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Abstract 

In this article, we discuss a new and simpler method employed to determine the approximate energies of certain 

bound-state potentials using the WKB approximation. In this method, the potentials are represented by a finite 

number of equally spaced rectangular step functions. The energy for each step is calculated using the Bohr-

Sommerfeld quantization condition∫��� = �� +
�

�
�ℏ�, where ‘p’ is the classical momentum and ‘n’ is a quantum 

number. The, the total energy would be the sum of the energies determined for all steps in the potential. Specifically, 

we have determined the approximate energies for the Simple Harmonic Potential, The Double-Ramp Potential and 

the Quartic Potential. However, this method can be extended, in general, to any bound-state potential. 

Keywords: Schrodinger equation, WKB approximation, Bohr-Sommerfeld quantization, Bound-State potential. 

 
 

1. Introduction 
All problems in Non-Relativistic Quantum 

Mechanics cannot be solved exactly using the 

Schrodinger equation and therefore one has to 

resort to approximate methods of solving the 

same. Some of the well known and commonly 

used methods are the Perturbation theory, the 

WKB approximation and the Rayleigh-Ritz 

Variational Method. We focus on the WKB 
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approximation in this article as it is particularly 

useful for calculating allowed energ

state potentials. In particular, from the solutions of 

the WKB wave function, one can arrive at the 

Bohr-Sommerfeld quantization rule. This is a 

powerful result as it enables us to determine the 

approximate allowed energies without having to 

solve the Schrodinger equation. However, for 

complex potentials, the integrals become hard to 

solve. In this article, we present a simpler method 

in which the integrals encountered in the bound

state potentials are easily solved. We consider 

three such potentials, namely, the Simple 

Harmonic potential, the Double-Ramp potential 

and the Quartic potential. For the sake of 

convenience, we assume the potentials in this 

article to be a function of position only. Each of 

them is represented by a finite number of e

spaced rectangular step functions. The simple 

harmonic potential and the double-

have been represented by three, five and seven 

steps and the quartic potential has been 

represented by three and five steps. In general, the 

energy for each step has been determined and the 

total energy is the sum of the energies determined 

for each step.  

This paper is organized as follows: in Sections 2, 3 

and 4 we discuss the allowed energies for the 

simple harmonic potential, the double

potential and the quartic potential respectively, 

Section 5 is dedicated to the discussion of results 

and in Section 6 we express our 

acknowledgements.   

2. Simple Harmonic Potential

We choose to solve the simple harmonic potential 

first as it is frequently encountered 
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Simple Harmonic Potential 

We choose to solve the simple harmonic potential 

first as it is frequently encountered in the 

literature. Using the standard WKB method, the 

exact allowed energies for this potential can be 

obtained. The potential of a simple harmonic 

oscillator is given by 

� =

where ‘m’ is the mass, ‘ω’ is the angular 

frequency and ‘x’ is the position. At the turning 

points � = �	and let �

� = �

Solving for 

  � = �
�

The potential is now approximated by a finite 

number of rectangular steps. Consider the 

potential to be approximated by three steps as 

shown below.  

 

Figure 1: Simple Harmonic Potential approximated by three steps
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The potential is now approximated by a finite 

number of rectangular steps. Consider the 

potential to be approximated by three steps as 

 

Simple Harmonic Potential approximated by three steps 
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From equation (2), the potentials at different steps 

are given by 

�� =
�

�
�� � �

�

�
�
�

, 

�� =
�

�
�� � �

�

�
�
�
, 

�� =
1

2
�� � �

5�

6
�
�

 

As �(�)= [2�{� − �(�)}]�/�  the Bohr-

Sommerfeld quantization condition can be written 

as                                      ∫[2�{� −

�(�)}]�/�	�� = �� +
�

�
�ℏ�(3) 

For the simple harmonic potential as approximated 

above, we write equation (3) as 

 

� �2�(� − ��(�))

���/�

��

��

+ � �2�(� − ��(�))�� + � �2�(� − ��(�))��

��/�

���/�

���/�

���/�

+ � �2�(� − ��(�))��

��/�

��/�

+ � �2�(� − ��(�))��

��/�

��/�

+ � �2�(� − ��(�))�� + � �2�(� − ��(�))�� +

�/�

�

�

��/�

� �2�(� − ��(�))��

�/�

�/�

+ � �2�(� − ��(�))�� + � �2�(� − ��(�))�� +

��/�

�/�

�/�

�/�

� �2�(� − ��(�))��

��/�

��/�

+ � �2�(� − ��(�))��

�

��/�

= �� +
1

2
�ℏ� 

Solving the integrals we get,  
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3
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−
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Simplifying the above we get,  

2�

3
�2�(� − ��)+

2�

3
�2�(� − ��)+

2�

3
�2�(� − ��)= �� +

1

2
�ℏ� 

2�

3
(2��)�/� ��1 −

��
�
�
�/�

+ �1 −
��
�
�
�/�

+ �1 −
��
�
�
�/�

�= �� +
1

2
�ℏ� 

Using the forms of V1, V2 and V3 in the above equation, we get 

2�

3
(2��)

�

� ��1 −
25

36
�

�

�

+ �1 −
1

4
�

�

�

+ �1 −
1

36
�

�

�

�= �� +
1

2
�ℏ� 

Substituting for A from equation (2) in the above 

equation, we get, 

4�

3�
(3.206045)= �� +

1

2
�ℏ� 

Simplifying the above equation for E, we get 

� = 0.7349�� +
�

�
�ℏ�                     (4) 

Now let us consider the potential to be 

approximated by five steps. The Bohr-Sommerfeld 

quantization rule would be now be written as 
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Solving the integrals we get,  
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Simplifying the above we get,  
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Using the forms of V1, V2, V3, V4 and V5 in the above equation, we get 
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Simplifying the above equation for E, we get 

 � = 0.99066�� +
�

�
�ℏ�       (5) 

Now let us consider the potential to be 

approximated by seven steps. The Bohr-

Sommerfeld quantization rule would be now be 

written as 
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3.The Double-Ramp Potential

The Double-Ramp potential or also called the 

Gravitational Potential is given by 

� = ��|�| 

At turning points;� = � 

� = ��|�| 

� =
�

��
                       (7) 

Consider the potential to be approximated by three 

steps as shown below.  

From equation (7), the potentials at different steps are given by

��

The Bohr-Sommerfeld quantization condition is written as,

8 

     Oct 
____________________________________________________________________

Volume 29, No. 4, Article Number: 3                                                              

�
���
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�
�

,�� =
Simplifying in a similar way as done in the three 

steps and five steps, we obtain

� = 0.9941�� +
�

�
�ℏ

Ramp Potential 

Ramp potential or also called the 

Consider the potential to be approximated by three 

Figure 2: The Double-Ramp Potential approximated by three steps.

From equation (7), the potentials at different steps are given by 

� = �� �
�

�
�;	�� = �� �

�

�
�; �� = �� �

��

�
� 

Sommerfeld quantization condition is written as, 
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Simplifying in a similar way as done in the three 

steps and five steps, we obtain 

�ℏ�   

 

Ramp Potential approximated by three steps. 

�
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Simplifying  in the same way as in Section 2, we 

get:  

� = 0.649�� +
�

�
�
�/�

(��ℏ����)�/�           (8)

  

Similarly, when the potential is approximated by 5 

steps, we get:  

� = 0.652�� +
�

�
�
�/�

(��ℏ����)�/�(9) 

And when approximated by 7 steps, we get: 

� = 0.653�� +
�

�
�
�/�

(��ℏ����)�/�(10) 

4.The Quartic Potential. 

The potential of a quartic oscillator is given by:  

V = λx�      

At turning points:� = �  and let � = � 

  � = ���   

  � = �
�

�
�
�/�

                    (11)  

Consider the potential to be approximated by three 

steps as shown below.  

 

Figure 3: The Quartic Potential approximated by three steps. 
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From equation (11), the potentials at different steps are given by 
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The Bohr-Sommerfeld quantization condition is written as, 
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�� + � �2�(� − ��(�))
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��

= �� +
1

2
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Simplifying  in the same way as in Sections 2 and 

3, we get:  

� = 0.289�� +
�

�
�
�/�

�
ℏ����

� � �
�/�

                     (12) 

Similarly, when the potential is approximated by 5 

steps, we get:  

� = 0.29�� +
�

�
�
�/�

�
ℏ����

� � �
�/�

                     (13)

  

4.Results and Discussion. 

At the very first glance, we see that the accuracy 

of the calculations increases as we increase the 

number of rectangular steps in each of the 

potentials. The best possible values of the 

approximate energies so obtained are summarized 

in the table below. 

Simple harmonic 

potential 
� = 0.99066�� +

1

2
�ℏ� 
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Quartic potential � = 0.29�� +
1

2
�

�

�

�
ℏ����

��
�

�

�

 

Gravitational potential � = 0.653�� +
1

2
�

�

�

(��ℏ����)
�

� 

 

 

 

The potentials that we have discussed in this 

article are fairly simple. The method can also be 

extended to complex potentials of physical interest 

such as the Morse potential in Molecular 

Spectroscopy or the Wood-Saxon potential in 

Nuclear Physics and so on. The spacing between 

the rectangular steps and the number of steps can 

be appropriately varied, depending on the nature 

of the potential, to achieve the desired 

convergence of energy eigenvalues.  
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