function.Mathematically ,this is seen as

G(x,y) ∼ 1

|x− y|d−2+η
(48)

Here η is a critical exponent which characterizes the
power law behavior. It is zero for Gaussian model
as different modes of the field decouple. When it
is non-zero, a)it shows how fluctuation at lattice
level( or at momentum cut-off)gets coupled with
long distance fluctuation and b)it reflects in failure
of naive dimensional analysis of fields .Fields then
have dimensions different from the engineering di-
mension;they get ”anomalous dimension”. Physi-
cally the power law behavior is seen as the pres-
ence of clusters of up and down spins of all sizes
or in fluid system as drops of liquid and bubbles of
gas of all sizes. This behavior is also similar to the
structure of some naturally occurring objects like:
clouds, river basin,..There is self similarity of struc-
ture at all length scales.These are known as fractal
structure.
Thus there is a deep connection between scale
invariance-power law behavior-criticality.

3. Singular part of free energy close to criticality
has scaling form.This follows from RG point of
view.Consider ,1d Ising model as illustration. Free
energy per unit site (which, incidentally is an in-
tensive quantity)is f ∝ 1

N lnZN

Under RG first note that ZN (K) is invariant, where
K denote couplings. Let us split the N degrees of
freedoms into N ′ and N ′′. Out of N sites N ′ has
been first traced.

f(K) =
1

N
ln[TrNe−H(K)] (49)

=
1

N
· N

′

N ′ lnZN ′(K ′) =
N ′

N
f(K ′) (50)

Since
N ′

N
= b−d. (51)

(52)

Thus f has the required scaling behavior.After bd

degrees of freedoms have been summed out ,K →
Kb, where Kb is given in terms of K by RG equa-
tion.

f(K) = b−df(Kb) (53)
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For specific case of couplings being
temperaturetand magnetic field h, (which are
relevant parameters in Ising model)

f(t, h) = (b−d)lf(tl, hl) (54)

calculation of exponents

1. Recall that from the linear analysis of the RG
transformation for parameter, say K, about
the fixed point , we got Kb = byK . Hence
tb = byt , hb = byh .The quantities yt, yh are calcula-
ble from RG transformation and are > 0 as they
are relevant . We will see that the exponents are
given in terms of them ,using scaling form of free
energy.

From the scaling form of the free energy

f(t, h) = b−df(bytt, byhh)

Choose b such that b = t−1/yt

f(t, h) = td/ytΦ(t−yh/yth) (55)

As illustration few of critical exponents are calcu-
lated below:

2. Exponent β.

m(t, h) ≡ ∂f

∂h
= td/ytΦ′ t−yh/yt

m(t, 0) ∼ td/yt−yh/yt

β =
d− yh
yt

(56)

3. Exponent γ

χ ≡ ∂m

∂h

= t
d−yh

yt Φ′′ t−yh/yt

χ(t, 0) ∼ t
d−2yh

yt

γ =
d− 2yh

yt
(57)

4. Exponent δ
Exponent δis defined by M ∼ h1/δ at t = 0. con-
sider

M =
∂f

∂h
(58)

= td/ytΦ′ t−yh/yt .

We cannot put t = 0, h ̸= 0 in the above as M itself
vanishes,which is not correct.As x → 0 Φ′(x) →

xq with q to be determined such that M is finite.
As t → 0

M = t(d−yh)/yt(
hq

tqyh/yt
)

= t(d−yh)/yt−qyh/ythq (59)

demanding power of t = 0 q =
d− yh
yh

hence δ−1 =
d− yh
yh

(60)

Conclusion

RG is a framework to understand the long distance be-
havior of a system.The theory valid at long distance is
obtained by systematically eliminating the short distance
effects and incorporating them as change in the parame-
ters defining the theory. Thus the seemingly insurmount-
able difficult problem of all length scales coupled,is won
by diving into smallest length scale and conquering them
one by one: divide and conquer is the policy! .
RG has also shed light on quantum field theory.In the
olden days ,in quantum field theory,‘good’(ie renormal-
isable) theories were expected to be valid for all length
scales upto zero diatance.A cut-off was introduced more
as a convenient intermediary to absorb certain infini-
ties. But RG has provided a vantage point to understand
some of the behavior.Now cut-off is considered as a neces-
sity, above which the theory is not defined. Some times
it is possible to lump the effects of short distances as
change in finite number of parameters.They are, in older
language ’good’ theories.In such theories their region of
validity will be decided by experiments.Sometimes it is
not possible and it may require infinite number of pa-
rameters.These were considered earlier as ”bad” (non-
renormalizable)theories. But even these theories can
have a predictive power to an arbitrary level of accu-
racy.This insensitiveness of the long distance phenom-
ena to short distance behavior (which is is universality in
critical phenomena) is presently seen as renormalisablity
feature in quantum field theory.
RG is a broad framework and it can be considered as giv-
ing a theory of writing theories.Its application to more
areas ,one can say,is in beginning stages.

Acknowledgment

I thank Sudharsana.V and K.Sravan Kumar for help
in preparing the manuscript and H.S.Sharatchandra and
Siddhartha Sen for encouragement.

References

[1] Introduction to phase transitions and critical
Phenomena-Stanley H.E(Oxford,1971)

Volume 28, Number 1, Article Number 9 www.physedu.in



Physics Education 8 Jan-March, 2012

[2] The renormalization group and critical phenomena-
Kenneth G. Wilson Rev. Mod. Phys. 55, 583 (1983),
[3] Teaching the renormalization group-Humphrey J.

Maris and Leo P. Kadanoff Am. J. Phys. 46, 652 (1978),
[4] Renormalization-group approach to interacting

fermions -R. Shankar,Rev. Mod. Phys. 66, 129 (1994)
[5] Critical Phenomena: An Introduction from a mod-

ern perspective-Somendra M. Bhattacharjee -cond-mat-
0011011
[6] Lectures on phase transitions and renormali-

sation group(Addison-Wesley, Reading, Ma, 1992)by
N.Goldenfeld,

[7] Quantum field theory and critical phenomena-
(Clarendon Press; Fourth Edition edition 2002) By
J.Zinn-Justin,

[8] Soluble Renormalization Groups and Scaling Fields
for Low Dimensional Ising Systems- D.R. Nelson, M.E.
Fisher, Annals Phys.91:226-274,1975.

∗ mssp@uohyd.ernet.in

Volume 28, Number 1, Article Number 9 www.physedu.in


