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Abstract

Density of states is a quantity of fundamental interest in quantum physics. We will
introduce this quantity and work out some examples using simple systems studied in
introductory quantum mechanics classes such as harmonic oscillator and hydrogen atom
problem.

1 Introduction

In the standard text books on quantum me-
chanics, the idea of density of states is not
given much importance though it is one of
the characteristics of a given quantum sys-
tem. Knowledge of density of states will allow
us to calculate the occupation probability of
eigenstates, level spacing statistics, density of
carriers in a semiconductor, number of con-
ducting electrons in a free electron gas and

in general gives us information about how
crowded is a given spectral regime. In this
piece, we will mainly discuss about the den-
sity of states of quantum systems with dis-
crete energies using simple examples.

Let us consider a quantum system which
has discrete set of states with energy eigenval-
ues Ei, i = 1, 2, 3 . . . . . .. We denote by Ω(E),
the total number of states less than the en-
ergy E. Then, the density of states, which
is the number of states in unit interval of en-
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ergy, is given by,

ρ(E) =
dΩ(E)

dE
. (1)

This is a function of energy E indicating that
number of discrete states in any interval de-
pends on the which energy scale we are look-
ing at.

2 Examples

Harmonic oscillator : Consider the simple
case of harmonic oscillator whose energy is
given by,

En =

(
n+

1

2

)
~ω

where ω is the angular frequency of the oscil-
lator and n is the quantum number. In this
case, it is easy to see that the total number
of states below energy E is

Ω(E) =

(
E

~ω
− 1

2

)
.

Then, using Eq 1, we get the density of states
to be,

ρ(E) =
1

~ω
.

This tells us that for harmonic oscillator den-
sity of states is a constant and is not depen-
dent on the energy E. This result should not
surprise us since we know from Eq. 1 that the
energy eigenvalues are equi-spaced. Thus, in
general, whenever quantum systems have en-
ergy dependence of the form En ∝ n, density
of states will be a constant.

Anharmonic oscillators : Consider one-
dimensional quantum system whose energy is
of the form, En = C (n+ 1/2)α with C being
a constant and 1 ≤ α ≤ 2. Quantum systems
whose potential is of the form V (x) = xm,
where m > 0 is an integer, will have such
energies in the semiclassical limit, i.e, in the
limit where WKB approximation would hold
good [1]. This is generally the limit of large
energies or high quantum numbers. In such
case, the total number of states below energy
E is given by,

Ω(E) =

(
E1/α

~ω
− 1

2

)
.

Then the density of states can be easily ob-
tained by using Eq. 1 and we get,

ρ(E) =
E

1
α
−1

α~ω
(2)

For an anharmonic oscillator with the poten-
tial V (x) = x4, it is easy to use the above
results to show that ρ(E) = KE−1/3 and I
will leave this as an exercise for the reader.
It is clear from Eq. 2 that in the entire class
of anharmonic oscillators the density of states
decreases with energy. For identical interval
of energy, there are more eigenstates near the
ground states than at higher energies.
Infinite potential well : In this case, the ener-
gies are given by, En = C1 n2, where C1 is a
constant that depends on system parameters
and Planck’s constant. The total number of
states below an energy E is,

Ω(E) =

(
E

C1

)1/2

.
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The density of states is given by,

ρ(E) =
1

2C1

√
E
.

Thus, in the case of infinite potential well, the
density of states goes as E−1/2. Note that this
result we could have obtained by taking α = 2
in Eq. 2. I leave as an exercise for the reader
to figure out why α = 2 should correspond to
the infinite square well potential.
Hydrogen atom : This is another useful illus-
trative example. The discrete energy levels
are hydrogen atom problem are given by,

En = −C2

n2
, n = 1, 2, 3...

where n is the principal quantum number.
Using our recipe, we get for the total density
of states,

Ω(E) =
√
C2 E−1/2

and the density of states turns out to be

ρ(E) =

√
C2

2E3/2
.

Typically, in the hydrogen atom case, En =
−13.6/n2eV . Thus, the magnitude of energy
tends to zero as n increases. In this problem,
higher values of principal quantum number
n corresponds to E << 1. Hence, as n →
∞, the energy tends to zero, and as a result
ρ(E) → ∞. This explains the crowding of
energy levels near E = 0. For E > 0, there is
a continuum of energies.
Black body radiation : Even though the argu-
ments above were motivated primarily from
quantum physics perspective, there would be

many occasions to compute density of states
in classical systems as well. One such ex-
ample is the enumeration of the number of
modes in a black body which is used in
the calculation of Rayleigh-Jeans formula and
the Planck’s radiation law. We will only
briefly recount the steps involved and refer
the reader to text books for details [2].

nx

n y

n

Figure 1: Number of standing waves in the
frequency range [ν, ν + dν]. We should de-
termine the number of points in the shell of
radius n. However, if the points are close
enough we can simply assume them to be con-
tinuous and calculate the area of the shell.

In principle, in a black body, standing
waves of all possible wavelengths should be
present. However, the boundary condition
that waves should have a node at the walls
of the cavity allows only modes of certain
wavelengths to be present inside the cavity.
The allowed wavelengths are obtained from
the condition for standing waves in a cavity
in one dimension to be n = 2L/λ, where λ
is the wavelength of the standing wave and n
is the number of half-wavelengths. In a 3D
cavity, this condition is generalised to,

nx = 2L/λ, nx = 1, 2, 3, .....

Volume 30, No. 2 Article Number : 5. www.physedu.in



Physics Education 4 Apr - Jun 2014

ny = 2L/λ, ny = 1, 2, 3, .....

nz = 2L/λ, nz = 1, 2, 3, .....

In 3D, each triplet of integers (nx, ny, nz) cor-
respond to a possible mode of standing wave
inside the cavity. In a cube of side L, evi-
dently the largest allowed standing wave will
have a wavelength L. This sets the upper
limit for the allowed wavelengths or equiv-
alently frequencies in the cavity. The num-
ber of standing waves above a given value
of wavelength, say λ̄, is the number of such
triplets (or modes) which have wavelengths
above λ̄. There is an easier and approximate
way to calculate this quantity. Consider a
3D space of integers (nx, ny, nz) and every
point in this space corresponds to one pos-
sible mode of standing wave. Since there are
large number of modes, we can regard this
space as being essentially continuous and ask
how many independent modes lie in the range
of wavelengths λ and λ + dλ. This is given
by the surface area of a shell in one octant of
sphere (see figure 2) as,

2

(
1

8

)
4πn2 dn (3)

The factor 2 comes from two possible states
of polarisation for each standing wave. We
want the result in terms of frequency and so
we write n in terms of frequency as,

n = 2L/λ =
2Lν

c
dn =

2L

c
dν. (4)

In this, c is the velocity of light. Substituting
for n from Eq. 4 in Eq. 3 we get the result
for number of standing waves in the cavity in
[ν, ν + dν] to be,

ρ(ν) dν =
8πL3

c3
ν2 dν (5)

This is essentially the density of states for
standing waves in black body. As frequency
increases, number of modes is proportional to
the square of the frequency. This application
should not be surprising at all if we recog-
nise that the eigenstates of quantum systems
are essentially ’standing waves’ or station-
ary states as we would properly call them in
quantum physics.
Thus, the problem finding the density of

states, at some level, boils down to the prob-
lem of enumerating all the states below a cer-
tain energy. It is essentially a counting prob-
lem. I leave it as a problem to the reader to
plot these functions ρ(E) for various systems.
I must put in a word of caution that we have
barely scratched the surface in dealing with
density of states. There are other advanced
methods of computing density of states, that
does not apriori require the knowledge of how
the energy is dependent on quantum num-
bers. So, in principle, given any Hamiltonian
system, it may be possible to calculate the
density of states without actually solving the
full quantum system.
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