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Abstract

Cauchy-Riemann equations relate the real and imaginary parts of a complex-analytic
function. These equations originate from the requirement for the uniqueness of the
derivative, independent of the line or direction along which the limit is taken. This note
attempts to make a presentation of the derivation in which the ”direction of approach” is
made explicit. Some interesting implications of the notion of analyticity are given.

What is the analytic function whose real
part is x? It is x+iy+c, where c is a constant.
Is there an analytic function whose real part
is x2? There is none. If we choose two func-
tions u(x, y) and v(x, y) randomly, it is likely
that f(x, y) = u+ iv is not an analytic func-
tion. Complex analyticity is about defining
the derivative of a complex-valued function
of the complex variable z = x+ iy. Formally,
the complex-valued function f is said to be

analytic at a point z ∈ C if

f ′(z) = lim
δz→0

f(z + δz)− f(z)

δz
, (1)

exists and is unique irrespective of the direc-
tion along which δz approaches zero[1]. This
requirement for uniqueness gives rise to the
well known Cauchy-Riemann (CR) equations
relating the real and imaginary parts of
f(z). To ensure uniqueness, two independent
directions in the complex x − y plane are
chosen and the equality of the derivatives
along the respective directions is demanded.

Volume 29, No. 4 Article Number : 2. www.physedu.in



Physics Education 2 Oct - Dec, 2013

We recall that to define the derivative of
a function of a single real variable, the
left-sided and right-sided derivatives are
to be equal[2]. In the complex plane, the
number of directions are unlimited. The
conventional choices for the two directions
are along the x and y axes respectively. In
fact, any two axes which are inclined at a

nonzero angle are fine to establish the need
for the CR equations. It would be better
if this ”direction of approach” is made to
appear explicitly in the derivation of the CR
conditions and in this note we attempt that.

With f(z) = u(x, y)+ iv(x, y), u and v be-
ing the real and imaginary parts respectively,
and δz = δx+ iδy,

f(z + δz) = f(x+ δx+ i(y + δy)) = u(x+ δx, y + δy) + iv(x+ δx, y + δy). (2)

Expanding u(x + δx, y + δy) and v(x + δx, y + δy) about (x, y) and rearranging[3],
we get

f(x+δx, y+δy)−f(x, y) =
∂u

∂x
δx+

∂u

∂y
δy+ϵ1δx+ϵ2δy+i

[
∂v

∂x
δx+

∂v

∂y
δy + ϵ3δx+ ϵ4δy

]
. (3)

The factors ϵ1, ϵ2, ϵ3 and ϵ4 vanish as δz
approaches zero. These factors are included
to represent the contribution from the higher
order terms in δx and δy to the expansion of
the function.

To bring out the dependence of the deriva-
tive on the direction of approach, it is advan-
tageous to adapt the polar representation[4]
of complex numbers to write δz = r exp(iθ),

so that δx = r cos θ and δy = r sin θ. Here θ
represents the angle δz makes with x-axis and
this angle can be interpreted as the direction
of approaching z as δz → 0. In Fig. 1, three
of the infinitely many possible directions are
indicated. Approaching along the x-axis and
y-axis correspond to choosing θ = 0 and π/2
respectively. Using the polar representation
of δz in the definition of the derivative of f(z)
yields
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f ′(z) = lim
r exp(iθ)→0

r
[
cos θ ∂u

∂x
+ sin θ ∂u

∂y
+ i cos θ ∂v

∂x
+ i sin θ ∂v

∂y

]
r exp(iθ)

, . (4)

Since exp(−iθ) does not vanish for any real θ, the limit corresponds to r → 0. Therefore,

f ′(z) =
cos θ ∂u

∂x
+ i sin θ ∂v

∂y
+ sin θ ∂u

∂y
+ i cos θ ∂v

∂x

exp(iθ)
. (5)

x

y

θ=0

θ=π/4
θ=π/2

z=x+iy

Figure 1: Some possible directions for ap-
proaching z as δz → 0.

This ratio is independent of r. However, it
depends on θ, the direction of approaching z.
For the uniqueness of the derivative, the limit
should be independent of θ. That is possible
only if the factor exp(iθ) in the denomina-
tor is cancelled by an identical term in the
numerator. It is readily recognized that if

∂u

∂x
=

∂v

∂y
, (6)

∂v

∂x
= −∂u

∂y
, (7)

the required cancellation occurs in Eq. 5 and
the limit is independent of θ. Consequently,
the derivative f ′(z) is uniquely defined. The
general form, given in Eq. 5, itself is simple
enough to identify the conditions for the
uniqueness of the derivative. The relations
given in Eq. 6 and Eq. 7 are the CR
equations. We note that the various ϵ factors
in Eq. 3 do not appear in the expression for
f ′(z) since they become zero if δz approaches
zero.

Now, to see why x2 cannot be the real part
of an analytic function, let us assume that
f = x2 + iv(x, y) is an analytic function. We

Volume 29, No. 4 Article Number : 2. www.physedu.in



Physics Education 4 Oct - Dec, 2013

need to find the imaginary part v. The CR
conditions imply

∂v

∂y
=

∂u

∂x
= 2x, (8)

∂v

∂x
= −∂u

∂y
= 0. (9)

The second equation implies that v is a func-
tion of y alone, so that its partial derivative
with respect to x vanishes. So, the partial
derivative of v(y) with respect ot y is also a
function of y alone. But the first equation
implies that the partial derivative of v(y) de-
pends on x, which is inconsistent. So, the
CR conditions cannot be satisfied if the real
part of an analytic function is x2. We, there-
fore, conclude that an analytic function can-
not have x2 as its real part. In fact, it is
straightforward to extend the argument to
establish that there is no analytic function,
other than x+ iy, whose real part is solely a
function of x.
An exercise to illustrate the severe restric-

tion imposed by the analyticity is to consider
those functions whose real part is a sum of
the form f(x) + g(y). Though this form ap-

pears to be rather nonrestrictive, the CR con-
ditions give the real part to be a(x2 − y2) +
bx+cy and the corresponding imaginary part
is 2axy − cx + by, where a, b and c are real
constants. It is equally possible to choose a
specific form for the imaginary part of an an-
alytic function, and that would determine its
real part.
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