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In this article we solve some quantum mechanics problems using the time-evolution operator
U(t) = e−iHt/~ for a time independent Hamiltonian H. We consider here the time evolution of a
particularly simple system - a two-state system.

We learn in an introductory course in quantum me-
chanics that any physical system (an electron, an atom,
a molecule etc.) has to be described by a state-vector
|ψ〉(t). The most familiar example of a state-vector is a
wave-function, such as that of an electron in a hydrogen
atom. We are also familiar with the state-vector that
describes the spin state of a particle. The simplest ex-
ample is the spin-state of a free electron (or any spin-1/2
particle). The state-vector |ψ〉 in this case is a column
vector of size 2. If this state-vector is known we can cal-
culate the probability of obtaining a result in any mea-
surement on the system, such as, the measurement of
energy or the spin component in a given direction. One
of the basic tasks in quantum mechanics is to determine
the state-vector of the system |ψ(t)〉 at a given instant
of time t, given the the state-vector of the system |ψ(0)〉
at a given instant of time t = 0. One way of doing it is

by solving the Schrödinger equation i~d|ψ(t)〉dt = H|ψ(t)〉.
Another equivalent way of doing this is by using the time-
evolution operator U(t) = e−iHt/~. This is physically
more intuitive because you can think of the change in
state-vector as caused by the action of an operator - you
take |ψ(0)〉 and operate U(t) on it, and you get |ψ〉(t),
that is, U(t)|ψ(0)〉 = |ψ(t)〉. In the following problems
we shall demonstrate this procedure.

The Hamiltonian for a two state system is given by (in
the standard basis {|1〉, |2〉})

H =

(
E0 −η
−η E0

)
E0 and η are not time-dependent.
Problem 1
Can E0 and η be complex numbers?
Solution
The Hamiltonian is the operator for the observable en-
ergy. The operators representing observables have to
Hermitian, that is to say, H† = H. Which is possible
only if all the main-diagonal elements are real, and op-
posing off-diagonal elements are complex-conjugates of
one another. In this case that means E0 is real, and
(−η)∗ = (−η) =⇒ η∗ = η, i.e. η is also real.
Problem 2
Find the eigenvalues and eigenvectors of H given in the
previous problem.

Solution
The characteristic equation and the solutions are (λ is
the eigenvalue)

|H − λI| = 0 =⇒ (E0 − λ)2 − η2 = 0 =⇒ λ = E0 ± η

where I is the 2 × 2 identity matrix. Let us call eigen-
vectors for the eigenvalues E1 = E0− η and E2 = E0 + η
respectively |V1〉 and |V2〉. We obtain the two eigenvec-
tors by solving two eigenvalue equations H|V1〉 = E1|V1〉
and H|V2〉 = E2|V2〉. The first one is worked out as fol-
lows. Let |V1〉 = ( x1

x2
) and we have to determine x1 and

x2. (
E0 −η
−η E0

)(
x1
x2

)
= (E0 − η)

(
x1
x2

)
which gives us two equations E0x1 − ηx2 = (E0 − η)x1
and −ηx1 + E0x2 = (E0 − η)x2. But these two equa-
tions are not independent - one can be obtained from
the other. So we have one linear equation to determine
two unknowns, which is impossible. But we can use this
equation to determine the ratio of x1 and x2, and then
apply normalization requirement to fix the values of x1
and x2.

Simplifying any one of the ‘two’ equations above we
get x2 = x1 = c say. Thus we have |V1〉 = ( cc ). And c
remains to be determined. But |V1〉 is a quantum state of
the system, and so must be normalized. Normalization
gives us c = 1/

√
2. Thus we finally have |V1〉 = 1√

2
( 1
1 ).

Note that we can multiply this vector by a factor eiφ,
where φ any real number, and it still remains normalized.
Thus the quantum states we obtain are always uncertain
within this overall phase factor. But it does not matter,
because no measurable property of a system depends on
the overall phase-factor of the state-vector. So for sim-
plicity we usually set φ = 0 so that the phase-factor is
unity.

Working in the same way, the reader can easily find
the second eigenvector as |V2〉 = 1√

2

(
1
−1
)
. At this point

it is important to do a check - we know that the eigenvec-
tors of a Hermitian matrix, for distinct eigenvalues, are
always mutually orthogonal. We can readily verify that
the inner-products 〈V1|V2〉 and 〈V2|V1〉 are both zero and
so everything is in order. One common practice in quan-
tum mechanics is to label the eigenvectors of a matrix
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by the respective eigenvalue. That is, we call |V1〉 and
|V2〉 above |E1〉 and |E2〉. Thus the eigenvalue equations
become simply H|E1〉 = E1|E1〉 and H|E1〉 = E1|E1〉.
This can be slightly confusing for a beginner, but once
you get used to it, it is very convenient when doing quan-
tum mechanics linear algebra. We shall use this notation
in the rest this article.
Problem 3
Consider a system described by the Hamiltonian H given
in problem 1. At t = 0 the system is in the state

|ψ(0)〉 =
|1〉+ i|2〉√

2

What are the probabilities that at time t = 0 the system
is found in the states |1〉 and |2〉 ? What are the proba-
bilities that the system is found in each of the two energy
eigenstates?
Solution
Here |1〉 = ( 1

0 ) and |2〉 = ( 0
1 ) (i.e.,standard basis vectors).

We know from one of the basic postulates of quantum me-
chanics that if at a given moment of time the system is
in the state |ψ〉, the probability that an observation will
find it in a state |φ〉 is (assuming both the state vectors
are normalized) |〈φ|ψ〉|2. Thus the probability that at
t = 0 the system is found in the state |1〉 is

|〈1|ψ(0)〉|2 =

∣∣∣∣〈1| [ 1√
2
|1〉+

i√
2
|2〉
]∣∣∣∣2

=

∣∣∣∣ 1√
2

[〈1|1〉+ i〈1|2〉]
∣∣∣∣2

=

∣∣∣∣ 1√
2

[1 + 0]

∣∣∣∣2
=

1

2

We have used above the orthonormality of the basis vec-
tors, i.e. 〈1|1〉 = 1 and 〈1|2〉 = 0. Similarly we get the
probability that at t = 0 the system is found in the state
|2〉 also 1

2 .
The probabilities for finding the system in energy

eigenstates |E1〉 and |E1〉 are respectively |〈E1|ψ(0)〉|2
and |〈E2|ψ(0)〉|2. Let us first evaluate the components
〈E1|ψ(0)〉 and 〈E2|ψ(0)〉. We have

|E1〉 =
1√
2

(
1
1

)
=

1√
2

(
1
0

)
+

1√
2

(
0
1

)
=

1√
2
|1〉+ 1√

2
|2〉

(1)
And

|E2〉 =
1√
2

(
1
1

)
=

1√
2
|1〉 − 1√

2
|2〉 (2)

And we are given

|ψ(0)〉 =
1√
2
|1〉+

i√
2
|1〉 (3)

From Eqs. (1) and (3) we get

〈E1|ψ(0)〉 =〈E1|
[
|1〉+ i|2〉√

2

]
=

[
〈1| 1√

2
+ 〈2| 1√

2

] [
|1〉+ i|2〉√

2

]
=

1

2
[〈1|1〉+ 〈2|1〉+ i〈1|2〉+ i〈2|2〉]

=
1

2
[1 + i] (4)

And from Eqs. (2) and (3) we get

〈E2|ψ(0)〉 =〈E1|
[
|1〉+ i|2〉√

2

]
=

1

2
[1− i] (5)

And from Eqs. (4) and (5) we immediately get
|〈E1|ψ(0)〉|2 = 1

2 and |〈E2|ψ(0)〉|2 = 1
2 .

Problem 4
Answer the questions in the previous problem for t > 0,
using the time-evolution operator.
Solution
We begin by expanding the state vector |ψ(0)〉 in the
{|E1〉, |E2〉} basis:

|ψ(0)〉 = |E1〉〈E1|ψ(0)〉+ |E2〉〈E2|ψ(0)〉 (6)

Using Eqs (4) and (5) in Eq. (6) we get

|ψ(0)〉 =
1

2
(1 + i)|E1〉+

1

2
(1− i)|E2〉 (7)

In Eq. (7) we have expressed the state vector |ψ(0)〉
in the energy eigenbasis. Now we can operate the time-
evolution operator for the time independent Hamiltonian,
U(t) = e−iHt/~, on this state vector and obtain the state
vector at time t, that is |ψ(t)〉 :

|ψ(t)〉 = U(t)|ψ(0)〉
= e−iHt/~|ψ(0)〉

= e−iHt/~
[

1

2
(1 + i)|E1〉+

1

2
(1− i)|E2〉

]
=

[
1

2
(1 + i)e−iHt/~|E1〉+

1

2
(1− i)e−iHt/~|E2〉

]
=

[
1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]
(8)

In the last step we have used the fact that when the time-
evolution operator e−iHt/~ (H being time-independent)
acts on an energy eigenstate |E〉, the eigenstate gets mul-
tiplied by the factor e−iEt/~, E being the energy eigen-
value for the state. Note that e−iEt/~ is a number (or
scalar).
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We are now ready to calculate the probabilities that at
time t, the system is in the states represented by vectors
|1〉 and |2〉. The probability that at time t the system is
found in the state |1〉 is :

P1(t) = |〈1|ψ(t)〉|2

=

∣∣∣∣〈1| [1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈1|E1〉+

1

2
(1− i)e−iE2t/~〈1|E2〉

]∣∣∣∣2
From Eqs. (1) and (2) we have 〈1|E1〉 = 1√

2
and 〈1|E2〉 =

1√
2
. Using this the last equation above we have

P1(t) =

∣∣∣∣[1

2
(1 + i)e−iE1t/~ 1√

2
+

1

2
(1− i)e−iE2t/~ 1√

2

]∣∣∣∣2
=

(
1

2
√

2

)2 ∣∣∣[(1 + i)e−iE1t/~ + (1− i)e−iE2t/~
]∣∣∣2

=
1

8

∣∣∣[(1 + i)e−iE1t/~ + (1− i)e−iE2t/~
]∣∣∣2

We can simplify the modulus-squared term in the last
expression above by noting that for a complex number

z, |z|2 = zz∗, and also eiθ − e−iθ = 2i sin θ. After a few
lines of simplification, we get

P1(t) =
1

2

[
1− sin

(
E2 − E1

~
t

)]
=

1

2

[
1− sin

(
2η

~
t

)]
In the last line we have used E2 − E1 = 2η. An almost
identical calculation gives the probability that at time t
the system is found in the state |2〉 :

P2(t) = |〈2|ψ(t)〉|2

=
1

2

[
1 + sin

(
2η

~
t

)]
Note that the two probabilities add to 1. This is because
this is a two-state system, and the states |1〉 and |2〉 are
mutually orthogonal. Thus is the system in not one state,
it must be in the other.

Similarly, the probability that at time t the system is
found in the energy eigenstate E1 is given by |〈E1|ψ(t)|2.
This we can calculate by using Eq. (1) in (8):

P (t, E = E1) = |〈E1|ψ(t)〉|2

=

∣∣∣∣〈E1|
[

1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈E1|E1〉+

1

2
(1− i)e−iE2t/~〈E1|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~ + 0

]∣∣∣∣2
=

1

2

In the above we have used the orthonormality of |E1〉 and
|E2〉 (i.e. 〈E1|E1〉 = 1, 〈E1|E2〉 = 0) and |e−iE1t/~|2 = 1.

In the same manner we get
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P (t, E = E2) = |〈E2|ψ(t)〉|2

=

∣∣∣∣〈E2|
[

1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈E2|E1〉+

1

2
(1− i)e−iE2t/~〈E2|E2〉

]∣∣∣∣2
=

∣∣∣∣[0 +
1

2
(1 + i)e−iE2t/~

]∣∣∣∣2
=

1

2

Once again the two probabilities add up to 1, for the same
reason - the states |E1〉 and |E2〉 are mutually orthogonal
for a two-state system. Note that the probabilities of
finding the system in an energy eigenstates is independent
of time, that is, they are same as at time t = 0, as we have

seen in the previous problem. This is true in general when
the Hamiltonian is time independent. But we have also
seen that the probabilities of finding the system in some
arbitrary state, such as |1〉 and |2〉 considered above, in
general vary with time.

Volume 28, Number 1, Article Number 5 www.physedu.in


