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Abstract 

We study the properties of the sets of equivalent resistances arising in the resistor networks 
constructed from identical resistors.  This enables us to obtain the bounds of the set of n  
equal resistors combined in series and parallel.   

 
 

1. Introduction 
The net resistance of n  resistors having the values 1R , 

2R , ,  nR  connected in series and parallel is given 

by the well-known relations  
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The net resistance seriesR  is greater than the largest 

resistance among the resistances 1R , 2R , ,  nR .  The 

net resistance parallelR  is less than the smallest 

resistance among the resistances 1R , 2R , ,  nR .  The 

net resistance of an arbitrary circuit (using any 

conceivable combination series, parallel, bridge or 

non-planar) must therefore lie between parallelR  and  

 

 

 

 

seriesR  [1].  We shall use the symbols S  and P  to 

denote the series and parallel connections 

respectively.  For two equal resistors 0R , there are 

two configurations 00SRR  and 00PRR  whose 

equivalent resistances are 02R  and 0)2/1( R  

respectively, giving rise to the set }2,)2/1{( 00 RR .  

We can omit 0R  without any loss of generality and 

write it as }2,2/1{ .  For three resistors, there are 4 

configurations, 1)11( SS , 1)11( PS , 1)11( SP  and 

1)11( PP  giving the set }3,2/3,3/2,3/1{ .  Continuing 

the exercise as in [2-3], using the series and parallel 

connections we obtain  
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The sets of higher-order need not contain the 
elements from a set of lower-order.  For example, 
1/3 is in )3(A  but not in )4(A  and )5(A .  The 

element 1 is not present in )2(A , )3(A  and )5(A .  

These three sets have even cardinality.  We shall 
shortly prove that these are the only three 
exceptional sets, which do not have 1 as its element 
and have an even cardinality.  The resistor networks 
do have other sets.  For instance, if we use at most 
three resistors, then the set )3(A  is replaced by the 

larger set }3,2,2/3,1,3/2,2/1,3/1{)3( C , which is a 

union of the three sets )1(A , )2(A  and )3(A .  The 

)(nC  of higher order contains all the )(nC  of lower 

orders.  For five or more resistors, it is possible to 
include the bridge connections, giving rise to the sets 

)(nB .  The order of the sets )(nA  (denoted by 

)(nA ) grows for 1n , 2, ,,3  as 1, 2, 4, 9, 22, 53, 

,,131  and this sequence is known by the unique 

identity A048211 in The On-Line Encyclopedia of 
Integer Sequences (OEIS), created and maintained 

by Neil Sloane [4].  The )(nC  grow as 1, 3, 7, 15, 

35, ,77  [A153588].  The )(nB  grows as 1, 2, 4, 

9, 23, ,57  [A174283].  The problem for 16n  

has been addressed computationally in [2] and 

suggests that nnA 53.2|~)(| .  How does |)(| nA  

behave for large n ?  Does the base 53.2  increase or 
decrease?  In this article, we shall address these 
questions through the properties of the set )(nA  and 

arrive at the bounds nn nA 73.2|)(|)41.2)(25.0(  .  

The number of configurations [A000084] is much 
larger than the number of equivalent resistances 
[A048211] and in this article we are not concerned 
about it.  The computer memory has restricted the 
numerical studies of resistor networks to 23n .  
Hence the analytical studies are of extra 
significance.   
 

2. Set Theoretic Properties 

We shall derive some properties of )(nA  and the other 

sets arising in the resistor networks.   

 

The Scaling Property:  

If ba /  is a member of )(mA , then we can construct 

the resistances )/( bak  and )/)(/1( bak  using k  such 

blocks in series and parallel respectively, using km  

number of unit resistors.  Hence, )()( kmAmkA   and 

)()()/1( kmAmAk  .   

 

A block of i  equal resistors in series has an equivalent 

resistance i .  If i  such blocks are combined in parallel 

we get back the unit resistance.  From this we 
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conclude that )(1 2iA .  The same result can 

equivalently be obtained by taking i  blocks in series, 

each containing i  unit resistors in parallel.  Once the 

unit resistor has been obtained, using 2i  resistors (or 

much less as we shall soon see), we can use it to 

construct other equivalent resistances.  Every set 

)(mA  is made from m  unit resistors.  The same set 

can be replicated by using m  number of unit resistors 

constructed with 2i  resistors.  So, )()( 2miAmA  .  

Whenever 1 belongs to some set )(iA , we label it as 

i1  to indicate that it has been constructed from i  

number of basic unit resistors, 0R .   

 

The Translation Property:  

It is the statement that )(1 iA  implies )3(1  iA .  

This can be seen by taking either of the following two 

combinations of i1  with 3 basic unit resistors: 

122)11()11(  PSPS i , or 

1)2/1()2/1()11()11(  SPSP i .  Note, that we have 

consumed )3( i  resistors.  So whenever, )(1 iA , it 

follows that )3(1  iA .  We shall use this translation 

property to prove the theorem, that 1 belongs to all 

)(nA  barring three exceptions.   

 

Theorem-1:  

We have )(1 nA , 2n , 3n , and 5n .   

 

From an exhaustive search (or otherwise) we know 

that 1 belongs to )6(A , )7(A  and )8(A .  Using the 

translational property, 1 also belongs to )9(A , )10(A  

and )11(A ; )12(A , )13(A  and )14(A ; and so on.  

Thus we conclude that 1 belongs to all )(nA  for 

6n .  As for the lower )(iA , 1 belongs to )1(A  and 

)4(A ; and 1 does not belong to )2(A , )3(A  and )5(A .  

Hence, the theorem is proved.  In passing, we note, 

that an exhaustive search is not always required.  Two 

resistors in parallel lead to1/2; and two such blocks in 

series lead to 1 and hence, )4(1 A .  The set )3(A  

contains 1/3 and 2/3; combining these two blocks in 

series gives 1, implying )6(1 A .  Combining the 1/2 

present in )2(A  with the 1/2 in )5(A  in series, we 

conclude that )7(1 A .  Similarly 1/4 and 3/4 are 

present in )4(A  and lead to )8(1 A .  From 

references [5-7], we know that all elements in )(nA  

have a reciprocal pair ( ba /  and ab / ) and 1 is its own 

partner; presence of element 1 implies that the order 

of )(nA  is always odd with the exception of 

2)2( A , 4)3( A , and 22)5( A .   

 

Corollary-1:  

We have )(2/1 nA , 1n , 3n , 4n  and 6n .   

 

The parallel combination of 1 basic unit resistor, R0 

with i1  ( 4i  and 6i ) results in an equivalent 

resistance of 1/2, (since, 2/1)11/()11(11  iiiP ), 

which implies that )1(2/1  iA , for 4i  and 6i .  

The corollary is proved for 5n  and for all 7n .  

Resorting to the exhaustive search, we note, that 1/2 

belongs to )2(A ; the four exceptional sets are )1(A , 

)3(A , )4(A  and )6(A , which do not contain the 

element 1/2.   

 

We constructed i1  from i  basic unit resistors ( 4i  

and 6i ).  Any set )(mA  can be constructed from 

m  number of i1 , using mi  number of resistors, 

consequently )()( miAmA   for 1i , 4i  and 

6i .  The above statement is silent about 2i , 3 
and 5.  The argument, mi  is multiplicative, giving 
no information about the near or immediate 
neighbours of )(mA .  Additive statements have the 

arguments of the type )( im   and when they exist, 

they provide information about the neighbours of 
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)(mA .  In the present context the additive statements 

are more informative and override the multiplicative 
statements.  We examined the occurrence of 1 in 

)(iA , since 1 is the basic unit and all other 

resistances can be constructed from it.  The element 
1/2 was examined as a special case.  Remaining 
elements (infinite in number) shall be discussed 
collectively using the modular property. 
 

Theorem-2 (Modular Theorem):  

We have )3()(  mAmA  and )()( imAmA   for 

5i .   

 

Every set )(mA  is constructed from m  basic unit 

resistors 0R .  If we replace any one of these basic unit 

resistors with i1  ( 4i  and 6i ), we will reproduce 

the complete set )(mA  using )1(  im  resistors.  

Consequently, )1()(  imAmA  for 4i  and 

6i .  Thus the modular theorem is proved stating 

that every set )(mA  is completely contained in all the 

subsequent and larger sets, )3( mA  along with the 

infinite and complete sequence of sets  )5( mA , 

)6( mA , ,)7( mA  and so on.  However, it is 

very curious to note, that the infinite range theorem is 

silent about the three important sets: the nearest 

neighbour, )1( mA ; next-nearest neighbour, 

)2( mA  and the near-neighbour )4( mA .  From 

the modular relation, )()( imAmA   for 5i , we 

conclude that )1()()5(  nAnAnA  for 6n .  

This is the closest we can get to know the overlap 

between )(nA  and its nearest neighbour )1( nA .  An 

immediate consequence of the modular theorem is on 

the sets )(nC , obtained by taking the union of )(iA   
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It suffices to consider only the last three sets 

)2( nA , )1( nA  and )(nA  in the union.  Hence, it 

is not surprising that the ratios )()( nAnC  are close 

to 1.   

 

Decomposition of )(nA :  

The set )(nA  can be constructed by adding the thn   

resistor to the set )1( nA .  This addition can be done 

in three distinct ways and results in three basic subsets 

of A(n).  Treating the elements of )1( nA  as single 

blocks, the thn   resistor can be added either in series 

or in parallel.  We call these two sets as series set and 

parallel set and denote them by )1(1 nSA  and 

)1(1 nPA  respectively.  The thn   resistor can also 

be added somewhere within the )1( nA  blocks, and 

we call this set as the cross set and denote it by 

)(1 nA .  The set )(nA  is the union of the three sets 

formed by different ways of adding the thn   resistor.  

The decomposition )(nA  )1(1  nPA  )1(1  nSA  

)1(1  nA , is very illustrative, and enables us to 

understand some of the properties of )(nA .  All the 

elements of the parallel set are strictly less than 1 

(since 1)/()/(1  baabaP ) and that of the series 

set are strictly greater than 1 (since 

1/)()/(1  bbabaS ).  So, 

 )1(1)1(1 nSAnPA  and the element 1 

necessarily belongs to the cross set alone.   

 

The series and the parallel sets each have exactly 

)1( nA  number of configurations and the same 

number of equivalent resistances.  Let dc /  and cd /  

be any reciprocal pair (ensured by the reciprocal 

theorem in [5-7]) in )1( nA , then it is seen that 

)/()/(1 dccdcP   and )/()/(1 dcdcdP   belong 

to the set )1(1 nPA ; and ddcdcS /)()/(1   and 
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cdccdS /)()/(1   belong to the set )1(1 nSA .  

Thus all the reciprocal partners of )1(1 nPA  always 

belong to )1(1 nSA  and vice versa.  These two 

disjoint sets contribute )1(2 nA  number of elements 

to )(nA .  The order of the cross set, )(1 nA  is 

( )(2)1( nAnA  ) and results in the sequence, 0, 0, 

0, 1, 4, 9, 25, ,75  [A176497].  For 7n , all the 

three basic sets have odd number of elements, since 

)(nA  is odd for 6n .   

 

The cross set is not straightforward, as it is generated 

by placing the thn   resistor anywhere within the 

blocks of )1( nA .  It is the source of all the extra 

configurations, which do not always result in new 

equivalent resistances.  For, 6n , the cross set has at 

least )2( nA  elements, since )1( nA  has )2( nA  

connections corresponding to )2(1  nA ; this leads 

to the recurrence relation 

)1()(2)1(  nAnAnA , for 6n .  Similar, 

arguments lead to the relation 

)1(2)(2)1(  nAnAnA .  From the 

decomposition, we note, that the element 1 can belong 

only to the cross set and not the other two (since all 

elements of )1(1 nPA  are less than 1 and all the 

elements of )1(1 nSA  are greater than 1).  We noted 

that the two disjoint sets, )1(1 nPA  and )1(1 nSA  

are reciprocal to each other.  Consequently all 

elements in )1(1  nA , have their reciprocal 

partners in )1(1  nA  itself; 1 is its own partner.  

The cross set is expected to be dense near 1 with few 

of its elements below half (recall that 1/2 is contained 

in )(1 nPA  for 6n , and not a member of the cross 

sets).  This is reflected in the fact that the cross sets up 

to )7(1 A  do not have a single element below half.  

The successive cross sets have, 1, 6, 9, 24, 58, ,124  

elements respectively [A176498], a small percentage 

compared to the size of the cross sets, 195, 475, 1265, 

,3125  [A176497].   

 

It is straightforward to carry over the set theoretic 

relations to the bridge circuits sets; since, 

)()( nBnA  .  Unlike the sets )(iA , the sets )(iB  

have the additional feature )5(1 B .  So, the various 

statements must be modified accordingly.  In 

particular, we have  

 

)(1 nB  for 2n  and 3n ,  

 

)(
2

1
nB  for 1n , 3n  and 4n ,  

 

)()( miBmB   for 1i  and 4i ,  

 

)()( imBmB   for 3i ,  

 

)1()()3(  nBnBnB  for 4n . 

 

Complementary Property:  

It is the statement that every set )(nA  with 3n  has 

some complementary pair such that their sum is equal 

to 1.  As an example, in )3(A  we have the pair 

)3/2,3/1( ; in )4(A  we have two pairs )4/3,4/1(  and 

)5/3,5/2( ; and so on.  By virtue of the Corollary-1, 

we see that 1/2 can be treated as its own 

complementary partner.  We shall soon conclude that 

each element of the set )1(1 nPA  has a 

complementary partner in )1(1 nPA  itself.  By the 

reciprocal theorem, the elements dc /  and cd /  occur 

as reciprocal pairs in every )1( nA  (see [2-3, 5-7] for 

details and proofs).  So in )1(1 nPA  we have  
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Thus all the elements (except the element 1/2) of 
)1(1 nPA  have a complementary partner in 

)1(1 nPA  itself.  For 7n , the number of such 

pairs in the set )1(1 nPA  is 2/)1)1(( nA , since 

)1( nA  is odd for 7n  and )(2/1 nA  for 7n .  

It is obvious that the set )1(1 nSA  does not have 

complementary pairs.   
 

3. Bounds of |)(| nA :  

The decomposition of )(nA  enabled us to obtain the 

relations, )1()(2)1(  nAnAnA , for 6n  and 

)1(2)(2)1(  nAnAnA .  The solution of these 

two relations provides the strict bounds  

 
nn nA )31()()21)(25.0(  . 

 

The numerically obtained result nnA )53.2(~)(  in 

[2], for 16n . is consistent with the strict bounds 

presented here.   

 

4. Concluding Remarks  

Several set theoretic relations among the sets )(nA  

and )(nB  were derived using simple arguments.  

The decomposition of the set )(nA  into three basic 

subsets derived from )1( nA  leads to the strict 

lower and upper bounds analytically.  The set 
theoretic relations point to the complexity of 
estimating the upper bound of the order of )(nA  and 

other sets using combinatorial arguments.  The 
Haros-Farey sequence approach presented in [3, 5-
8], is another method to estimate the upper bounds 
of the various sets occurring in the resistor networks.  

The strict upper bound nnA )618.2(318.0)(  , 

obtained using the Haros-Farey sequence is also 
valid for the sets )(nB , )(nC  and other sets (using 

any conceivable combination series, parallel, bridge 
or non-planar).  A comprehensive account of the 
resistor networks along with the computer programs 
using the symbolic package MATHEMATICA [9] is 
available in [5-8].  The program to generate the 
order of the set )(nA , using the symbolic package 

MATHEMATICA is presented in the Appendix. 
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Appendix 

 

Computer Program in MATHEMATICA 

 

The problem of resistor networks is intrinsically a computational problem. The following programs have been 

written using the symbolic package MATHEMATICA [9]. They just need to be run on a faster computer. The 

results obtained can be shared at The On-Line Encyclopedia of Integer Sequences (OEIS) [4].  
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This Program in MATHEMATICA is designed to compute the “Set of Configurations” [A00084] and the 
“Set of Equivalent Resistances” [A048211] of n  Equal Resistors connected in Series and/or Parallel.  The 
output is shown for 4n .   
 
 
_______________________________________________________________________________________ 


