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Abstract 
                In this paper the magnetic equivalent of the Clausius - Mossotti equation is re-derived for a 
      modern reader. The equation relates the relative permeability of a diamagnetic substance to the 
      magnetic atomic polarizability of the atoms. The historical background and importance of this 
      equation and its relation to the Clausius-Mossotti equation is also discussed briefly. 
 

  

 

1. Introduction      

Due to the symmetric structure of the Maxwell 

equations there are several equations in 

electrostatics which have got their magnetic 

equivalents. For instance the electric and 

magnetic fields produced by an isolated electric 

charge and a hypothetical magnetic monopole, 

respectively, follow the inverse square law. 

Again the expression for the electric field and 

magnetic field produced by an electric dipole 

and a magnetic dipole, respectively, both vary 

according to the inverse cube law [1,2]. 

Motivated by such striking symmetries between 

the two, derivation of an equation which would 

be a magnetic analogue of the Clausius-Mossotti 

equation is carried here. This equation enables 

us to find the extent of magnetization of a 

diamagnetic substance in terms of a certain 

microscopic characteristic of it. The equation 

holds good only for diamagnetic substances.  

    Standard textbooks [1-3] on electromagnetism 

or solid state physics often discuss the derivation 

and applications of the standard Clausius-

Mossotti equation. However, none seem to 

extend the idea to the magnetic case. However, it 

is the ‘magnetic analogue’ which was developed 

first by Poisson and then people like Faraday, 

Mossotti and Clausius extended this idea to the 

electric case. So in the last section we discuss 

this misunderstood history of this pair of 

equations in more detail. 

      The derivation presented here is much 

simpler for a modern reader to follow as 

compared to that done in the original works of 

Poisson and others in the beginning of 19
th

 

century. It is done simply by creating a model 

which is the magnetic equivalent of the 

electrostatic model, usually used to derive the 

Clausius-Mossotti equation [1-3]. For 

convenience the derivation is divided into two 

sections. In the first section the average value of 

the microscopic magnetic field produced by a 

tiny ideal magnetic dipole over a sphere of 

radius R is calculated. Then the expression for 

this average field is used in the second section to 

get to the desired equation. The reader may note 

that the derivation of average magnetic field 

over a sphere is somewhat unconventional. 
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2.  Average magnetic field due to a 
dipole over a sphere 
 
The average electric field inside a sphere (

sphereE ) of radius R due to a tiny dipole of 

dipole moment p  present anywhere inside it is 

given by [4, 5] 

3
sphere

4 Ro




p
E .                  (1) 

 

This may be deduced as follows. Consider a 

fictitious sphere of radius R centered at the 

origin. A tiny charge q is located at position r0 

inside the sphere. The average field produced by 

it over the volume of the sphere, by using 

Coulomb’s law is   
o

3
o

sphere
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-

 dV
4 V | - |o
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r r

r r
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V is the volume of the sphere.      

 

 
 
     FIG.1: Average field over a sphere due to a point charge q at 
r0

  

 

Now the electric field at the point r0 (cf. Fig.1) 

due to a uniformly charged sphere, centered at 

the origin, of charge density ρ is  

o

3
o

sphere

sphere
-

 dV
4 | - |o
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r r
E
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A comparison of (2) and (3) reveals that the 

average field due to a charge q at or  equals the 

field at or  due to a uniformly charged sphere of 

charge density
q

V
   . The latter, however, 

using Gauss’ divergence theorem turns out to be 

 

o

o

 =  
3




E r .                            (4) 

Thus, 

 o
3

o

sphere
q

  = -  
4 R

rE .                   (5)         

 

Now if we place another charge –q at o  r d  

inside the sphere, then the net average field 

inside the sphere due to the pair of charges (of 

dipole moment =qp d ) can be obtained by using 

(1). 

One may recall that the electric field at position 

r due to an ideal electric dipole of moment p  

located at the origin is [4] (in SI unit) 

   

 
o

o

dip 
1

ˆ ˆ= 3( .r)r-  - δ( )
3 3ε4πε r

p
E p p r .    (6) 

 

Similarly the expression for magnetic field in 

case of a magnetic dipole m  located at the 

origin is given by [5] (in SI unit)  

 
o o

dip 
μ 2μ

ˆ ˆ= 3( .r)r - δ( )
3 34πr


m

B m m r .   (7) 

The delta function δ( )r  terms that appear in 

equations (6) and (7) are of great importance (6, 

7). If one carries out the volume average of dipE  

over a sphere of radius R, the contribution due to 

the first term in (6) vanishes and one obtains the 

value of dipE  the same as (1), which is due to 

the delta function term only. To put it 

mathematically, 
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and,  
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o

o

dip
1

               δ( ) dV 
V 3ε

                =  =  .     
4 R 4 ε R

( )3ε
3

 




 


p

E r

p p   (9) 

 

One can note that the coefficient of the delta 

term in (6) is nothing but the average electric 

field over a sphere multiplied by the volume of 

the sphere, or it is the volume integral of the 

electric field of the dipole over a sphere of any 

size.  

     For the magnetic case, a similar derivation of 

(8) can be carried out by using tiny circulating 

current loops in place of charge distribution. 

Thus, the average value of the magnetic field 

produced by a magnetic dipole, inside a sphere 

of radius R can be calculated as, 

sphere

sphere dip
1

 = ( ) dV'
V B B d .        (10) 

Invoking equation (7) and by using (8) with p 

replaced by m, we obtain 

                                                                       

o

3
sphere 

μ
 = 

2πR
B m .               (11)                                                           

 

3.  Derivation of the analogue 
equation 
 

When an external magnetic field B is applied to 

a diamagnetic substance, the electronic orbits of 

the atoms get modified and they acquire a 

magnetic momentm . Classical [8] or semi 

classical [9] derivations of induced 

magnetization in a diamagnetic substance upon 

application of an external magnetic field B  give 

us a relation which tells us that induced dipole 

moment m  and applied magnetic field B  are 

linearly proportional, provided the field is not 

too strong.  

 

                 m Δ  = αm B .                   (12)                                             

If we consider the diamagnetic substance to be 

spatially homogeneous then a uniform external 

field applied on it can be assumed to magnetize 

every atomic dipole by the same amount. Thus a 

proportionality constant mα  can assigned to the 

entire diamagnetic substance, which may be 

called ‘magnetic polarizibility’, in analogy with 

electric polarizibility. Another advantage of 

spatial homogeneity is - a uniform applied field 

B  will generate a uniform dipole moment per 

unit volume,M  where M  and B  are related to 

H  and r by the macroscopic definitions (for 

linear materials) 

 

m χ = M H .                 (13) 

Or, 

       
m

o m

χ

μ (1+χ )
 = M B .                    (14) 

χm is the magnetic susceptibility of the 

diamagnetic substance. Microscopically, the 

magnetization vector can expressed as the 

cumulative sum of all the tiny atomic magnetic 

dipoles  

      
N

i

i=1

= M m .                     (15)                              

Here N is the number density of atoms in the 

substance (hence an integer). Eq. (15) can be 

rewritten as 

    
N

i i

i=1

= NΔ M m m          (16)                        

From (12), (14) and (16) one may be tempted to 

conclude that 
m

o m

χ

μ (1+χ )
= N mα .  

However, the field vector B appearing in (12) is 

not the same field vector that appears in equation 

(14). The B appearing in (14) is the total 

macroscopic field in the medium and the B in 

(12) is due to everything except the particular 
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atomic dipole under consideration. So (12) can 

be rewritten as 

 

      m selfΔ  = α (  - )m B B .                  (17) 

 

Here self(  - )B B  is the local field present in the 

vicinity of the atomic dipole that is located at the 

center of a fictitious sphere (cf. Fig. 1) and selfB
is the average field over the sphere due to the 

dipole itself. It is reasonable to question why the 

average field over the sphere is taken instead of 

the field at the center of the sphere where the 

dipole is located. However, average magnetic 

field due to all dipoles outside the sphere is same 

as the field they produce at the center [10].  

The radius of the sphere is related to the number 

density of atoms as 

    

34πR
N( )=1

3  
 .               (18) 

                

    
FIG. 2: The arrangement of dipoles. The sphere represents the 
fictitious boundary of each of the induced atomic dipoles m in 
the diamagnetic substance. 

 

The average magnetic field produced by the 

dipole (moment) would be 

         
o

 
3

sphere
μ

  = Δ
2πR

B m ,                    (19) 

Now, consider any atom, or magnetic dipole 

with index ‘i in the substance. selfB  of this atom 

is then given by 

           
o

self,i i
3

μ
= Δ

2πR
B m .                          (20) 

Plugging this value in (17), one gets 

         
o

i m i
3

μ
Δ = α (  - Δ )

2πR
m B m .            (21)  

Rearranging the terms we get,
  

       

m o
i m

3

 α μ
(1+ ) Δ = α

2πR
m B .               (22) 

Now summation of both sides of (22) for N 

terms is taken and then the results of (18) is used 

to get 

         
m o

m
3

α μ
(1+ )  = α N

2πR
M B .                       (23)    

Further invoking (14) to eliminate B and M from 

the previous equation we get                                          

              
m

m 

o m

3 χ
α = 

Nμ 3+χ

 
 
 

.               (24) 

Using    χm = µr - 1 

             
r

m 

o r

3 μ -1
α = 

Nμ μ +2

 
 
 

.                 (25)                                                           

 

 Here µr is the relative permeability of the 

diamagnetic substance. The relation (25) is    the 

magnetic analogue of Clausius- Mossotti 

equation.  

    For a diamagnetic substance, µr is less than 

unity. Hence, (25) tells us that mα  will always be 

negative. This reflects the fact that in a 

diamagnetic substance, the applied field B and 

the change in magnetic moment Δm are always 

antiparallel. To put it in another way, in the 

presence of an external magnetic field, each 

atom picks up a little extra dipole moment and 

these increments are all antiparallel to the field 

direction.  
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4. Brief historical survey of the 
equation 
     

In this section we briefly discuss the historical 

development of the Clausius-Mossotti relation 

and its magnetic analogue which unfortunately 

lacks a different name for itself.    The scientific 

figures responsible the development of his 

equation are S.D. Poisson (France), M. Faraday 

(England), J.C. Maxwell (Scotland), O.F. 

Mossotti (Italy), R. Clausius (Germany) and 

H.A. Lorentz (The Netherlands). We discuss 

their contributions chronologically. 

    The history of this equation begins in 1824, 

when Poisson presented his book [11] at a 

meeting of the French Academy in which he had 

carried out a detail mathematical analysis of the 

problem of magnetic induction. In his classic 

text on Electricity and Magnetism [12], Maxwell 

mentions that “the mathematical theory of 

magnetic induction was first given by 

Poisson…” In order to explain the phenomenon 

of magnetic induction Poisson hypothesized that 

an imaginary ‘magnetic matter’ or ‘magnetic 

fluid’ is confined to certain molecules of the 

magnetic substance. That molecule is 

magnetized in which the two opposite kinds of 

magnetic matter, which are present precisely in 

equal quantity, are separated towards opposite 

poles of the molecule. He called such molecules 

‘magnetic elements’ of the substance and 

examined the particular case in which these 

elements are spherical and are uniformly 

distributed throughout the substance. He 

calculated the ratio ‘K’ called Poisson’s 

Magnetic Coefficient - the ratio of the volume of 

magnetic elements to the whole volume of the 

substance. This turned out to be 
r

r

μ -1

μ +2

 
 
 

, the 

factor that appears in the expression for 

magnetic polarizibility in Eq. (25). Maxwell 

ruled out the validity of such a hypothesis by 

using the experimental works of Thalen. 

However, he concludes
 
[13], “… the value of 

Poisson’s mathematical investigation remains 

unimpaired, as they don’t rest on his 

hypothesis.” Later on, to explain this 

phenomenon of magnetic induction Ampere 

hypothesized that the magnetism of a molecule 

is due to an electric current that already exists in 

it which constantly circulates in some closed 

path within the molecules of the magnet, and 

must not flow from one molecule to another. 

These are the two alternative pictures of a 

magnetic dipole. 

Thus, using the hypothesis of Poisson and 

Ampere, and the magnetic analogue of Clausius-

Mossotti equation, the problem of magnetic 

induction was completely resolved. Note all this 

happened about half a century before the 

development of the Clausius-Mossotti equation 

for dielectrics.  

    After a few years of Poisson’s formulation, 

Faraday [14] for the first time [15] applied 

Poisson’s idea to dielectrics. It was Mossotti 

who studied the problem in greater detail and 

presented it in his memoirs [16]. He introduced 

the ‘cavity method’ [17] which he later 

developed in his second book [18]. Meanwhile, 

Clausius was also studying the same problem 

[19]. For the first time, he explicitly wrote the 

formula of what is now famous as the Clausius-

Mossotti equation, as called by Lorentz. It may 

be noted that all of them attacked the same 

problem using different approaches.  

Coming back to our derivation, the approach that 

is followed in this paper (use of local field or 

Lorentz field) significantly departs from that 

used by Poisson yet resembles the one used by 

H.A. Lorentz [20] and L.V. Lorenz [21] in their 

derivation of the Lorentz-Lorenz equation (used 

in optics).   

    So it’s evident that historically, Poisson’s 

equation plays a more fundamental role as 

compared to that by the Clausius- Mossotti 

equation.  
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5. Concluding remarks 
 

In the derivation the use of the relation between 

magnetic field B and dipole moment Δm is 

independent of whether the scenario is quantum 

mechanical or classical. The only assumptions 

are that the substance must be a linear, 

homogeneous, isotropic diamagnetic substance 

for our equation to be valid. One can check the 

equation very easily by putting relative magnetic 

permeability = 1, which is true for non-magnetic 

substances. For this case, the polarizability 

comes out to be zero, which is quite obvious as a 

non-magnetic substance would not respond to an 

external magnetic field. 

  One must recognize that it is the self field term 

Bself which actually leads us to such an equation 

for diamagnetic substances. We may consider 

the case of paramagnetic materials to see 

whether the self field term leads us to any such 

equation or not. In this case, the atoms possess a 

net dipole moment even in the absence of an 

external magnetic field. When a magnetic field 

is applied, magnetization arises due to the 

reorientation of the atomic dipoles. The potential 

energy of a dipole of dipole moment m in 

presence of a magnetic field B is    = - m.B. As 

we have said above the B here should be written 

as B-Bself. And using (11) and (18), Bself can be 

written as 
02

3

N
m . Hence 

          = -m.B + 
02

3

N
m  

                  

0 22
cos  + 

3

N
mB m


   .        (26)        

The energy distribution of atoms can be 

adequately described by the classical Maxwell-

Boltzmann statistics. Thus, the number of atoms 

dN whose energy lies between    and  +d  is 

given by  

2
0

exp( ) 

2 .
exp( )exp( ) sin  .

3

B

B

dN A d
K T

N m
A mB d

K T





 





m B

 (27) 

 

Here T is the temperature of the system. A is the 

normalization constant that can be found out by 

imposing the condition that the integration of dN 

must be equal to the total number of atoms N 

when   goes from 0 to  .  

    The term arising due to the self field can be 

absorbed into the normalization constant; 

therefore the Bself seems to play no significant 

role in the case of paramagnetic substances.     

    The scope of the magnetic analogue equation 

is not as wide as that of the Clausius-Mossotti 

equation. In fact, many seem to be unaware of 

the very existence of such an equation. However 

it plays a key role in the study of magnetic fluids 

[22], permittivity and permeability studies of 

mixtures [23], and negative effective 

permeability
 
[24]. 
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