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Abstract 

Time plays a peculiar role in quantum mechanics. What makes this concept so interesting is the question 

"what can quantum mechanics tell us the about the nature and role of time?" and conversely, "what can 

time tell us about the structure of quantum theory?" In standard quantum mechanics probabilities are 

assigned to measure the outcomes of a given observable at a given moment of time. Time enters the 

Schrodinger equation as an external parameter, and not a dynamical variable. It is not a standard quantum 

mechanical observable. But in concepts such as the time of arrival , the time-energy uncertainty relation , 

tunneling time , and time in quantum gravity , time can no longer be viewed as a mere parameter. This 

survey explores various attempts made in order to treat time as a dynamical variable (observable) and 

hence measure it. 

. 

 

 

I. Introduction 

What is time? This is a very old philosophical 
question. Even Einstein had a hard time answering 
this question, but in spite of that, we can measure 
time more accurately than any other quantity. 
Atomic clocks are the most accurate timepieces 
ever made, and are essential for such features of 
modern life as synchronization of high speed 
communication and the operation of the Global 
Positioning System (GPS) that guides aircraft, cars 
and so on."  

 
The role of time is a source of confusion and 
controversy in quantum mechanics [1]. In the 
Schrodinger equation time represents a classical 
external parameter, not a dynamical variable. The 
time measured in experiments, however, does not 
correspond to an external parameter; it is actually 
an intrinsic property of the system under 
consideration, which represents the duration of a 
physical process; the life time of unstable particles 
is a well-known example. Quantum mechanics 

was initially formulated as a theory of quantum 
micro-systems interacting with classical macro 
systems [2]. Quantum mechanics allows the 
calculation of dynamical variables of systems at 
specified instants in time using the Schrodinger 
equation [3]. The theory also deals with 
probability distributions of measurable quantities 
at definite instants in time [4]. The time of an 
event does not correspond to a standard 
observable in quantum mechanics [5].  
 
Asking the question of when a given situation 
occurs, time is no longer an external parameter. 
Time, in such a situation, becomes dynamical. 
However, such a time observable does not have 
the properties of a "standard" quantum mechanical 
observable. This research is dedicated to exploring 
various attempts made in order to treat time as a 
dynamical variable (observable). All attempts use 
essentially one of two approaches, namely those of 
direct and indirect the measurement of time. 
Direct approaches use theoretical toy model 
experiments while indirect approaches are of 
mathematical nature. The controversy of time 
arises in the time of arrival concept, the search for 
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a time operator, the time-energy uncertainty 
relation and the tunneling time. A very important 
issue as well is the role of time in the context of 
quantum gravity. The problem of time in quantum 
gravity also opens the door to the ever-lasting 
question: what is time?  
 

To determine the time of arrival or the tunneling 
time, the measurement of the required quantities 
must always be done, directly or indirectly. The 
notion of measurement emerges from 
interpretations of quantum mechanics, however 
the time problem arises in all of them. The 
interaction of a quantum Microsystems with a 
classical macro system is described in terms of 
quantum measurements [2]. As time is treated as 
an external parameter in standard quantum theory, 
quantum observation theory talks about 
observations made at given instants in time [3]. 
The system in standard quantum theory interacts 
with a measuring device through the time 

dependent interaction Hamiltonian. Quantum 
mechanics is actually designed to answer the 
question "where is a particle at time t?" In 
standard quantum mechanics, the probability 
corresponds to a measurement result of a particle 
being at a given location at one specific time. The 
above mentioned micro-system is taken to be in a 
superposition of states of its variables. Suppose 
the macro-system interacts with one of the micro-
system's variables, then the macro-system only 
sees one of the many possible values of the 
variable [2]. The interaction itself projects the 
state of the micro-system into a state with the 
given value. In terms of wave-functions, the 
interaction (act of measurement) causes the wave-
function of the Microsystems (a superposition of 
states) to "collapse" into one state with a specific 
value (eigenvalue). Dirac mentioned that the 
superposition is one of two most important 
concepts in quantum mechanics; the other one is 
Schrodinger equation [6].    Even though several 
alternative interpretations have been devised 
(Bohm, many- worlds, etc.), they all have one 
problem in common: how can the exact time at 
which a measurement occurs be determined? 

Rovelli [2] illustrates how the problem of time 
arises in each interpretation. If a system is viewed 
as having a wave-function which collapses during 
a measurement, is the collapse immediate? If a 
system is viewed in terms of values of its 
dynamical variables which become definite when 
observed, how to determine exactly when this 
occurs in an experiment? If a system's wave-
function is taken a branch, when does this occur? 
If a wave-function does not branch and the 
observer selects one of its components and sticks 
with the choice, when does the selection occur? If 
there exists probability for sequences of events to 
happen, when does such an event occur? The 
above questions indicates the universality and 
challenging concept of time. In section II, The 
concept of time of arrival, in the context of 
quantum mechanics is discussed. The issue of time 
arises also in Heisenberg's time-energy uncertainty 
relation (section III). This relation has direct 
consequences to defining a time operator. Another 
important concept is tunneling time (section IV). It 
is purely quantum mechanical phenomenon with 
no classical analogue. Many of the ideas president 
in the context of the time arrival can be carried 
over to tunneling time. In section V, we review 
some attempts to set up the time operators. Last 
but not least the, problem of time in quantum 
gravity is outlined, where time, if it is a 
fundamental variable, must also be a dynamical 
variable. Quantum gravity has the interesting 
feature that the philosophical question of what 
time actually is raised (section VI). If one would 
know what time is fundamentally, then perhaps 
the problems encounter in determining time in 
quantum mechanics could be solved, as one would 
then know what one is actually looking for. In 
what follow, we only highlight the subjects, and to 
understand more each part needs to be explored in 
details. Another approach to the time problem is 
the decoherent histories approach to quantum 
mechanics [7, 8, 9, 10]. This formalism makes use 
of the fact that what one considers to be a closed 
quantum system, is never completely closed, as 
there always is an interaction present with the 
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environment. The Brownian motion model is the 
main idea presented in this context [7].  

II. Time of Arrival (TOA)  

II. 1. Time of Arrival in Classical Mechanics  

The basic question to answer is, can the exact time 
be measured at which a particle arrives at a 
specified point? Taking a beam of free particles, a 
measurement needs to be done to find the time of 
arrival at the specified point x = x1. An experiment 
can be constructed which involves a clock 
positioned at the point x = x1 This clock will turn 
itself off when a particle reaches x1. In classical 
mechanics the time of arrival can be measured in 
this way with extreme accuracy, as the non-
vanishing interaction between the particle and the 
clock is very small. The time of arrival can also be 
measured indirectly in classical mechanics. The 
equation of motion of the particle is inverted to get 
time as a function of location x and momentum p:  
 

T1 ( x (t ) , p (t ) , x1 )                        (1) 

This can be evaluated at any time t by measuring 
p(t) and x(t) simultaneously. Classically direct and 
indirect measurements are completely equivalent. 
Both methods give exactly the same result [11]. 
Muga et al [12] give an example of a particle 
moving in one dimension with position q and 
momentum p. The particle's trajectory might cross 
a given point X only once if no reflection 
mechanism is present. If a potential barrier is 
introduced, it can reflect the particle's trajectory 
and cause it to cross the point X more than once. 
The first passage time is defined as the first 
crossing of the trajectory of the point X. 
Considering ensembles of non-interacting 
particles, Muga et al state that a distribution of 
times is associated with the nth passage given by 
the nth crossing. A phase space distribution 
F(q,p,t) can be used to describe an ensemble of 
free moving, non-interacting particles. The 
distribution is normalised to one and is defined 
such that it only considers particles moving 
towards the right: F (q, p � 0) = 0. The particle 
trajectories cross the point X only once and a 

current density J(X, t) at X and time t (probability 
flux) gives the distribution of the first passage 
arrival times. Let J(X, t) dt be the fraction of 
particles which cross X between t and t+dt. 
Defining  

J(X,t) = � ��
��  (X,p,t)

�
� 	
                     (2) 

and the trajectory equation q(t) = q0 + 
��
�  , the 

average time for free motion is given by  

���, ���	� � �����, 
, 0� �� � ����
� 	��	
 

The integral is well-defined if F cancels the 

singularity. 

  

II.2. Time of Arrival in Quantum Mechanics  

The time of arrival problem in quantum mechanics 
arises by turning around the question: "at what 
time is the particle at a specified location?" 
Attempts to answer this question raise several 
problems which lead to ambiguous answers. The 
best way to illustrate this is through a simple 
example [5]:  

Consider a N-particle ensemble. The aim is to 
measure the time at which a particle is located at 
the point x. A simple way of doing this would be 
to consider a detection process where the detector 
is switched on by each particle only at a given 
time t=T. Then this process is repeated on a 
second ensemble at t = T1 and so on. The 
probability of finding the particle 

 
2

( , )x t Tψ =
 
and   

2
( . Tx T N nψ =

      
(4) 

 
is the average number of particles found at 
position x at time t =T. Unfortunately, (4) does not 
represent a probability as it is not normalised 
properly. To overcome this problem consider  

2

21 1

( .

( .

x t

x t dt

ψ

ψ∫
                                      (5) 

However, to be able to use this equation, the state 
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ψ (x,t) must be known at all times in the past and 
in the future. The reason for the problem is that 
the particle could be at the point x at several times. 
For example, if the particle is found at point x at 
time tl with probability one, it is not possible to 
say that the particle was not at x at all other times.  
To try to overcome the above mentioned difficulty 
the measurement of the time of arrival of a particle 
at a given point seems a good candidate, as a 
particle can arrive only once at a given location. 
To measure the time of arrival of a particle, it 
must be possible to be able to detect it at a given 
point, as well as knowing that is was not there 
before the measurement takes place. This requires 
a continuous monitoring of the point of arrival. 
Now the problem arises that the probability of 
detecting a particle at a time t = tl is not 
independent of detecting it at t = t2. In 
mathematical terms the projections onto the arrival 
position x, denoted by the projection operator Px, 
at given times tl and t2 will not commute:  

����t��, ���t�� ! 0 

This means that the measurements that are done at 
different times do not commute and disturb one 
another. This also means that (5) is not a 
probability distribution in time.  

III. Uncertainty Principles  
 
III.1. Introduction  

In trying to change time, as the classical external 
parameter, into an observable, one cannot deduce 
the time-energy uncertainty relation:  

2
t E∆ ∆ ≥ h

;                                           (7) 

where     t = time     ,   E = energy from 
kinematical point of view, as time does not belong 
to the algebra of observables [12]. In spite of this, 
(7) is generally regarded as being true. The 
relation (7), unlike other canonical pairs, is not the 
consequence of fundamental quantum in-
complementarity of two canonical variables. The 
time-energy uncertainty relation is very different 
to the standard quantum uncertainty relation, such 

as the position momentum one. The precise 
meaning of the time-energy relation is still not 
exactly known. The problem lies in the fact that 
one cannot give the precise meaning to the 
quantity t . This is because time is not a standard 
quantum mechanical observable associated with 
an Hermitian operator. If such an operator 
canonically conjugate to the Hamiltonian did 
exist, then, t could be defined conventionally and 
the uncertainty principle could be applied to the 
physical quantity corresponding to the time 
operator.  

III.2. Quantum Mechanical Uncertainty  

In classical mechanics any quantity can be 
measured to an arbitrary precision In quantum 
mechanics the same is possible by preparing a 
quantum system in a well defined state of position 
and hence perform a measurement which reveals 
where the particle is located very accurately. The 
difference from classical mechanics arises when 
the values of two different observables are desired 
to be determined. In classical mechanics there is 
no reason why two quantities cannot be measured 
with high precision. In quantum mechanics only 
compatible (commuting) observables can be 
measured simultaneously. In general the 
uncertainties in measurements of two observables 
obey the uncertainty relation, which creates a 
lower bound on the product of the individual 
uncertainties, which is not equal to zero. For any 
two observables "# and $%  , their uncertainties                                

 
∆�% = '〈�%�〉 � 〈�%〉�*1/2 

are used to derive the uncertainty relation [13 ]: 

∆"#∆$% + |〈�	.%,/% 〉|
�                        (8) 

An important fact that should be noted is that the 
uncertainty.	∆�% of an observable �% is an intrinsic 
property of any quantum state .  
 
III.3. Heisenberg's Uncertainty Principle  

 The uncertainty principle expresses the physical 
content of quantum theory in a qualitative way 
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[13]. The uncertainty principle was first proposed 
by Heisenberg in 1927. It basically states that is 
not possible to specify exactly and simultaneously 
the values of both members of a pair of physical 
variables which describe the behavior of an atomic 
system. In a sense the principle can also be seen as 
a type of constraint. The members of a pair are 
canonically conjugate to each other in a 
Hamiltonian way. The most well known example 
is the coordinate x of a particle (position in one 
dimension) and its corresponding momentum 
component Px:  

∆0∆
1	 + h

2 																				�9� 
Another example is the angular momentum 
component Jz of a particle and the angular position 
4 in the perpendicular (x,y) plane: 

∆4∆56 + h                    (10) 

 In classical mechanics these extreme situations 
complement each other and both variables can be 
determined simultaneously. Both variables are 
needed to fully describe the system under 
consideration. In quantum theory, Eqn. (9) states 
that one cannot precisely determine a component 
of momentum of a particle without loosing all 
information of the corresponding position 
component at a specific time. If the in- between 
extremes case is considered, the product of the 
uncertainty in position and the uncertainty in the 
corresponding momentum must numerically be 
equal to, at least, h /2 

  To understand the physical meaning of the 
uncertainty principle, Bohr in 1928 stated the 
complementary principle. This principle shows the 
fundamental limits on the classical concept that a 
system's behaviour can be described 
independently of the observation procedure. The 
complementary principle states that "atomic 
phenomena cannot be described with the 
completeness demanded by classical dynamics" 
[13]. Basically the principle states that 
experimental apparatus cannot be used to 
determine a measurement more precisely than the 
limit given by the uncertainty principle. In a sense 

when a measurement is done to determine the 
value of one of a pair of canonically conjugate 
variables, the second variable experiences a shift 
in value. This shift cannot be calculated exactly 
without interfering with the measurement of the 
first variable  
 
III.4. The Relation of the Uncertainty Principle to 

a Time Operator 

 Bohr also realized that the two uncertainty 
principles (9) and (7) can be interpreted in two 
different ways; the first is as limitations on the 
accuracy of a measurement and  the second is as 
statistical laws referring to a large sequence of 
measurements. The difficulty in giving meaning to 
the relation (7) is due to the quantity	∆�. In the 
way it is interpreted above, the uncertainty relation 
(7) implies the existence of a self-adjoint operator, 
canonically conjugate to the Hamiltonian 78 , 
which itself is self-adjoint. If this time operator 9%  
exists, then the quantity Dt can be interpreted in 
the same way as Dx or Dpx and the uncertainty 
principle can be applied to the physical 
observable corresponding to T. To obtain the 
uncertainty relation for energy and time, the 
commutator of the Hamiltonian and the time 
operator is assumed to be of the form:  

[78,9% ]= i h                                             (11) 

The form of (11) is such that 9%  and 78  are 
canonically conjugate to each other. It also implies 
that both operators have a continuous spectrum. 
This in turn means that neither of the two can be a 
Hamiltonian, as such an operator is defined to 
have a semi- bounded spectrum. From this line of 
reasoning the supposed time operator 9%  cannot 
exist. This problem is encountered when one uses 
(11) to derive the uncertainty relation (7) in the 
same way as (9) is derived from [0:, 
̂] = i h  [14]. 

IV. Tunneling Time 

In quantum tunneling, a part of a particle's wav-
function has a significant probability of being 
transmitted a potential barrier, even if its energy is 
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less than the energy of the top of the barrier [15]. 
This is not true classically, hence tunneling is a 
purely quantum phenomenon where a particle has 
the probability of moving through classically 
forbidden regions. The transmission probability of 
a particle's wav eigenfunction is calculated from 
the time-independent Schrodinger equation. The 
problems arise when time dependence is required. 
The root of the problem of time dependence lies in 
the uncertainty relation. However, the 
fundamental problem is that in quantum 
mechanics, there exist no real physical paths along 
which a particle moves. This problem seems a 
logical basis to employ the method of Feynman 
path integrals, which are virtual paths in 
configuration space [16]. The path integral 
approach to the tunneling time , yielding a 
complex time, is due to Sokolovski and Baskin 
[17] . 

The question "how long does a particle spend a 
potential barrier?" has been controversial for many 
years [18] (for an extensive review see [19]. Part 
of the controversy lies in the fact that in tunneling 
processes only a particles tunnel, so one cannot 
discuss the entire ensemble. Over the years there 
have been many different approaches to calculate 
tunneling time; among them are  the path integral 
approach, physical clock gedanken experiments, 
and consistent (decoherent) histories approach. 
There have also been attempts to use interactions 
of wave-packets with the barrier [15]. Yamada 
[16] studies the tunneling time problem using the 
decoherent histories approach to quantum 
mechanics to define the probabilities for histories. 
To minimize the interference, such that 
probabilities can be assigned to histories, Yamada 
uses the weak de coherence condition, where only 
the real part of the decoherence functional is 
required to vanish. Along with the decoherence 
condition, he [20] imposes that the initial 
condition satisfies the decoherernce condition as 
well. 
Attempts to construct a Time Operator   

Standard quantum theory, as proposed by Pauli 
[21], requires that measurable quantities 

(observables) are represented by self-adjoint 
operators, which act on the Hilbert space of 
physical states [4]. The probability distribution of 
the measurement outcomes of an observable are 
obtained as "an orthogonal spectral decomposition 
of the corresponding self-adjoint operator" [4]. 
The indirect measurement of time basically is the 
quest of finding a self-adjoint operator whose 
eigenstates are orthogonal. As the time operator is 
one of the canonically conjugate pair of time and 
energy, the time operator must be defined in such 
a way as to preserve the semi bounded spectrum 
of the Hamiltonian. Pauli pointed out [2 L] that the 
existence of a self-adjoint time operator is 
incompatible with the semi-bounded character of 
the Hamiltonian spectrum. By using a different 
argument based on the time-translation property of 
the arrival time concept, Allcock has found the 
same negative conclusion [22-24]. The negative 
conclusion can also be traced back to the semi-
infinite nature of the Hamiltonian spectrum. 

  Kijowski [25] tried different approaches to find a 
time operator. He chose to (interpret the 
uncertainty relation (11) in a statistical way. 

Grot, Rovelli and Tate [26] construct a time of 
arrival operator as the solution to the problem of 
calculating the probability for the TOA of a 
particle at a given point. They argue, using the 
principle of superposition, that a time operator T 
can be defined, whose probability density can be 
calculated from the spectral decomposition of the 
wave-function l. y(x) into eigenstates of 	9%  (in the 
usual way). They found an uncertainty relation 
which approaches (11) to arbitrary accuracy. 
Oppenheim, Reznik and Unruh [27] follow the 
method by Grot at al. They used coherent states to 
create a positive operator valued measure 
(POVM).          The standard method to find an 
operator is by using the correspondence principle, 
which states that the corresponding classical 
equations are quantized using specific 
quantization rules. Taking the Hamiltonian of a 
classical system H(p,q) where p and q are 
canonical variables (H,T), where H is the 
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Hamiltonian and T is its conjugate variable. These 
variable satisfy Hamilton's equation:  
 

<=
<� � >7, 9? � 1                            (12) 

where T is the interval of time and the curly 
brackets denote a Poisson bracket. This relation 
can be translated to quantum mechanics through 
canonical quantization. This is a procedure where 
classical expressions remain valid in the quantum 
picture by effectively substituting Poisson 
brackets by commutators:  
 

>7, 9? � �
Ah 	�78, 9%	                              (13) 

In the Heisenberg picture H and T are hence 
interpreted as self-adjoint operators. Further it 
seems natural to require that the time operator 
satisfies an eigenvalue equation in the usual way: 
 

9%���B�.〉 � �.C�.〉					                             (14) 

In all of physics, except in General Relativity, 
physical systems are supposed to be situated in a 
three-dimensional Euclidean space. The points of 
this space will be given by cartesian coordinated r 
= (x, y, z). Together with the time parameter t, 
they from the coordinates of a continuous space - 
time background. The (3 + 1) dimensional space-
time must be distinguished from the 2N- 
dimensional phase space of the system, and space-
time coordinates (r, t) must be distinguished from 
the dynamical variables (qk, Pk) characterizing 
material systems in space-time.  

A point particle is a material system having a 
mass, a velocity and acceleration, while r is the 
coordinate of a fixed point of empty space. It is 
assumed that three dimensional space is isotropic 
(rotation symmetric) and homogeneous 
(translation symmetric) and that there is 
translation symmetry in time. In special relativity 
the space-time symmetry is enlarged by Lorentz 
transformations which mix x and t, transforming 
them as the components of a four-vector.  
The generators of translation in space and time are 
the total momentum P and the total energy H, 

respectively. The generator of space rotations is 
the total angular momentum J. 

It is worth noting that the universal time 
coordinate t should not be mixed with dynamical 
position variables. The important question to ask 
is: Do physical systems exist that have a 
dynamical variable which resembles the time 
coordinate t in the same - way as the position 
variable q of a point particle resembles the space 
coordinate x? The answer is yes! Such systems are 
clocks. A clock stands, ideally, in the same simple 
relation to the universal time coordinate t as a 
point particle stands to the universal space 
coordinate x. We may generally define an ideal 
clock as a physical system which has a dynamical 
variable which behaves under time translations in 
the same way as the time coordinate t. Such a 
variable, which we shall call a "clockvariable" or, 
more generally, a "time-variable", may be a 
pointer position or an angle or even a momentum. 
Just as a position-variable indicates the position of 
a system in space, a clock-variable indicates the 
'position' of a system in time t. In quantum 
mechanics the situation is essentially not different. 
The theory supposes a fixed, unquantized space-
time background, the points of which are given by 
c-number coordinates x, t. The space time 
symmetry transformations are expressed in terms 
of these coordinates.  

Dynamical variables of physical systems, on the 
other hand, are quantized: they  are replaced by 
self-adjoint operators on Hilbert space. All 
formulas of the preceding section remain valid if 
the poisson-brackets are replaced by commulators 
according to 

{,} → �Eh ���	�	,  . 
So, the idea, that t can be seen as the canonical 
variable conjugate to the Hamiltonian, leads one to 
expect t to obey the canonical commutation 
relation [t,H]= ih . But if t is the universal time 
operator it should have continuous eigenvalues 
running from - ∞ to + ∞ and, from this, the same 
would follow for the eigenvalues of any H. But we 
know that discrete eigenvalues of H may occur. 
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From this Pauli concluded [21]: ... that the 
introduction of an operator t is basically forbidden 
and the time must necessary be considered as an 
ordinary number ("c-number"). Thus, the 
'unsolvable' problem of time in quantum 
mechanics has arisen. Note that it is crucial for 
this argument that t is supposed to be a universal 
operator, valid for all systems: according to Pauli 
the introduction of such an operator is basically 
forbidden because some systems have discrete 
energy eigenvalues. From our previous discussion 
it should be clear that the universal time 
coordinate t is the partner of the space coordinates 
x. Neither the space coordinates nor is the time 
coordinate quantized in standard quantum 
mechanics. So, the above problem simply doesn't 
exist! If one is to look for a time operator in 
quantum mechanics one should not try to quantize 
the universal time coordinate but consider time-
like (in the literal sense) dynamical variable of 
specific physical system, i.e. clocks. Since a 
clock-variable is an ordinary dynamical variable 
quantization should not, in principle, be especially 
problematic. One must, however, be prepared to 
encounter the well-known quantum effects 
mentioned above: a dynamical system may have a 
continuous time-variable, or a discrete one or no 
time-variable at all. Recently, some efforts have 
been advanced to overcome Pauli's argument [28]. 
The proposed time operator is canonically 
conjugate to i ∂h rather than to H, therefore Pauli's 
theorem no longer applies. It is argued that "the 
reasons for choosing time as a parameter lie not so 
much in ontology as in methodology and 
epistemology. The time operator idea needs to be 
more explored in an accurate way.  
 

VI. The problem of Time in Quantum 

Gravity 
 VI. l. The basic problem 

 The problem of time is a fundamental concept 
that needs to be considered in quest for a 
consistent theory of quantum gravity [29]. The 
main issue contributing to the problem of time is 
the invariance of classical general relativity under 

space-time diffiomorphism. This means that the 
invariance contradicts the Newtonian image of a 
fixed, absolute time parameter. This situation is 
encountered in all theories, which have a 
classically invariant, reparametrization of time 
[30]. This leads to time disappearing when 
quantizing the theory. This situation comes out to 
the question of what to make of the classical 
Hamiltonian constraint in the quantum version of 
the theory. Basically, if time is a fundamental 
concept, then it must be a dynamical variable of 
the theory. 

As stated above, when quantizing general 
relativity in a canonical way, time seems to have 
no fundamental notion. Isham [29] summarizes 
the key points in four statements: 1. How should 
time re-enter quantum gravity theory? 2. Should 
time be defined classically before quantization? Or 
3. Should it be defined after quantization? 4. If 
time is not the fundamental quantity, which it is 
said to be, how relevant is quantum mechanics 
when dealing with time? The definition of time 
also has a direct effect in quantum cosmology, 
The main problem is the Newtonian concept of 
time, which is replaced by the concept of an 
internal time in many approaches of problem of 
time in quantum gravity. 

The problem of time in quantum gravity arises 
when one wants to quantize general relativity. The 
canonical quantization method involves 
expressing general relativity in Hamiltonian from, 
to then apply a quantization scheme. General 
relativity is a theory with constraints, which 
generate asymmetry. Such theories are invariant 
under the reparametrization of time. The action of 
such a system is invariant under canonical 
transformations. 

 One can proceed to quantize general relativity in 
Hamiltonian from using Dirac's proposal and 
functional Schrodinger quantization to find all the 
information contained in the constraints. Using the 
metric representation of the wave-function, one 
obtains the Wheeler- DeWitt equation. This 
equation shows the absence of time. One way to 
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interpret this is to consider that as general 
relativity is a parametrized theory, physical time is 
already contained amongst the dynamical 
variables. All such theories have H = 0. 
Alternatively, there exists a geometric 
interpretation.  
 
VII. Conclusion and further comments  

This survey explores various ways of defining 
time in standard quantum mechanics and some 
different ways of measuring it. The approaches of 
measuring time yield a whole spectrum of results 
along with a range with a range of difficulties 
encountered. All methods yield results which have 
a strict limit on their accuracy and generality. This 
reflects the quantum nature of the problem.  

The main difficulty in defining a quantum time 
operator lies in non-existence, in general, of a self-
adjoint operator conjugate to the Hamiltonian, a 
problem which can be traced back to the semi-
bounded nature of the energy spectrum. In turn, 
the lack of a self-adjoint time operator implies the 
lack of a properly and unambiguously defined 
probability distribution of arrival time. There are 
two possibilities to overcome the problem. If one 
decides that any proper time operator must be 
strictly conjugate to the Hamiltonian, then one has 
to perform the search for a self-adjoint operator. 
If, on the contrary, one imposes self-adjoint 
property as a desirable requirement for any 
observable, then one necessarily has to give up the 
requirement that such an operator be conjugate to 
the Hamiltonian. The two main equations of 
motion, the Schrödinger and wheeler- Dewitt 
equation, reflect two different presupposed natures 
of time: in the schrödinger equation, time 
corresponds to an external parameter and in the 
Wheeler-deWitt equation there is no time. This 
research explores the concept of trying to tum a 
time parameter into an observable, a dynamical 
variable. Why was time in quantum mechanics 
represented by a parameter in the first place? A 
possible answer is that it is due to our perception. 
It is meaningful, for us, to talk about events 
happening at a certain time. This lets us put events 

into a chronological order in our minds. We do not 
think about an event happening to us. Another 
question is, why does one want time to be an 
observable? One major reason is our notion of 
change: we seem to perceive that time changes. 
Another motivation for the study of time in 
quantum mechanics is the problem of time in 
quantum gravity. Quantum cosmology represents 
an analogy to closed quantum systems, as both 
cosmology and closed quantum systems are 
describing the same type of situation, the 
difference being the size scale. . Saunders states: 
"quantum cosmology is the most clear-cut and 
important failing of the Copenhagen 
interpretation" [31]. Perhaps the lack of 
understanding of time in quantum gravity is due to 
a fundamental reason, based on the two quantum 
gravity components: quantum mechanics and 
general relativity. The problem does not lie in 
general relativity however, so it must be rooted in 
the formulation of quantum mechanics.  

Quantum theory of measurement is based on 
measurements occurring at given instants of time. 
A measurement corresponds to a classical event. 
Dirac said "the aim of quantum mechanic was to 
account for the observables: behavior in the 
simplest possible ways" [6]. Kant [32] held 
Newtonian absolute space and space- time for an 
"idea of reason". Saunders states" In particular, we 
need a global time coordinate' which enters in to 
the fundamental equations; it is no good if this 
involves ad hoc or ill-defined approximations, 
available at only certain length scales or 
cosmological epochs" [33]. His idea of a universal 
definition of time sounds very appealing. Does 
this universal concept of time require the 
reformulation of quantum mechanics? Tunneling 
time might .also be a candidate to shed some light 
on to the mystery of time. Quantum mechanical 
tunneling is "one of the most mysterious 
phenomena of quantum mechanics" and at the 
same time it is one of the basic and important 
processes in Nature, party responsible for our 
existence [34]. The question of the duration of a 
tunneling process is an open problem. 
Experiments to record the tunneling time were 
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motivated by the many different theories trying to 
describe this phenomenon. Questions arise such 
as, "is tunneling instantaneous?","is it subluminal 
or superluminal (faster than the speed of light)?" 
Chiao published a paper with experimental 
evidence that tunneling is superluminal [34]. If 
this is true, what implications does superluminal 
tunneling have on our understanding of the nature 
of . time? What does it mean to say that something 
happens faster than instantaneously?  

Does time undergo a change in nature when it 
"enters" a classical forbidden region? If so, what is 
it and what does it change to?  

In quantum gravity, the evolution of the 
gravitational field does not correspond to 
evolution in physical time. The internal time on a 
manifold i~ not ':l:~ absolute quantity. Barbour 
[35] claims that an instant in time corresponds to a 
configuration and Deutsch, in his interpretation of 
quantum mechanics, claims that a change in time 
corresponds to a change in his interpretation of 
quantum mechanics, claims that a change in time 
corresponds to a change in the number of Deutsch 
worlds [37]. Is it possible that the notion of 
absolute time be a hint towards timelessness? If 
time does not exist then the various different 
formulations of the nature of time only appear 
through our perception and we cannot follow these 
back to a universal truth. Perhaps there does exist 
a universal concept of time, which is far too 
abstract to grasp. Whatever time may be, the time 
discussed in this overview raise various questions, 
which perhaps are trying to point us into .a certain 
direction. Trying to answer questions about the 
concepts of the time of arrival, the time-energy 
uncertainty relation, tunneling time and time in 
quantum gravity show us that perhaps nothing is 
more important than to first of all understand the 
basic building block-time-without which no 
structure can be perfectly built. The problem of 
time still stands to be resolved, the quest for this 
research still continues.  
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