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Abstract

Maxwell’s Stress Tensor T̂ owes its origin to the notion prevailing before the advent of
relatvity that ‘action at a distance’ is actually a mechanical interaction, like push and pull,
and is transmitted by an assumed mechanical property of the Aether which pervaded all
space, in particular vacuum. Even after withrawal of Aether this tensor has a useful role to
play not only in formulating conservation of momentum in a time varying electromagnetic
field, but also in simplifying several problems in electrostatics and magnetostatics, by
removing the distinction between the field caused by ‘external sources’ and the total field
surrounding a distribution of charges and currents. This tensor is to be constructed on the
principle that f s(r) = ∇ · T̂ (r), where fs(r) is the force acting on unit volume of a
distribution of electric charges and currents. Our derivations of the stress tensors

T̂
(E)

, T̂
(M)

and T̂
(EM)

, corresponding to electrostatic field, magnetostatic field, and time
varying electromagnetic field respectively, are based on a single vector identity and
application of Maxwell’s field equations. We have worked out two examples of how the
force on an isolated system can be calculated by surrounding it with a sphere of some
radius r and integrating the stress vector over the entire surface, namely, an isolated
electric charge in the electrostatic field of another charge, and an isolated magnetic dipole
in the magnetostatic field of another magnetic dipole. We have taken the stress tensor to
its logical end by writing momentum conservation in a time varying electromagnetic field,

and then identifying −T̂
(EM)

as the momentum flux density Φ̂ of the field. For the special

case of a pure radiation field, Φ̂ = −T̂
(EM)

= Πc, where Π is the momentum density and c
is the ‘velocity’ of light. At the beginning of this article we have given a mathematical
introduction to tensors, in particular stress tensors.
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1 Introduction

‘Action at a distance’ (AAD) was an
enigma to natural philosophers, from Rene
Descartes1 (1596-1650) to James Clerk
Maxwell (1831-1879). We find a an account
of the evolution of physical concepts in Whit-
taker [1]. According the Descartes, space was
a plenum, a medium called aether, capable
of transmitting force on material bodies. “It
was to be regarded as the solitary tenant of
the universe, save for that infinitesimal frac-
tion of space which is occupied by ordinary
matter.”

Subsequent theoretical physicists and
mathematicians, Robert Hooke (1635-1703),
Isaac Newton (1642-1727), Reimann (1826-
1866), W.Thomson (1824-1907), Maxwell
and others lent their support to this view.
Implicit in their belief was the assumption
that force cannot be transmitted except by

actual pressure or impact. AAD was a taboo,
as abhorrent as witchcraft: I wave my hand
here and a fire is ignited there. In order to
support their faith in aether they contrived
every possible idea, any possible mechanical
model, to make aether viable.

According to Newton “All space is per-
vaded by an elastic medium or aether, which
is capable of propagating vibrations in the
same way as air propagates the vibrations of
sound. This aether pervades the pores of all
material bodies, and is the cause of their co-
hesion; its density varies from one body to
another, being greatest in the interplanetary

1The Cartesian coordinate system is associated
with his name

space.”
Maxwell inherited this legacy. We shall

quote a few passages from his celebrated pa-
per ‘A Dynamical Theory of the Electromag-

netic Field ’ read to the Royal Society of Lon-
don on December 8, 1964[2].

“(1) In this way mathematical thories
of statical electricity, of magnetism, of
the mechanical action between between
conductors carrying currents, and of the
induction of currents have been formed.
In these theories the force acting between

two bodies is treated with reference only

to the condition of the bodies and their

relative position, and without reference

to the surrounding medium.”

“(2) The mechanical difficulties, how-
ever, which are involved in the assump-
tion of particles acting at a distance with
forces which depend on their velocities
are such as to prevent me from con-
sidering this theory as an ultimate one,
though it may have been, and may yet be
useful to the coordination of phenmena.”

“(3) The theory I propose may therefore
be called a theory of the Electromagnetic

Field, because it has to do with the space

in the neighbourhood of the electric and

magnetic bodies, and it may be called a
Dynamical Theory, because it assumes
that in that space there is matter in mo-
tion, by which the observed electromag-
netic phenomena are produced.”

“(4) The electromagnetic field is that
part of space which contains and sur-
rounds bodies in electric and magnetic
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coditions. ... It may contain any kind of
matter, or we may render it empty of all

gross matter, as in the case of Geissler’s
Tubes and other so called vacua.

There is always, however, enough mat-

ter to receive and transmit the undula-

tions of light and heat, and it is because
of the transmission of these radiations
is not greatly altered when transparen
bodies of measurable densities are sub-
stituted for the so-called vacuum, that
we are obliged to admit that the undu-

lations are those of aetherial substance,
and not of the gross matter, the presence
of which merely modifies in some way the
motion of the aether.

We have therefore some reason to be-
lieve, from the phenomena of light and
heat, that there is an aetherial medium

filling space and permeating bodies, capa-

ble of being set in motion and of trans-

mitting that motion from one part to an-

other, and communicating that motion to

gross matter so as to heat it and affect it

in various ways. ”

One aspect of the mechanical model
Maxwell built up to present a complete pic-
ture of the electromagnetic field was the
proposition that space, i.e., aether, can sus-
tain stress, and a force is transmitted from
one body (electrified or magnetized) to an-
other by means of stress, in the same way a
force is transmitted from one end of a cable
to the other by means of tensile stress, and
from one part of a beam to another by means
of shear stress.

In his two-volume book ‘A treatise on Elec-

tricity and Magnetism‘ Maxwell presents a
complete formulation of the Stress in the
field (read aether) by constructing the Stress
Tensor for the Static Electric Field [3] and
for the Static Magnetic Field [4], in terms of
the field potentials. The first one is pre-
sented in Vol 1 of his book and second one
in Vol 2. His derivation of the first ten-
sor (for the Electrostatic field) involves ma-
nipulation of Laplace’s and Poisson’s equa-
tions. His derivation of the second tensor
(for the Magnetostatic field) involves mag-
netic poles which are now out of fashion in
current physics text books, and may not be
of much interest to us.
We have derived the stress tensors for Elec-

trostatic field, Magnetostatic field and time
varying Electromagnetic field in terms of the
electric field E , magnetic field B in a unified
manner exploiting the useful identity given in
Eq. (76).
Einstein’s formulation of the Special The-

ory of Relativity saw the demise of the Lu-
miniferous (i.e., light carrying) Aether. Light
travels in empty space, eletric and magnetic
forces also propagate from one body to an-
other (with the speed of light) in empty
space. Is there then any place for Maxwell’s
Stress Tensor? Is it only for historical rea-
son that we are writing this long article? We
shall attempt to provide the answer in four
steps.
First, it is indeed an amazing thing that

the force acting on an isolated body A (which
may consist of electric charges and currents),
due to the presence of charges and currents
elsewhere, can be computed exactly by draw-
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ing a boundary surface S of our convenience
surrounding A, as in Fig.1(a), finding the
“stress” all over this surface, and by inte-
grating this stress. In other words, there
is stress even in vacuum. The purpose of
this article is to articulate how this stress is
to be found out. Also it should be noted
with interest that even empty space is not
a true vacuum. When loaded with the elec-
tric and magnetic fields space comes under
stress. Empty space is always buzzing with
emission and absorption of virtual particles,
with the virtual photons mediating the inter-
action among electrified and magnetized ob-
jects. Aren’t these virtual photons the new
Avatar of the Aaether?
Secondly, calculating the force on an iso-

lated object A requires exact knowledge of
the E or B field in which A is immersed. In
recognizing these fields one has to be very
careful that these E,B fields do not contain
any trace of the fields contributed by A itself.
This is sometimes a challenging task. Con-
sider for example the force acting on the sur-
face of a conductor carrying a suface charge
density σ, as in Fig.1(b). The electric field
just outside the surface is E = (σ/ǫ0)n where
n is a unit normal to the surface. One may be
tempted to conclude that the force per unit
area of the surface is F′ = σE = (σ2/ǫ0)n,
forgetting the fact that an infinitesimal area
da on the surface contributes the same E field
perpendicular to the surface as the rest of the
surface, so that the true force is

F =
1

2
F′ = (σ2/2ǫ0)n = (ǫ0E

2/2)n. (1)

The stress tensor approach, which uses the

total field Etotal, making no distinction be-
tween the test object and the source ob-
ject, will give the right result without creat-
ing any confusion, as we shall show following
Eq. (84).
Thirdly, it is always advisable to arrive at

the same answer through several alternative
routes, if available, just to make sure that we
have not made any mistakes. The stress ten-
sor provides that valuable alternative route.
And fourthly, Maxwell’s Stress Tensor,

which we shall denote by the symbol T̂ , is
needed for understanding conservation and
flow of momentum in the electromagnetic
field, which we shall present in Section 6.
When one goes deeper into the theory of
relativity the same tensor appears as the
most important component of the Energy-
Momentum tensor required not only for pre-
senting a 4-dimensiinal and unified view of
the conservation of energy and momentum,
but also for building up the source term in
formulating Einstein’s field equation for the
gravitational field, in his General Theory of
Relativity.
Maxwell’s stress tensor has been discussed

in all standard books on Electrodynamics[5,
6, 7, 8, 9]. However it has received a more
detailed treatment in the books by Panof-
sky and Phillips and Griffiths. Griffiths has
worked out a very interesting problem to
bring out the meaning of this tensor. In this
article (See Secs. 4.3 and 5.2) we have con-
tributed two worked out prblems to illustrate
the same concept.
We shall begin this pedagogical article by

giving the reader a mathematial introduction
to tensor, and then specializing the same to
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Figure 1: Electrified object in E field.

stress tensor, in particular Maxwell’s stress
tensor.

2 Introduction to Tensor

2.1 Linear Operator in a

Vector Space

What we shall call a tensor in this book is
actually “a tensor of rank 2”. A bold capital
letter with a “widehat” on top, e.g., T̂, will
symbolize such a tensor. In fact a scalar, e.g.,
potential energy V is called a tensor of rank
0, a vector, e.g., momentum p a tensor of
rank 1.
Maxwell’s stress tensor T̂ , which is a ten-

sor of rank 2 is needed for understanding con-
servation and flow of momentum in the elec-
tromagnetic field. in this esction we shall pre-
pare the ground work for constructing this
tensor.

We shall begin by explaining what we mean
by linear operator in a vector space.

By the 3-dimensional linear vector space V
we mean the set of all vectors A,B,C, · · ·
we can think of and all such vectors we can
construct by combining them linearly, e.g.,
ηA+ λB where η, λ are real numbers.

Let us think of two vectors C and D hav-
ing Cartesian components (Cx, Cy, Cz) and
(Dx, Dy, Dz) and related to each other in such
a way that the values of the former determine
the values of the latter. This means that C is
an independent vector and D is a dependent
one. In other words D is a function of C. Let
us further assume that D is proportional to
C. That is, if for example we double C, then
D is doubled. These two vectors, however,
may or may not be in the same direction.
In that case we say that a linear operator Ô
transforms C into D. We may like to write

Volume 30, Number 3 Article Number : 1 www.physedu.in
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this transformation symbolically as

Ô(C) = D. (2)

The property of linearity means that

If Ô(C) = D, and Ô(E) = F,

then Ô(aC+ bE) = aD+ bF,
(3)

where a, b are two arbitrary scalar constants.
In Fig.2 we have shown two simple exam-

ples of how the operation Ô can take place. In
Fig.(a) we have shown a particle of constant
mass m in abrbtrary motion along some tra-
jectory Γ. At some instant of time t it has
velocity v. Therefore its momentum at the
same instant is p = mv. We can therefore
think of the operator Ô transforming veloc-
ity v into momentum p by scaling the length
of the former by the factor m without chang-
ing its direction.
In Fig.(b) we have shown a Rigid Body ro-

tating about some axis pointing in the direc-
tion of the unit vector n with angular speed
ω, so that its angular velocity is ω = ωn. Its
angular momentum is L, which (in general)
does not coincide with the direction of ω. In
this case the operator Ô transforms the angu-
lar velocity ω into angular momentum L by
changing the length as well as the direction.
The linear operator Ô in this case is the iner-
tia tensor Î about which we shall give some
more insight in Sec.2.4.
For our immediate purpose we shall look

upon a tensor T̂ as a linear operator. The lin-
ear operation mentioned above suggests that
T̂ can be represented by a matrix, and the
“tensor operation” can be represented as a
matrix multiplication. This will become evi-
dent in the next section.

2.2 Tensor as a Dyadic

Two arbitrary vectors A,B can be combined
in three types of “multiplication operation”,
the first two of which the reader is familiar
with, namely, (1) the dot product A·B which
is a scalar; (2) the cross product A×B which
is a vector. Now comes (3) the third type,
namely the dyadic product AB, which is a
simple juxtaposition of the vectors, without
any dot or cross in between, which we shall
call a dyad.

We define the dyad AB to be a linear oper-
ator which converts any vector C to another
vector D and this conversion can be done in
either of the following two ways:

(a) operating on the right :

AB ·C
def
= A(B ·C) = ηA

where η = B ·C = scalar.

(b) operating on the left :

C ·AB
def
= (C ·A)B = λB

where λ = C ·A = scalar.

(4)

The linearity property follows from the op-
eration defined in (4). Also note that in gen-
eral, AB 6= BA.
We shall write the sum of two dyads AB

and EF as AB + EF and define it by the
distributive property:

(AB+ EF) ·C
def
= AB ·C+ EF ·C

= A(B ·C) + E(F ·C).

C · (AB+ EF)
def
= C ·AB+C · EF

= (C ·A)B+ (C · E)F.

(5)

It should be a simple exercise to show from
Eqs. (4) that the dyadic product is distribu-
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Figure 2: two examples of how a linear operator Ô transforms a vector into another vector: (a) Ô
acting on v yields p; (b,c) Ô acting on ω yields L.

tive, i.e., if E,F,C are three arbitrary vec-
tors, then

(E+ F)C = EC+ FC.
C(E+ F) = CE+CF.

(6)

As a corollary,

(A+B)(E+F) = AE+AF+BE+BF. (7)

A sum of dyads can be called a dyadic. We
shall prefer to use the term “dyadic” as a gen-
eral name for sums of dyads as well as indi-
vidual dyads.
We shall frequently use the symbols

ex, ey, ez to represent unit vectors in the di-
rections of the X, Y, Z axes, for which we
had used i, j,k earlier in this chapter. As
we progress we shall use another set of sym-
bols e1, e2, e3 to mean the same unit vec-
tors. This transition (i, j,k) → (ex, ey, ez) →
(e1, e2, e3), side by side with (x, y, z) →
(x1, x2, x3) will restore symmetry and help us

use Einstein’s summation convention (follow-
ing Eq.9).
Let us now consider the set of 12 dyads:

{exex, exey, exez, · · · , ezez}. Using them
we can construct the following dyadic

T̂ = Txxexex + Tyxeyex + · · ·
+Tyzeyez + Tzzezez

=
∑3

i=1

∑3
j=1 Tijeiej ≡ Tijeiej,

(8)

where the subscripts (1,2,3) represent (x, y, z)
respectively. That is

e1 ≡ ex; e2 ≡ ey; e3 ≡ ez;
and, T11 ≡ Txx; T12 ≡ Txy; · · · ;

T32 ≡ Tzy; T33 = Tzz
(9)

are arbitrary real numbers.
In the second line of Eq. (8) we have intro-

duced Einstein’s summation convention: sum
over repeated index, without explicitly insert-
ing the sum symbol

∑
. The subscript “i” ap-
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pears twice, implying a sum over i. The sub-
script “j” appears twice, implying one more
sum, this time over j.

The mathematical object T̂ appearing in
Eq. (8) is what we shall call a tensor for
all purposes in this book. The set of dyads
{exex, exey, exez, · · · , ezez} can be looked
upon as a complete set of base dyads form-
ing a basis B̂ in the tensor space T of T̂.
This is analogous to the way that the vec-
tors {ex, ey, ez} form a basis B in the vector
space V of V. Any arbitrary vector V can be
written as a linear superposition of the base
vectors as

V = Vxex + Vyey + Vzez, (a)
where Vx = V · ex, Vy = V · ey,

Vz = V · ez, (b)
(10)

are the Cartesian (scalar) components of V
in the basis B. In the same way any arbitary
tensor T̂ can be written as a linear superpo-
sition of the base dyads, as in Eq. (8), where
the nine quantities {Txx, Txy, · · ·Tzy, Tzz} are
to be interpreted as the Cartesian (scalar)

components of T̂ with respect to this basis
B̂.

From the definition of dyad given in (4),
and the orthogonality of the base vectors
{ex, ey, ez}, i.e.,

ej · ek = δjk; j, k = 1, 2, 3 = x, y, z, (11)

it should be apparent that the base dyads op-
erating on any arbitrary vector V will yield

the following vectors:

exex ·V = exVx; exey ·V = exVy; · · ·
ezey ·V = ezVy; ezez ·V = ezVz.
V · exex = Vxex; V · exey = Vxey; · · ·
V · ezey = Vzey; V · ezez = Vzez.

(12)
Hence, if A = Axex + Ayex + Azez and B =
Bxex+Byex+Bzez are two arbitrary vectors,
then,

A · T̂ ·B
def
= A · (T̂ ·B)

= AiTijBj = (A · T̂) ·B. (a)
As a special case

ei · T̂ · ej = Tij . (b)

(13)

If the nine components {Tij} of a tensor T̂
are given, the tensor can be constructed using
Eq. (8). Conversely, if a tensor T̂ is given in
the form of a mathematical relation, its nine
components Tij can be retrieved by means of
Eq. (13b).
Using the distributive property given in (7)

it is seen that the dyadic product of A and
B has the following dyadic representation:

AB = AxBxexex + AxByexey + · · ·

+ AzByezey + AzBzezez

= AiBjeiej.

(14)

Hence, if we write

T̂ = AB, then, Tij = AiBj. (15)

Using Eq. ((a)4), the operation of the ten-

sor T̂ on the vector C = Ckek placed on the
right works out as follows.

T̂ ·C = (Tijeiej) · (Ckek)

= Tij Ck ei(ej · ek)

= ei (Tij Cj).

(16)

Volume 30, Number 3 Article Number : 1 www.physedu.in
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We have used the orthogonality relation (11)
to get to the last line.

In a similar way, using Eq. ((b)4), the oper-

ation of the tensor T̂ on the vector C = Ckek
placed on the left works out as follows.

C · T̂ = (Ckek) · (Tijeiej)

= Ck Tij (ek · ei)ej

= (Ck Tkj) ej.

(17)

The above two equations suggest that if we
write D = T̂ · C and F = C · T̂, then the
Cartesian components (D1, D2, D3) of D and
(F1, F2, F3) of F can be obtained from matrix
multiplications:




D1

D2

D3


 =




T11 T12 T13

T21 T22 T23

T31 T32 T33







C1

C2

C3


 .

(
F1 F2 F3

)

=
(
C1 C2 C3

)



T11 T12 T13

T21 T22 T23

T31 T32 T33


 .

(18)

In the above equations, starting from
Eq. (4), we have used a dot (·) to separate
the tensor from the vector on which it is op-
erating. We shall frequently refer to a tensor
operation as a dot product between the ten-
sor and the vector. Eqs. (18) show that a dot

product actually involves a matrix multiplica-

tion. A tensor is to be represented as a square
matrix, and a vector either as a column ma-

trix or a row matrix, depending on whether
the tensor operation is on the right or on the

left2.

T̂ =




T11 T12 T13

T21 T22 T23

T31 T32 T33


 = [T ];

C =




C1

C2

C3


 = {C};

F =
(
F1 F2 F3

)
= (F ).

(19)

In the above we have adopted the conven-
tion of indicating a 3×3 square matrix by [ ],
a 3×1 column matrix by { }, and a 1×3 row
matrix by ( ). Hence, Eqs.(18) can be written
as

{D} = [T ]{C}; (F ) = (C)[T ]. (20)

It follows from Eq. (14) that the matrix
representation of the dyadic AB is

AB =




A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3


 . (21)

We shall define the dot product of two ten-
sors Ŝ and T̂ as the tensor R̂ = Ŝ · T̂ by
its operation on an arbitrary vector C on the

right in the following way.

(Ŝ · T̂) ·C
def
= Ŝ · (T̂ ·C). (22)

2 In Quantum Mechanics (QM) a clear distinction
is made between a vector A on left and a vector B

on right, as in the scalar product A · B. The for-
mer is called a bra vector and the latter a ket vector,
and together, in the scalar product, they constitute
a bra-ket : A →< A|; B → | B >; A ·B →< A|B >.
However, these vectors are in genereral infinite di-
mensional, their components are complex numbers,
and the components of the bra vector < A| are com-
plex conjugates of the respective components of the
ket vector |A >.

Volume 30, Number 3 Article Number : 1 www.physedu.in
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From this it follows that the matrix represent-
ing R̂ is given by the product of the matrices
representing Ŝ and T̂. That is,

[R] = [S] [T ], implying: Rij = SikTkj. (23)

It is then obvious that, in general, Ŝ · T̂ 6=
T̂ · Ŝ.
Using the matrix representation as given in

Eq. (23), and the tensor operation on the left
as found out in (17), we can now see how the

product tensor R̂ = Ŝ · T̂ will act on the left.

C · R̂ = (CkRkj)ej = (CkSkmTmj)ej
= (CkSkm)(Tmjej).

Or, C · (Ŝ · T̂) = (C · Ŝ) · T̂.

(24)

We can extend the definition of matrix
product to any number of tensors, by writ-
ing the matrix representation of the product
tensor as the product of the representative
matrices of the component tensors. For ex-
ample

If R̂ = Â · B̂ · Ĉ, then [R] = [A] [B] [C].
(25)

At this point we shall add a word of cau-
tion. A tensor is not the same as a square
matrix, just as a vector is not the same as
a column matrix or a row matrix. The row
matrix shown in Eq. (19 ), for example, gives
the components of the vector F in a given
coordinate system XY Z. As the coordinates
are changed from (x, y, z) to (x′, y′, z′), the
components will transform from (F1, F2, F3)
to (F ′

1, F
′
2, F

′
3). However, the vector F itself

is a “geometrical object” (a straight line of
measured length pointing in an assigned di-
rection) which remains invariant under all co-
ordinate transformations. In the same way

the tensor T̂ is a geometrical object, which
remains invariant under all coordinate trans-
formations, even though its components will
change from the square matrix [Tij ] to an-
other square matrix [T ′

ij ] under the same co-
ordinate transformation.

Yes, the components of all tensors will
transform, except the components of the
identity tensor which we shall introduce in
the next section. They will remain the same,
the same as in (27), following any coordinte
transformations.

2.3 Identity Tensor,

Completeness Relation,
Components of a Tensor in

the Spherical coordinate
system

In matrix multiplication one needs the iden-

tity matrix 1̂ which in the present context,
is the matrix representation of the identity

tensor, also known by the alternative name
idemfactor. It will be recognized by the sym-
bol 1̂. Its sole property is that when it oper-
ates on any vector V, either on the right, or
on the left, it gives back the same vector.

1̂ ·V
def
= V; V · 1̂

def
= V. (26)

Such a tensor must have 1̂ for its matrix
representation. The dyadic representation
(shown below) follows from the above prop-
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erty and the orthogonality relation (11).

1̂ = 1̂ =




1 0 0
0 1 0
0 0 1


 . (a)

1̂ = exex + eyey + ezez = eiei. (b)
(27)

Eq.(a) gives the Matrix representation, and
Eq.(b) the Dyadic representation.
It will be advantageous to write the ten-

sor T̂ in a curvilinear coordinate systen, in
particular, spherical coordinate system. The
reader must be familar with the following
transformation equations for the coordinates
and the base vectors.

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ).
er = sin θ (cosφ ex + sinφ ey) + cos θ ez;
eθ = cos θ (cosφ ex + sinφ ey)− sin θ ez;
eφ = − sinφ ex + cosφ ey.

(28)
Using these equations (and remembering

that ereθ 6= eθer, for example) it should be a
simple exercise to show that

erer + eθeθ + eφeφ = exex + eyey + ezez = 1̂.
(29)

If we have three unit vectors {a, b, c}
which are mutually orthogonal at every point
in space and such that

aa+ bb+ cc = 1̂, (30)

then we say that these three vectors form a
complete orthogonal set, and hence a basis,
so that any arbitrary vector V can be repre-
sented as a linear superposition of these three
vectors 3. This should be clear from the fol-
lowing.

V = V · 1̂ = V · (aa+ bb+ cc)
= Vaa+ Vbb+ Vcc,

where Va = V · a, Vb = V · b, Vc = V · c,
(31)

are the components of V in the directions
of {a, b, c} respectively. Using the complete-
ness property it can be advantageous to write
a tensor in the following style.

T̂ = 1̂ · T̂ · 1̂

= (aa+ bb+ cc) · T̂ · (aa+ bb+ cc)
= Taaaa+ Tabab+ Tacac · · ·
+Tcbcb+ Tcccc, where

Taa = a · T̂ · a, Tab = a · T̂ · b, · · · ,

Tcb = c · T̂ · b, Tcc = c · T̂ · c
(32)

are the components of T̂ with respect to the
basis {a, b, c}.
We shall illustrate the operation shown in

Eq. (32) by writing the tensor T̂ in Cartesian
and spherical coordinate systems.

T̂ = (exex + eyey + ezez) · T̂ · (exex + eyey + ezez) (a)
= Txxexex + Txyexey + Txzexez + · · ·+ Tzxezey + Tzzezez, where (b)

Txx = ex · T̂ · ex, Txy = ex · T̂ · ey, · · · , Tzy = ez · T̂ · ey, Tzz = ez · T̂ · ez. (c)

T̂ = (erer + eθeθ + eφeφ) · T̂ · (erer + eθeθ + eφeφ) (d)
= Trrerer + Trθereθ + Trφereφ + · · ·+ Tφθeφeθ + Tφφeφeφ, where (e)

Trr = er · T̂ · er, Trθ = er · T̂ · eθ, · · · , Tφθ = eφ · T̂ · eθ, Tφφ = eφ · T̂ · eφ. (f)

(33)

3 In QM the completeness of a set of orthonormal
vectors {|ui >; i = 1, 2, . . . ,∞} is expressed through
the statement

∑
i
|ui >< ui| = 1. This relation is

used to change the representation of a Hermitean op-
erator T̂, the equivalent of the tensors we are con-
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Lines (a)-(c) represent the tensor T̂ in a
Cartesian coordinate system, and lines (d)-
(f) in a spherical coordinate system

We can then write the components of T̂ in
the following matrix forms

T̂
( Cart)
−→




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 .

T̂
(sphr)
−→




Trr Trθ Trφ

Tθr Tθθ Tθφ

Tφr Tφθ Tφφ


 .

(34)

The first matrix gives the Cartesian compo-
nents, and the second one the spherical com-
ponents.
Using the transformation of the base vec-

tors (Eq. 28), and the completeness relations
(29), one can transform the Cartesian com-
ponents to spherical components, for both
vectors and tensors, as we shall show. For
this purpose we shall temporarily denote the
spherical base vectors with a prime, i.e., {e′i :
i = r, θ, φ} and make a table of transforma-

tion coefficients {cij}:

e′i = e′i · ejej = cijej,

where cij ≡ e′i · ej : i = r, θ, φ; j = x, y, z.

=




sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0




(35)

Now, let V be a vector and T̂ a tensor with
Cartesian components [{Vj}, {Tij}, i, j =
x, y, z ] respectively. Then the spherical

components of the same vector and tensor,
namely, [{V ′

j }, {T ′
ij}, i, j = r, θ, φ ] will be

obtained in the following ways4 :

V ′
j = V · e′j = V · ekek · e

′
j = cjkVk.

T ′
ij = e′i · T̂ · e′j = e′i · ekek · T̂ · elel · e

′
j

= cikcjlTkl.
(36)

Note that we have used the summation con-
vention: sum over k in line (a), sum over k, l
in line (b).
We shall illustrate the transformation for-

mulas (36) with two examples, i.e,Vr ≡ V ′
1

and Trθ ≡ T ′
12.

Vr = sin θ cosφVx + sin θ sinφVy + cos θ Vz.
Trθ = sin θ cosφ (cos θ cosφTxx

+cos θ sinφTxy − sin θ Txz)
+ sin θ sinφ (cos θ cosφTyx + cos θ sinφTyy

− sin θ Tyz)
+ cos θ (cos θ cosφTzx + cos θ sinφTzy

− sin θ Tzz).
(37)

2.4 Example: Inertia Tensor

We shall illustrate the tensor concept by
showing two important examples, namely (1)

4 In Tensor analysis, the primary language of the
theory of relativity, the rule of transformation has dif-
ferent forms for contravariant and covariant vectors,
and for contravariant, covariant and mixed tensors.
The rules we are establishing here are different from
them. The components of vectors, tensors we are us-
ing may be called physical components, in contrast
to their contravariant and covariant components for
which a more elegant transformation rule is used.
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the inertia tensor and (2) the stress tensor.
We shall take up a short discussion of the first
example in this section leaving the second ex-
ample, which needs a more detailed coverage,
to the next section.
In Sec. 2.1 we talked about the tensor oper-

ation converting the angular velocity ω into
angular momentum L. The corresponding
operator is the inertia tensor Î of the rigid
body. Its dot product with the angular veloc-
ity ω gives the angular momentum L of the
rigid body. That is,

L = Î · ω. (38)

We shall find an expression for the vector
angular momentum L of a rigid body which
is rotating about a point O (which can be
a moving point, e.g., the CM) with angular
velocity ω = ωn about the axis pointing in
the direction of the unit vector n. Let j be
one of the constituent particles, having mass
mj, and located at the radius vector rj with
respect to O, as shown in Fig. 2(c). The ve-
locity of this point is vj = ω × rj. Therefore
this particle has an angular momentum with
respect to the point O, equal to

ℓj = rj ×pj = rj ×mjvj = mjrj × (ω× rj)

= mj[r
2
jω − (rj · ω)rj]. (39)

Assuming that the rigid body is made of N
particles ( which is a very large number), we
add the angular momentum of each particle
to obtain the angular momentum of the rigid
body about the point O, given as

LO =
N∑

j=0

mj[r
2
jω − (rj · ω)rj]. (40)

We can write the quantity within square
brackets as

[r2jω − (rj · ω)rj] = [r2j 1̂− rjrj] · ω, (41)

and construct the Inertia tensor as the dyadic
(sum of infinitely small dyads)

Î =
N∑

j=0

mj[r
2
j 1̂− rjrj]. (42)

Then we get the angular momentum as the
dot product

LO = Î · ω. (43)

We have thus derived Eq. (38), and along
with it have found an expression for the in-
ertia tensor in Eq. (42). Note that the ex-
pression within the square brackets is the dif-
ference of two dyadics, namely, the identity
dyadic 1̂ multiplied by the scalar r2j , and the
dyadic product of rj with itself.
For further clarification we shall write

down the components of the tensor. Assum-
img that the rigid body has uniform mass
density ρ distributed over its volume V , the
sum in Eq. (42) becomes the integral:

Î = ρ

∫∫∫

V

[r21̂− rr]d3r. (44)

Some of its components are

Ixx = ρ
∫∫∫
V

[r2 − x2]d3r = ρ
∫∫∫
V

(y2 + z2)d3r;

Ixy = −ρ
∫∫∫
V

(xy) d3r; etc.

(45)
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It is now seen that the inertia tensor is a

symmetric tensor, i.e.,

Ixy = Iyx; Iyz = Izy; Izx = Ixz. (46)

This symmetry property is preserved under
all coordinate transformations.

3 Stress in a Medium

Stress and Stress Tensor are discussed in en-
gineering books on Fluid Mechanics[10] and
Strength of Materials[11]. However, physics
students may find useful the introductory
lessons on these concepts by Symon[12] and
Feynman[13].

3.1 Stress Vector

By (mechanical) stress we mean internal

forces (in the form of intermolecular inter-
actions) called into play when bulk matter,
either in the form of solid, liquid or gas, is
subjected to external forces. These inter-
nal forces exist throughout the bulk matter
and its mathematical expression is given by
a stress tensor field T̂ (x, y, z).
For simplicity we shall consider a solid

block in Fig. 3(a). It has been cut into two
parts, the upper block U and the lower block
L, by an imaginary plane Σ, leaving a trace
Γ of its boundary. This plane is identified by
the unit normal vector n pointing from the
lower block to the upper block.
In Fig. 3(b) we have shown the lower block

L with the plane of separation Σ exposed.
Let us consider a small area da at the point
P(x, y, z) inside the solid, but lying on this

plane. Then the stress vector T
(n)(x, y, z)

is defined to be the force per unit area at
P(x, y, z), exerted by the atoms of the upper
block U on the atoms of the lower block L
across the plane n. The infinitesimal force
acting on the area da is then

dF(n) = T
(n)(x, y, z) da. (47)

Note that in general the direction of the
stress vector T

(n)(x, y, z) is different from
the direction of the normal n. If, however,
T

(n)(x, y, z) ‖ n (i.e., perpendicular to the
plane), the stress (vector) is called normal

stress. If T (n)(x, y, z) ⊥ n (i.e., parallel to
the plane), it is called shear stress.

3.2 Stress Tensor

In Fig. 3(c) we have shown the stress vectors
T

(x),T (y),T (z) on three perpendicular faces
of a tiny rectangular block, identified by the
normal vectors ex, ey, ez. Let {nx, ny, nz} be
the direction cosines of n so that

n = nxex + nxex + nxez. (48)

It can be shown, using the equation of motion
of the prism shown in Fig. 3(d) that

T
(n) = T

(x)nx + T
(y)ny + T

(z)nz. (49)

Eq. (49) can be given an elegant form if we
write the stress vectors as column matrices

T
(n) =




T
(n)
x

T
(n)
y

T
(n)
z


 ; T (x) =




Txx

Tyx

Tzx


 ;

T
(y) =




Txy

Tyy

Tzy


 ; T (z) =




Txz

Tyz

Tzz


 ;

(50)
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Figure 3: Explaining the Stress Tensor
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invoke a Stress Tensor T̂ having the matrix

representation

T̂ =




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 =

(
T

(x)
T

(y)
T

(z)
)

(51)
so that Eq. (49) can be represented by the
following matrix multiplication.



T
(n)
x

T
(n)
y

T
(n)
z


 =




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz







nx

ny

nz


 .

(52)
Alternatively, we can write the stress ten-

sor in the dyadic representation

T̂ = T
(x)ex + T

(y)ey + T
(z)ez, (53)

so that Eq. (49) can be retrieved from the
dot product of the above dyadic with the unit
vector n placed on the right, i.e.,.

T
(n) = T̂ · n. (54)

Note from (51) that in Tij the second index
j is the “surface index” (indicating the direc-
tion of the surface on which stands the stress
vector T

(j)) and the first index i the “com-
ponent index” (indicating x, y, z component
of T (j)).
In Fig. 3(e) we have shown the upper part

of the solid of Fig.(a), and the same area da
as in Fig.(b), but now on the upper block U .
The normal vector now is −n, and the stress
vector is

T
(−n)(x, y, z) = T̂ (x, y, z) · (−n)

= −T
(n)(x, y, z), (55)

so that the force exerted by the atoms of
the lower block L on the atoms of the upper
block U across the same area da is dF′(n) =
−T

(n)da = −dF(n). Which is in conformity
with Newton’s Third Law of Motion.

In obtaining the last equality in Eq. (55) we
have used the linearity property of the tensor
as stipulated in (3). In this case T̂ · (an) =

aT̂ · n where a = −1.

Like the inertia tensor, the stress tensor is
a symmetric tensor, i.e.,

Txy = Tyx; Tyz = Tzy; Tzx = Txz. (56)

which can be proved using the equation of
motion of the angular momentum.

3.3 Gauss’s Divergence
Theorem for a Tensor

Field

When we say tensor field, we mean a
physical quantity represented by a ten-
sor T̂(x, y, z) whose nine components
Txx(x, y, z), Txy(x, y, z), · · ·Tzz(x, y, z) are
defined at every coordinate point (x, y, z).
We assume that these nine components are
all differentiable functions of the coordinates
x, y, z. For such a tensor field we define
its divergence to be the formal dot product
of the grad operator ∇ with the tensor
T̂(x, y, z), it being assumed that ∇ will
appear on the left.

Let us write the tensor T̂ by the dyadic
representation

T̂ = T(x)ex +T(y)ey +T(z)ez, (57)
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as in Eq. (53). Then

div T̂ ≡ ∇ · T̂ = ∇ · (T(x)ex +T(y)ey +T(z)ez)

def
=

(
∇ ·T(x)

)
ex +

(
∇ ·T(y)

)
ey +

(
∇ ·T(z)

)
ez.

(58)

Note that ∇ · T(x),∇ · T(y),∇ · T(z) are the
familiar scalar divergences of the vector fields
T(x),T(y),T(z) respectively,

∇ ·T(x) =
∂Txx

∂x
+

∂Tyx

∂y
+

∂Tzx

∂z
,

∇ ·T(y) =
∂Txy

∂x
+

∂Tyy

∂y
+

∂Tzx

∂z
,

∇ ·T(z) =
∂Txz

∂x
+

∂Tyz

∂y
+

∂Tzz

∂z
.

(59)

and constitute three (scalar) components of

the vector ∇ · T̂ along the X, Y and Z axes
respectively. Combining (58) and (59) we get

∇ · T̂ =
3∑

j=1

3∑

i=1

∂Tij

∂xi

ej ≡
∂Tij

∂xi

ej. (60)

In the second equality we have employed
Einestein’s summation convention (intro-
duced on page 8.)
The divergence of a vector field is some-

times interpreted as “outflux per unit vol-
ume”. This association of divergence with
outflux is due to Gauss’s divergence theorem.
Applying the divergence theorem to the three
vector fields T(x),T(y),T(z) separately, we get
the following three equivalence relations.
∫∫∫
V

∇ ·T(x)(r) d3r =
∫∫
S

n(r) ·T(x)(r) da.
∫∫∫
V

∇ ·T(y)(r) d3r =
∫∫
S

n(r) ·T(y)(r) da.
∫∫∫
V

∇ ·T(z)(r) d3r =
∫∫
S

n(r) ·T(z)(r) da.

(61)

Multiplying either side of the first, second
and third lines with ex, ey, ez respectively,
and adding, we get
∫∫∫

V

∇ ·
(
T(x)ex +T(y)ey +T(z)ez

)
, d3r

=

∫∫

S

n(r)·
(
T(x)ex +T(y)ey +T(z)ez

)
da.

(62)

Identifying the dyadic within the paranthe-
ses as the tensor T̂, we obtain the divergence
theorem for the tensor field.∫∫∫

V

∇ ·T̂(r) d3r =

∫∫

S

n(r) ·T̂(r) da. (63)

Specializing the above theorem to stress
tensor, using its symmetry property, we can
write the integrand on the right side as

n · T̂ = njT jkek = ekT kjnj

= ek(T · n)k = T̂ · n. (64)

We shall write the divergence theorem for
stress tensor in the following form

∫∫∫

V

∇ · T̂ (r) d3r =

∫∫

S

·T̂ (r) · n da.

(65)
We shall find Eq. (65) to be crucial for con-
structing Maxwell’s stress tensor in the fol-
lowing sections.

3.4 Volume force density in a

stress tensor field

Fig. 4 shows an imaginary rectangular
box abcdefgh of infinitesimal dimensions
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Figure 4: Stress Force on a Volume Element

δx, δy, δz inside a medium under stress
(which may be matter, or field). The cen-
tre P of this box is located at the coordi-
nates (x, y, z). Let us assume that the stress
in the medium is given by the tensor field
T̂ (x, y, z), whose components are differen-
tiable functions of the coordinates. We shall
find the total force on this box due to this
stress.

We have shown in Fig.(a) the outward nor-
mal vectors (ex, ey, ez) on the three faces of
the box that are exposed to our view. The
outward normals on the other faces which are
hidden from our view are (−ex,−ey,−ez).
We shall identify each one of the six surfaces
of the box by their outward normal vectors.

Let us consider the opposite faces abcd

and efgh, recognized by the normals (ex) and
(−ex). The locations of their centres are
(x + δx

2
, y, z) and (x − δx

2
, y, z) respectively.

The stress forces on these two faces are

δF+x = T̂ (x+ δx
2
, y, z) · (+ex) δy δz

= T
(x)(x+ δx

2
, y, z) δy δz

= [T (x)(x, y, z) + ∂T (x)

∂x
δx
2
] δy δz

δF−x = T̂ (x− δx
2
, y, z) · (−ex) δy δz

= −T
(x)(x− δx

2
, y, z) δy δz

= −[T (x)(x, y, z)− ∂T (x)

∂x
δx
2
] δy δz

δF+x + δF−x = ∂T (x)

∂x
δx δy δz = ∂T (x)

∂x
δV.
(66)

where δV = δx δy δz is the volume of the in-
finitesimal box. In the same way we find the
forces on the other four faces of the block.
Adding the stress forces on all the six sur-
faces we get

δFs =

[
∂T (x)

∂x
+

∂T (y)

∂y
+

∂T (z)

∂z

]
δV (67)

as the total stress force on the box. The vol-
ume force density fs, which gives the stress
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Figure 5: Stress Forces on a Bulk Volume
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force acting per unit volume of the media un-
der stress, is then given as

fs = ∂T (x)

∂x
+ ∂T (y)

∂y
+ ∂T (z)

∂z

= ∂(ex·T̂ )
∂x

+ ∂(ey ·T̂ )

∂y
+ ∂(ez ·T̂ )

∂z

=
[
ex

∂
∂x

+ ex
∂
∂x

+ ex
∂
∂x

]
· T̂

= ∇ · T̂ .

(68)

One may conclude that total stress force
Fs on a bulk volume V carved out inside a
medium M, as shown in Fig.5(a), is the vol-
ume integral of the force density fs carried out
over the entire volume V . We shall carefully
analyze the forces inside the medium before
jumping into this conclusion.
Let us consider a two-diemnsional view

of nine tiny, imaginary neighbouring blocks
lying inside the medium and forming a
group G. We have marked the blocks as
A,B,C,D,E,F,G,H,K, with A at the centre.
In Fig.(b) we have shown the forces on the
four sides of A as F1,F2,F3,F4. The force
F1 comes from the neighbour B, and by New-
ton’s third law of motion, A applies an equal
and opposite force −F1 on B. Similarly, the
forces F2,F3,F4 come from the neighbours
C, D, E . And A applies equal and opposite
forces −F2,−F3,−F4 on them. It may then
appear that these internal forces, when added
together, get cancelled out and there should
not be any stress force on the group G at all.
A close examination will disprove this

judgement. We have surrounded G by an
imaginary boundary surface Σ. It is now seen
that even though the action-reaction forces
cancel out in the interior of the group G, they
survive on the boundary surface Σ. These
surface forces Fb1,Fb2, · · ·Fb12, when added

together constitute the total force Fs on the
group G.

In Fig.(c) we have divided the volume
V into an infinite number of infinitesimal
blocks. The interior stress forces between ad-
joining blocks will cancel out. However, the
forces on the bounadry surface, some of which
we have shown as Fb1,Fb2,Fb3,Fb4, will sur-
vive and add together to constitute the net
stress force Fs on the volume V .

We now get a clue of how to find the net
stress force Fs on the volume V . In Fig.(d)
we have shown the volume V once again. At
a certain point P on this surface we have pic-
tured a tiny patch of area da, on which we
have drawn a unit outward normal n. The
stress force on this patch is dfs = T

(n) da =
T̂ · n da. Integrate this force over the entire
boundary to get Fs. We shall perform this
integration and convert the surface integral
into volume integral by applying Gauss’s Di-
vergence Theorem as derived in Eq. (63).

Fs =

∫∫

S

T̂ (r) · n da =

∫∫∫

V

∇ · T̂ (r) d3r.

(69)

We have thus confirmed our guess follow-
ing Eq. (68). We shall rewrite the same
equation with emphasis, as this equation will
serve as the cornerstone for the constructon
of Maxwell’s Stress tensor.

fs(r) = ∇ · T̂ (r). (70)
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4 Maxwell’s Stress

Tensor for the

Electrostatic Field

4.1 Volume force density in

terms of the field

We shall now construct the stress tensor for
the electrostatic filed. We shall call this ten-
sor Maxwell’s Stress Tensor and represent it

by the symbol T̂
(E)

, where the superscript (E)

implies Electric field.

Fig. 6 shows a system of electric charges
S placed in an Electric field E(r). In
Fig.(a) the system consists of discrete charges
q1, q2, q3, · · · placed at the radius vectors
r1, r2, r3, · · · . In Fig.(b) the system is a
continuous distribution characterized by a
smooth charge density function ρ(r) confined
within a volume. Our intention is to write
the total electric force F on this system.

The force on the discrete system shown in
Fig.(a) is given as

F =
∑

j

qjE
(ext)(rj). (71)

Here the sum is over all the charges in the
system, and E(ext)(rj) is the external electric

field at the radius vector rj caused by the
presence of all other charges lying outside the
system S.

For the case of continuous distribution,
shown in Fig.(b), the individual charges be-
come infinitesimal elementary charges i.e.,
qj → ρ(r)d3r, and the sum becomes the inte-

gral

F =

∫∫∫

V

ρ(r)E(ext)(r) d3r. (72)

What about the force from the charges in-
side the system S. They are internal forces,
and cancel due to Newton’s third law of mo-
tion.
Let E

(int)
i (rj) be the “internal” field caused

at rj by a member particle i lying within

the sytem S. Then Fij = qjE
(int)
i (rj) is the

force that the member particle i exerts on the
member particle j. By Newton’s third law of
motion, qjE

(int)
i (rj)+qiE

(int)
j (ri) = 0. Adding

together over all pairs for the discrete distri-
bution, and integrating over the entire distri-
bution for the continuous distribution we get

For discrete:
∑N

j=1 qj
∑′ N

i=1 E
(int)
i (rj)

=
∑N

j=1 qjE
(int)(rj) = 0.

For continuous:
∫∫∫
V

ρ(r)E(int)(r) = 0.

(73)
In the first equation the sum symbol

∑′

means that while summing over i, the term
i = j (corresponding to the “self field” of
the member j) is to be avoided. The “inter-
nal field” E(int)(rj) is the field at the location
of the member j caused by “all other mem-
bers” in the system S. In the second equation
E(int)(r) is the “internal field” at the radius
vector r, as sensed by a tiny volume element
d3r at this point.
We shall add the null contribution shown

in the second line of Eq. (73) to the right side
of Eq. (72) and write

F =

∫∫∫

V

ρ(r)E (r) d3r. (74)
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Figure 6: Forces on Charges in an Electric Field

Here E (r) is the actual field at the point
r, being the sum of two contributions, from
the (i) external sources, and (ii) the internal
sources of the system S.

The purpose of adding the null integral of
Eq. (73b) to Eq. (72) is that when we write
the force density f , the internal forces need
to be added. That is,

f(r) = ρ(r)E (r) (75)

is the force on unit volume of the charge dis-
tribution at r, in which E (r) is necessarily
the total field at this location, caused by both

external and internal sources. Now we ma-
nipulate the right hand side of Eq. (75) so

as to convert ρE → ∇ · T̂
(E)

, as suggested in

Eq. (70). This new tensor field T̂
(E)

(r) would
represent “stress” in the electrostatic field.

Construction of the stress tensor for elec-
trostatic field, magnetostatic field and time

varying electromagnetic field will be facili-
tated by the following identity[14]

∇ ·

[
AA−

1

2
A21̂

]

= (∇ ·A)A−A× (∇×A). (76)

Before establishing the above identity we
shall need a standard formula (See for exam-
ple, Vector Formulas compiled in Grifffiths,
3rd Ed)

∇(A ·B) = A× (∇×B) +B× (∇×A)

+ (A ·∇)B+ (B ·∇)A. (77)

By setting B = A in the above formula and
get

∇

(
1

2
A2

)
= A× (∇×A)+(A ·∇)A. (78)

We shall now prove the identity (76).
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Proof:

∇ · (AA) =
(
el

∂
∂xl

)
· (eiejAiAj)

= ∂
∂xi

(AiAj)ej

=
{(

∂Ai

∂xi

)
Aj +

(
Ai

∂
∂xi

)
Aj

}
ej

= (∇ ·A)A+ (A ·∇)A. (a)

∇ ·
(

1
2
A21̂

)
=

(
el

∂
∂xl

)
·
(
1
2
eieiA

2
)

= 1
2
ei

∂A2

∂xi
= ∇

(
1
2
A2

)

= A× (∇×A) + (A ·∇)A, by (78). (b)

The identity (76) follows when we subtract
line (b) from line (a).

Q.E.D.

Note that we have used Einstein’s sum-
mation convention introduced on page 8.
That is, el

∂
∂xl

≡
∑3

l=1 el
∂
∂xl

; eiejAiAj ≡∑3
i=1

∑3
j=1 eiejAiAj, etc.

The stress tensor for the electrostatic field
follows when we set E for A in (76), and use
the field equations: ∇ ·E = ρ/ǫ0; ∇×E = 0:

f (E) = ρE = ∇ · T̂
(E)

, (a)

where T̂
(E)

= ǫ0

[
EE− 1

2
E21̂

]
. (b)

(79)

It will be a simple exercise to write the
Cartesian components of this tensor:

T̂
(E)

=
(
T̂

(E)

· ex T̂
(E)

· ey T̂
(E)

· ez

)

= ǫ0




1
2
(E2

x − E2
y − E2

z ) ExEy ExEz

EyEx
1
2
(E2

y − E2
z − E2

x) EyEz

EzEx EzEy
1
2
(E2

z − E2
y − E2

z )


 .

(80)

4.2 Example: Stress vector on

a plane as a function of the
angle of inclination

The stress tensor (79) will remain abstract
and obscure unless the reader works out a
few examples. Griffiths has shown a beauti-
ful example: the force on the upper half of
a uniformly charged sphere using the stress
tensor as given in formula (79b). However, he
has worked in the Cartesian coordinate sys-
tem. The reader should work out the same

problem using the spherical coordinate sys-
tem, spending much less time in getting the
answer.

We shall provide two examples of which the
first one is depicted in Fig. 7. A uniform elec-
tric field E = Eex exists in a certain region
of space. The stress tensor is then given by
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the following expression.

T̂
(E)

=
ǫ0
2
E2(exex − eyey − ezez)

=
ǫ0
2




E2 0 0
0 −E2 0
0 0 −E2


 . (81)

Imagine a plane running parallel to the Z
axis, but inclined to the X axis by an angle θ
(Fig a). The normal vector is then given as

n = ex sin θ + ey cos θ =




sin θ
cos θ
0


 . (82)

The stress vector T (n) on this plane is then

T
(n) = T̂

(E)

· n =
ǫ0
2
E2(ex sin θ − ey cos θ)

=
ǫ0
2
E2




sin θ
cos θ
0


 . (83)

Let us consider some special cases.

T
(x) = ǫ0

2
E2ex, (by setting θ = π/2) (a)

T
(y) = − ǫ0

2
E2ey, (by setting θ = 0) (b)

T
(z) = − ǫ0

2
E2ez, (same as T̂

(E)

· ez) (c)

T
(45o) = ǫ0

2
E2 1√

2
(ex − ey). (d)

(84)
Lines (a) - (c) give the stress vectors on

the planes identified by the normal vectors
ex, ey, ez, and line (d) gives the stress vec-
tor on a plane making an angle of 45o with
X axis. We have illustrated these points in
Figs. (b) and (c). We have shown the stress
vectors with thick arrows, and labelled them
with the bold Greek letter τ . We draw the

following conclusion.
Conclusion:
(a) If the field is perpendicular to the plane,
the stress vector is normal and outward (ten-
sile stress), and equal to ǫ0

2
E2.

(b) If the field is tangential to the plane, the
stress vector is normal and inward (compres-
sive stress), and equal to ǫ0

2
E2.

(c) If the field makes angle 45o to the plane,
the stress vector is tangential (shear stress),
and equal to ǫ0

2
E2.

Case (a) applies to a conductor in an elec-
tric field E. The field is perpendicular to the
surface. The surface force density is the same
as the stress vector. We get back the same
answer as in Eq. (1) using the stress tensor,
without labouring to find out what is the “ex-
ternal field”.

4.3 Example: Force

transmitted between two
charged particles across a

spherical boundary

We shall first obtain an expression for the E
field at any arbitrary point P (r, θ, φ) located
on the spherical surface Σ. The point P is at
the displacement vector η from A and r from
O. In order to avoid repeated appearance of
the constant 1

4πǫ0
, we shall set E = 1

4πǫ0
E .

Note that

η = r− a = r− aez, (a)
so that η2 = r2 + a2 − 2ra cos θ, (b)

and ez = cos θer − sin θeθ. (c)
(85)
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Figure 7: Stress vector on an inclined plane placed in a uniform electric field.

Then

E = Qr

r3
+ qη

η3
. (a)

= Qer

r2
+ q(r−aez)

(r2+a2−2ra cos θ)3/2
. (b)

(86)
Therefore,

E = Erer + Eθeθ, (a)

where Er = Q
r2

+ q(r−a cos θ)

(r2+a2−2ra cos θ)3/2
. (b)

Eθ = qa sin θ
(r2+a2−2ra cos θ)3/2

. (c)

(87)
From Eq. (79) the stress tensor is

T̂
(E)

= ǫ0

(
EE−

1

2
E21̂

)

=
1

16π2ǫ0

(
EE −

1

2
E21̂

)
=

1

16π2ǫ0
T̃

(E)

where T̃
(E)

= EE −
1

2
E21̂, (88)

which we may refer to as the “reduced stress
tensor”.
Since we have invoked the spherical coordi-

nate system to write the expression for the E

field, the components of the tensor T̂
(E)

will
have to be written in this coordinate system.
Since only r and θ components of E are non-
zero, the non-zero components of this tensor
are Trr, Trθ, Tθr, Tθθ, as seen from (88). There-
fore E2 = E2

r + E2
θ , and we write this tensor

as

T̃
(E)

=




Trr Trθ 0
Tθr Tθθ 0
0 0 0


 , where

Trr = E2
r −

1
2
E2 = 1

2
(E2

r − E2
θ ).

Trθ = Tθr = ErEθ.
Tθθ = E2

θ −
1
2
E2 = 1

2
(E2

θ − E2
r ).

(89)

The first column in the square matrix on
the left represents the stress vector T r on the
spherical surface Σ (corresponding to n = er,
analogous to the first column in Eq. 50). Us-
ing the expressions for Er, Eθ given in (87) we
shall work out the components of T r explic-
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Figure 8: Stress on a spherical surface.
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itly as follows

T r = erTrr + eθTθr

Trr =
1
2
(E2

r − E2
θ ) =

1
2

[
Q2

r4
+

+ q2[(r−a cos θ)2−(a sin θ)2]
(r2+a2−2ra cos θ)3

+ 2Qq(r−cos θ)

r2(r2+a2−2ra cos θ)3/2

]
.

Tθr = ErEθ =
Qqa sin θ

r2(r2+a2−2ra cos θ)3/2

+ q2a sin θ(r−a cos θ)
(r2+a2−2ra cos θ)3

.

(90)
The first component Trr is the normal

stress on the surface Σ and the second one
Tθr the tangential (or, the shear) stress.
In order to illustrate the above equations,

and to see how the electric field vector E and
the Maxwell’s stress vector E vary on the sur-
face of the imaginary sphere Σ, we shall make
a numerical example, setting Q = 2, q =
−1, a = 3, r = 1 in Eqs. (87) and (90). The
expressions we now get are functions of the
polar angle θ only. We have plotted Trr, Tθr

in Fig. 8(b), using Maxima.
In order to show how the field vector E

and the stress vector T r vary on the surface
of the sphere Σ we have prepared the Table
3.1 after evaluating the corresponding quan-
tities in the columns 1-9, using Maxima. The
angles φE, φT appearing in columns 5 and 9
have been explained in Fig. 8(c). The first
one is the angle between the normal er to the
surface Σ and the electric field E at the sur-
face, and the second one is the angle between
er and the stress vector T r on the surface.

E =
√
E2
r + E2

θ ; tanφE =
Eθ
Er

;

Tr =
√
T 2
rr + T 2

θr; tanφT =
Tθr

Trr

. (91)

We have drawn the field vectors E and the
stress vectors T r on the sphere Σ in Fig. 8(d)
and (e) (using two diffferent scales for the two
sets of vectors.)

Table 3.1: E and T r vectors on the surface of the sphere

1 2 3 4 5 6 7 8 9
θ Er Eθ E φE Trr Tθr Tr φT

0o 2.25 0 2.25 0o 2.53 0 2.53 0o

30o 2.15 -0.14 2.16 −3.8o 2.30 -0.31 2.33 −7.6o

60o 2.03 -0.14 2.03 −4o 2.04 -0.28 2.06 −7.9o

90o 1.97 -0.10 1.97 −2.8o 1.93 -0.19 1.94 −5.5o

120o 1.95 -0.05 1.95 −1.6o 1.89 -0.11 1.90 −3.3o

150o 1.94 -0.02 1.94 −0.8o 1.88 -0.05 1.88 −1.5o

180o 1.94 0 1.94 0o 1.88 0 1.88 0o

(92)
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All this tediuos work will have been fruit-
ful if we could show that the surface force
density, when integrated over the entire sur-
face Σ, will give us back the familiar Coulomb
force between the two charges. The surface
force density is the same as the stress vec-
tor on this surface. We shall work with the
“reduced” surface force density, same as T r.
The Coulomb force of attraction (ifQ, q are

of opposite signs) or repulsion (if they are of
the same sign) will be along the line OA join-
ing the two charges. Since this line coincides
with the Z axis, we shall integrate the Z com-
pomnent of T r, which we shall denote as f̃z.
We go back to Eqs. (98) and (90) to compute
this force, and get the following results after
some simplification.

f̃z = ez · T r

= (cos θ er − sin θ eθ) · (erTrr + eθTθr) (a)

= cos θ Trr − sin θ Tθr (b)

= f̃z(Q
2) + f̃z(Qq) + f̃z(q

2), where (c)

f̃z(Q
2) = 1

2
Q2

r4
cos θ. (d)

f̃z(Qq) = Qq[r cos θ−a]

r2(r2+a2−2ra cos θ)3/2
. (e)

f̃z(q
2) = 1

2
q2[(r2+a2) cos θ−2ra]
(r2+a2−2ra cos θ)3

. (f)

(93)
The expressions in lines (d) and (f), in-

volving Q2 and q2, are “self terms”, whereas
the expression in line (e) involving Qq is the
“interaction term” The reader should com-
plete the steps leading from line (b) to these
lines. We shall soon show that the self terms
will vanish upon integration, leaving the inte-
grated stress force entirely a function of Qq.
The “reduced” force transmitted across the

surface Σ, and hence acting on the charge Q,
is the surface integral of f̃z. Let us denote

this integral as F̃ . An area element on Σ is
da = r2 sin θ dθ dφ. Therefore,

F̃ =
∫∫
Σ

f̃z r
2 sin θ dθ dφ

= 2πr2
∫ π

0
f̃z sin θ dθ (a)

= 2πr2[I(Q2) + I(Qq) + I(q2)], (b)

where I(Q2) =
∫ π

0
f̃z(Q

2) sin θ dθ = 0. (c)

I(Qq) =
∫ π

0
f̃z(Qq) sin θ dθ = − 2Qq

a2r2
. (d)

I(q2) =
∫ π

0
f̃z(q

2) sin θ dθ = 0. (e)

Hence, F̃ = −4πQq
a2

. (f)
(94)

The integral given in line (c) is easy to eval-
uate. The other integrals have been worked
out in the Appendix. They can be worked out
more easily using Maxima with a computer.

To get the true force we go back to (88 ),
multiply F̃ with the factor 1

16π2ǫ0
, and get the

force FQ acting on the charge Q.

FQ =
1

16π2ǫ0
F̃ez = −

Qq

4πǫ0a2
ez. (95)

This force is the familiar Coulomb force on
the charge Q located at the origin, exerted on
it by another chareg q located at a distance
a on the positive Z axis. It is repulsive, i.e.,
towards the negative Z axis, if Qq is posi-
tive, and attractive i.e., towards the positive
Z axis, if Qq is negative.
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5 Maxwell’s Stress tensor

for the Magnetostatic

Field

This section is the magnetostatic analogue
of the electrostatic stress tensor presented in
Sec. 4.3. The steps are parallel, so that we
shall avoid detailed explanation.

5.1 Volume force density in
terms of the field

We shall construct Maxwell’s stress tensor for
the magnetostatic field, represent it by the

symbol T̂
(M)

. The volume force density in a
magnetic field is f (M) = J×B. Therefore we

need to construct the tensor T̂
(M)

under the
specification

∇ · T̂
(M)

≡ f (M) = J×B. (96)

This is now an easy task, thanks to the
identity (76) we had established in Sec. 4. We
set B forA in that equation, and use the field
equations: ∇ ·B = 0; ∇×B = µ0J, leading
to:

f (M) = J×B = ∇ · T̂
(M)

, (a)

where T̂
(M)

= 1
µ0

[
BB− 1

2
B21̂

]
. (b)

(97)

Note the similarity between the stress ten-

sor T̂
(M)

written above and the stress tensor

T̂
(E)

written in Eq. (79) on page 24. The
former converts into the latter if we replace

E with B and ǫ0 with 1
µ0
. In the same way

the matrix form given in Eq. (80) converts to

the matrix form of T̂
(M)

. Consequently, the
stress vector changes from normal outward,
to tangential, to normal inward, as the angle
between the plane and the direction of the B
field changes from 90o to 45o to 0o, as shown
in Eqs. (84) and illustrated in Fig 7. and
the “Conclusion” written on page 25 carries
over to the case of a magnetic field without
any change. Each point in the conclusion is
well illustrated in Fig. 9 (see next section) if
the reader compares the direction of the field
vector B in Fig(d) with the direction of stress
vector T r in Fig(e).

5.2 Example: Force

transmitted between two

magnetic diploles across a
spherical boundary

The smallest denomination of the source of a
magnetic field is a magnetic dipole, consist-
ing of a tiny current loop. We shall there-
fore think of the force between two magnetic
dipoles. We have placed these dipoles along
the Z axis, oriented them in the positive di-
rection of this axis. Fig. 9(a) shows the ge-
ometry of this configuration. The dipoles are
shown by tiny spherical blobs with an arrow
pointing in the direction of this vector. As in
the electrostatic example, we shall illustrate

Maxwell’s stress tensor T̂
(M)

by finding the
stress vector on the surface of an imaginary
sphere Σ of radius r surrounding the point
magnetic dipole M which is placed at a dis-
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tance a from the other point magnetic dipole
m such that r < a, and then integrate this
stress vector over the spherical surface to ob-
tain the force FM on M exerted by m.
We shall first obtain theB field at any arbi-

trary point P (r, θ, φ) located on the spherical
surface Σ, at the displacement vector η from
A and r fromO. In order to avoid repeated
appearance of the constant µ0

4π
, we shall set

B = µ0

4π
B. Note that

η = r− a = r− aez, (a)
so that η2 = r2 + a2 − 2ra cos θ, (b)

and ez = cos θer − sin θeθ. (c)
(98)

Let B
(M)(r, θ, φ), B(m)(r, θ, φ) be the

fields[15] produced by the dipoles M and m
respectively, at any coordinate point (r, θ, φ).
Adding them we get the total field B(r, θ, φ).

B(r, θ, φ) = B
(M)(r, θ, φ) +B

(m)(r, θ, φ).

B
(M)(r, θ, φ) = 3 (M·r) r−Mr2

r5

= B
(M)
r er + B

(M)
θ eθ, where,

B
(M)
r = 2M cos θ

r3
; B

(M)
θ = M sin θ

r3
.

B
(m)(r, θ, φ) = 3 (m·η)η−mη2

η5

= B
(m)
r er + B

(m)
θ eθ, where,

B
(m)
r = m[2(r2+a2) cos θ−(3+cos2 θ)ar]

η5
,

B
(m)
θ = m(r2−2a2+ar cos θ) sin θ

η5
.

(99)
For future convenience we write

B = Brer + Bθeθ, where,

Br =
(
M
r3

)
α +

(
m
η5

)
β. α = 2 cos θ.

Bθ =
(
M
r3

)
γ +

(
m
η5

)
δ. γ = sin θ.

β = 2(r2 + a2) cos θ − (3 + cos2 θ)ar.
δ = (r2 − 2a2 + ar cos θ) sin θ.

(100)

From Eq. (97) the stress tensor is

T̂
(M)

=
1

µ0

(
BB−

1

2
E21̂

)

=
µ0

16π2

(
BB −

1

2
B21̂

)
=

µ0

16π2
T̃

(M)

where T̃
(M)

= BB −
1

2
B21̂. (101)

which we may refer to as the “reduced stress
tensor”. The non-zero components of this
tensor needed by us are

Trr = B2
r −

1

2
B2 =

1

2
(B2

r − B2
θ)

Trθ = Tθr = BrBθ. (102)

In order to illustrate the above equations,
and to see how the magnetic field vector B

and the Maxwell’s stress vector T̂
(M)

look like
on the surface of the imaginary sphere sur-
rounding the charge Q, we shall make a nu-
merical example, setting M = 2,m = 1, a =
3, r = 1 in Eqs. (100) and (102). For this
purpose we have prepared the following table,
after evaluating the corresponding quantities
in the columns 1-9 using Maxima. The an-
gles φB, φT appearing in this table have been
explained in Fig. 9(c). See also Eq. (90).
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Figure 9: Stress vector on a spherical surface.
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Table : B and T r vectors on the surface of the sphere

1 2 3 4 5 6 7 8 9
θ Br Bθ B φB Trr Tθr T φT

0o 4.25 0 4.25 0o 9.03 0 9.03 0o

30o 3.58 0.86 3.69 13.5o 6.05 3.09 6.80 26.9o

60o 2.00 1.64 2.59 39.3o 0.66 3.28 3.34 78.5o

90o -0.03 1.96 1.96 −89.4o -1.91 -0.06 1.91 1.7o

120o -2.03 1.71 2.66 −40.1o 0.60 -3.48 3.53 −76.8o

150o -3.5 0.99 3.63 −16.0o 5.62 -3.47 6.60 −31.5o

180o -4.03 0 4.03 0o 8.13 0 8.13 0o

(103)

We have plotted Trr, Tθr as functions of the
polar angle θ in Fig. 9(b), using Maxima,
and have drawn the vectors B and T r on the
sphere Σ in Fig. 9(d) and (e) (using two diff-
ferent scales for the two sets of vectors.)

All this tediuos work will have been fruitful
if we could show that the surface force den-
sity, when integrated over the entire surface
Σ, will yield the same force between the two
dipoles that we can calculate using the stan-
dard formulas of megnetostatics. Let us then
first apply the “standard formula”

The force FM on m is given by the formula
F = (m ·∇)B, in which B is the field created
by M. The m vector is in the Z direction.
Therefore,m·∇∇∇ = m ∂

∂z
, which means that we

can treat the (x, y) coordinates as constant

and equal to zero. Therefore,

Fm = m∂B
∂z
|x=y=0,z=a,

where, B(0, 0, z) = µ0M
4π

[
3z2−z2

z5

]
ez.

∂B
∂z
|x=y=0,z=a = −3µ0M

2π
1
a4
k.

Hence, Fm = −3µ0mM
2πa4

ez.

(104)

By Newton’s third law of motion,

FM = −Fm =
3µ0Mm

2πa4
ez. (105)

Now we shall calculate the same force us-
ing the stress tensor. The surface force den-
sity is the same as the stress vector on this
surface. We shall work with the “reduced”
surface force density, same as T r.
The force of attraction between the dipoles

will be along the line OA joining them, which
lies on the Z axis. Therefore we need the Z
component of the surface force density f̃z:

f̃z = ez · T r

= (cos θ er − sin θ eθ) · (erTrr + eθTθr)

= cos θ Trr − sin θ Tθr. (106)
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We shall break up this force density into
three components: (1) f̃z(M

2) representing
self term for M, (2) f̃z(Mm) representing
interaction term between M and m, (3)
f̃z(m

2) representing self term for m. From
Eqs. (100), (102) and (106):

f̃z(M
2) =

[(
α2 − γ2

)
cos θ − 2αγ sin θ

] M2

2r6
.

f̃z(Mm) = [(αβ − γδ) cos θ
−(αδ + βγ) sin θ]Mm

r3η5
.

f̃z(m
2) =

[(
β2 − δ2

)
cos θ − 2βδ sin θ

] m2

2η10
.

(107)
The “reduced” force F̃ transmitted across

the surface Σ, and hence acting on the dipole
M, is the surface integral of f̃z, which is the
sum of the integrals of f̃z(M

2), f̃z(Mm), and
f̃z(m

2). Each integral is difficult to evaluate,
because α, β, γ, δ are complicated functions
of r, a, θ. We have evaluated these integrals
using Maxima. The result is as follows.

F̃ =
∫∫
Σ

f̃z r
2 sin θ dθ dφ = 2πr2

∫ π

0
f̃z sin θ dθ

= 2πr2[I(M2) + I(Mm) + I(m2)], where

I(M2) =
∫ π

0
f̃z(M

2) sin θ dθ = 0.

I(Mm) =
∫ π

0
f̃z(Mm) sin θ dθ = 12Mm

a4r2
.

I(m2) =
∫ π

0
f̃z(m

2) sin θ dθ = 0.

Hence, F̃ = 24πMm
a4

.
(108)

Because of the relation (101) the true force
FM acting on the dipole M is µ0

16π2 times the

force F̃ . Hence

FM =
3µ0Mm

2πa4
ez. (109)

We have thus verified that the stress tensor
has given us the same force that we obtained

in Eq. (105) using standard formulas of mag-
netostatics.
We have worked out three examples to

bring out the meaning of Maxwell’s stress
tensor for electric and magnetic fields. The
reader may wonder why we should go through
such a tortuous road to get answers that can
be easily obtained using simpler formulas of
electrostatics and magnetostatics? Isn’t it
like demolishing a mud wall with a cannon?
Every cannon needs a mud wall to ensure

its trust-worthiness before deployment in a
true situation. Maxwell’s stress tensor is des-
tined to play a bigger role, in constructing
the conservation equation for field momen-
tum, and later under the watchful eye of Spe-
cial Relativity, in building up the covariant
expression for conservation of energy and mo-
mentum. The three examples we have worked
out were intended to be an intellectual exer-
cise to instil confidence in the mathematical

expressions of T̂
(E)

and T̂
(M)

before crowning
them for their majestic role.

6 Maxwell’s Stress

Tensor and Momentum

Conservation

We had introduced Maxwell’s stress tensor
for static electric and static magnetic fields,
with suitable applications, in Sections 4 and
5. These applications demonstrated that the
force acting on static distributions of electric
charges and currents lying within a bounded
volume V is equal to the stress vector inte-
grated over the surface S bounding this vol-
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ume. The attribute “static” implied that the
objects considered in our discussion. e.g., iso-
lated charges and isolated current carrying
loops, were fixed with a kind of “glue” mak-
ing them immobile inspite of the electric and
magnetic forces acting on them. We shall now
remove that glue and see what role can now
be played by the same stress tensors.

At this point we shall make a subtle dis-
tinction between force and stress. Force acts
on material objects which may be discrete

charged particles or a localized continuous
material media, e.g., a plasma. The stress
considered here acts on the field, which is
a kind of etherial medium, as conceived by
Maxwell and his contemporary physicists. In
the absence of any glue holding them, the
charges (e.g., electrons, nuclei) and currents
(e.g., current loops) will be free to move and
gain momentum. However, the momentum
need not be confined to material objects. It
can be shared by the field as well. Therefore
we shall make the following conjecture.

Conjecture 1 There exists a Maxwell’s Stress Tensor T̂
(EM)

for the Electromagnetic field,

and it is given as

T̂
(EM)

≡ T̂
(E)

+ T̂
(M)

= ǫ0

[
EE−

1

2
E21̂

]
+

1

µ0

[
BB−

1

2
B21̂

]
, (110)

such that

d

dt



∫∫∫

V

Π d3r


+

d

dt



∫∫∫

V

P d3r


 =

∫∫

S

T̂(EM) · n(r) da. (111)

where Π and P are, respectively, the field momentum density and the material momentum

density, the latter being governed by Newton-Minkowski-Lorentz-force equation

∂P

∂t
= ρE+ J×B. (112)

The right side of Eq. (111) gives the stress
transmitted across the boundary S. The
right side of Eq. (112) gives the density of
Lorentz force acting on all charged matter
lying within the volume V . We shall con-
vert the surface integral on the right side of

(111) into a volume intregral, using Gauss’s
theorem (see Sec. 3.3) so that each term in
this equation is a volume integral, and then
remove the integral sign reducing the same
equation to an equality among three density
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functions.

∂Π
∂t

+ ∂P
∂t

= ∇ · T̂(EM). Or,
∂Π
∂t

+ ρE+ J×B = ∇ · T̂
(E)

+∇ · T̂(M).
(113)

We shall now show that the above conjec-
ture is right, that starting from Maxwell’s
equations we are able to find an expression
for the field momentum density such that the
momentum conservation of matter and field
together falls into the scheme suggested in
Eq. (113). Our task is made simple by the
identity the identity (76) we had established
in Sec. 4. We shall do the work in two stages:
(1) set E for A in (76), and use Maxwell’s
equations: ∇ · E = ρ/ǫ0; ∇ × E = −∂B

∂t
,

(2) set B for A and use Maxwell’s equations:
∇ ·B = 0; ∇×B = µ0(J+ ǫ0

∂E
∂t
.

∇ · T̂
(E)

= ∇ · ǫ0

[
EE− 1

2
E21̂

]

= ǫ0 [(∇ · E)E− E× (∇× E)]
= ρE+ ǫ0E× ∂B

∂t
.

∇ · T̂(M) = ∇ · 1
µ0

[
BB− 1

2
B21̂

]

= 1
µ0

[(∇ ·B)B−B× (∇×B)]

= −B× (J+ ǫ0
∂E
∂t
) = J×B+ ǫ0

∂E
∂t

×B.

∇ · T̂
(EM)

= ∂
∂t
(ǫ0E×B) + (ρE+ J×B).

(114)
The last equation is obtained by adding

the first two, and using definition of T̂
(EM)

as given in (110). It confirms validity of our
conjecture and identifies the field momentum
density as

Π = ǫ0(E×B). (115)

We shall like to recast Eq. (113a) into the

general format of conservation equation

∂

∂t
(volume density)+∇ ·(fluxdensity) = 0.

(116)

In this case the momentum flux density Φ̂ is
to be identified as

Φ̂ = −T̂
(EM)

. (117)

Eq. (113a) now reads like a true momentum
conservation equation:

∂

∂t
(Π+P) +∇ · Φ̂ = 0. (118)

It may be easier to comprehend the mean-
ing of the above conservation equation by
writing its three cartesian components. For
example, the x-component of the above equa-
tion will be

∂Px

∂t
+ ∂Πx

∂t
+∇ ·Φx = 0,

where Φx = Φ̂ · ex = −T̂
(EM)

· ex
= −ǫ0[ex

1
2
(E2

x − E2
y − E2

z )
+eyEyEx + ezEzEx]
− 1

µ0
[ex

1
2
(B2

x −B2
y −B2

z )

+eyByBx + ezBzBx].

(119)

The first two terms in the first line give the
rate of increase of the x-component of to-
tal momentum (consisting of field momentum
and material momentum) per unit volume,
the third term gives the rate of outflux of the
x- component of the field momentum per unit
volume. Conservation of momentum implies
that the sum of the two must be zero.
Before leaving this topic let us take a look

at the field energy density U and the field en-
ergy flux density S (i.e. the Poyning’s vector)
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written in Eq. (??). It is immediately noticed
that

S = c2Π. (120)

When the electromagnetic field is a radia-
tion field, E = cB and E× cB = E2n where
n is the direction of the Poynting.s vector,
giving the direction of the flow of radiation
energy. For such radiation fields,

U = ǫ0E
2; S = cU n; Π =

U

c
n; U = cΠ.

(121)
The last equality is a reninder of the relation
E = cp between the energy E and the mo-
mentum p of a photon.

We are still not too clear about the true
meaning of the momentum flux density Φ̂.
To get familiarity with it let us consider a
plane electromagnetic wave propagating in
the x-direction, polarized in the y-direction.
For such a field E = Eey, cB = Eez. It

is a simple exercise to evaluate Φ̂ by set-
ting Ex = 0, Ey = E, Ez = 0; cBx =
0, cBy = 0, cBz = E in the expression for
Φx in Eq. (119c) and similar expressions for
Φy,Φz and obtain

Φ̂ = Φxex +Φyey +Φzez = (ǫ0E
2ex) ex

= cΠ exex = cΠex = Πc. (122)

Here c = cex represents the “velocity” of
light, being the speed c multiplied with a unit
vector in the direction of prpagation. If we
now consider a plane perpendicular to the X-
axis, so that n = ex, then the outflux of field
momentum per unit area across the plane will
be Φ̂ · n = Φ̂ · ex = cΠ.

Generalization of Eq. (122) is obvious. If
there is a source of radiation at the origin
(say, an antenna, or an accelereting charged
particle), then far away from the origin, the

momentum flux density tensor Φ̂ has the
form

Φ̂ = cΠ erer = Π c er = Πc, (123)

where er is the unit vector in the radial di-
rection, also midentified with the direction
of propagation of the electromagnetic wave.
The tensor Φ̂ gives the measure of how much
momentum is crossing a spherical surface per
unit area per unit time. The momentum den-
sity is Π = Π er, and it is propagating in the
radial direction with velocity c = c er.
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Appendix: Useful

Integrals

We shall write derive the values of some in-
tegrals required in this book. The integrands
of all the integrals will have in their denom-
inators integer/half-integer powers of the ex-
pression (r2+ a2− 2ra cos θ), the integration
variable will be θ, and the range of integration
[0, π]. We shall do some preliminary work by
changing the variable of integration from θ to
η, accompanied by the change of the limits of
integration, and conversion of the numerators
for the first two cases.

η2 = r2 + a2 − 2ra cos θ, (a)
η dη = ar sin θ dθ. (b)

a− r cos θ = a2−r2+η2

2a
(c)

(r2 + a2) cos θ − 2ra = (a2−r2)−(a2+r2)η2

2ra
(d)

Lower limit: θ = 0 ⇒ η = {(a− r), if a > r}; {(r − a), if r > a}. (e)
Upper limit: θ = π ⇒ η = a+ r. (f)

(124)
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6.1 Direct Evaluation

Using the above conversions hints it should
not be difficult for the reader to establish the

following integrals.

Integral # 1

Ψ1(a, r) ≡

∫ π

0

[
(a− r cos θ)

(r2 + a2 − 2ra cos θ)
3
2

]
sin θ dθ =





2

a2
if a > r;

0 if a < r.
(125)

Integral # 2

Ψ2(r, a) ≡

∫ π

0

[
(r2 + a2) cos θ − 2ra

(r2 + a2 − 2ra cos θ)3

]
sin θ dθ = 0. (126)

6.2 Evaluation using Maxima

We have evaluated the following three inte-
grals, using Maxima (version 5.13.0). We

shall first write down the values of the in-
tegrals, and then show the commands used
in Maxima to obtain these results.

Let us write

α = 2 cos θ; β = 2(r2 + a2) cos θ − (3 + cos2 θ)ar.
γ = sin θ; δ = (r2 − 2a2 + ar cos θ) sin θ.

(127)

Integral # 3

Ψ3(r, a) =

∫ π

0

[(
α2 − γ2

)
cos θ − 2αγ sin θ

]
sin θ dθ = 0. (128)

Integral # 4

Ψ4(r, a) =

∫ π

0

[
(αβ − γδ) cos θ − (αδ + βγ) sin θ

(r2 + a2 − 2ra cos θ)5/2

]
sin θ dθ =

{ 12r

a4
; (a > r)

0; (a < r).
(129)
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Integral # 5

Ψ5(r, a) =

∫ π

0

[
(β2 − δ2) cos θ − 2βδ sin θ

(r2 + a2 − 2ra cos θ)5

]
sin θ dθ = 0. (130)

6.3 Maxima Commands,
Inputs and Outputs

We shall write the interactive commands and
prompts between the user and the Maxima
so that the reader can verify the values of the
integrals #4 and # 5. Note the following:
1. Some output lines (e.g., %o5, %06 in
Ex.#4) are spread over two lines in which
the first line contains the “indices”, e.g., “to
the power 2”. These indices get displaced
and detached from the base when the out-

put is copied into any text file. To avoid this
anomaly we have brought them to one line
using mathematical mode.
2. If the output is an expression of a def-
inite integral, it is spread over seven lines
(e.g., as in %o9 in Ex.#4), and the integral
sign becomes unintelligible when copied. We
have replaced these outputs and other out-
puts that appear too long and complicated
with “...”. All outputs except the final one
are non-essential.
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Input/Ouptut for Integral #4

(%i1) aa: 2*cos(x);
(%o1) 2 cos(x)
(%i2) bb: 2 *( r̂ 2 + â 2) *cos(x) - ( (cos(x))̂ 2 +3)* a* r ;
(%o2) 2(r2 + a2) cos(x)− ar(cos2(x) + 3)
(%i3) cc: sin(x);
(%o3) sin(x)
(%i4) dd: (r̂ 2 -2* â 2 + a* r *cos(x) )*sin(x) ;
(%o4) (ar cos(x) + r2 − 2a2) sin(x)
(%i5) f: (aa*bb-cc*dd)* cos(x)-( aa*dd+bb*cc)* sin(x) ;
(%o5) cos(x) (2 cos(x) (2(r2 + a2) cos(x)− ar(cos2(x) + 3))

- (a r cos(x) + r2 − 2a2) sin2(x)) - sin(x)
((2(r2 + a2) cos(x)− ar(cos2(x) + 3)) sin(x)
+ 2 cos(x) (a r cos(x) + r2 − 2a2 ) sin(x))

(%i6) et: abs(sqrt(r̂ 2+â 2 - 2*r*a*cos(x)));
(%o6) sqrt(- 2 a r cos(x) + r2 + a2 )
(%i7) h: (f/(et̂ 5))*sin(x) ;
(%o7) ....
(%i8) assume (a-r > 0) ;
(%o8) [a > r]
(%i9) ’integrate (h, x) ;
(%o9) ...
(%i10) changevar (%, et - y, y, x) ;

Is y positive, negative, or zero?
pos;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%o10) ...
(%i11) %,nouns;

Is sqrt(r + 2 a r + a ) - sqrt(r - 2 a r + a ) positive, negative, or zero?
pos;
Is r + a zero or nonzero?
nonzero;

(%o11) - (
sqrt(r2 − 2ar + a2)(48a2r7 + 36a3r6 + 8a4r5 + 4a5r4)

r− a

−
sqrt(r2 + 2ar + a2)(48a2r7 − 36a3r6 + 8a4r5 − 4a5r4)

r + a

+sqrt(r2 + 2ar + a2)(−48a2r6 + 12a3r5 − 4a4r4)

- sqrt(r2 − 2ar + a2)(−48a2r6 − 12a3r5 − 4a4r4))/(16a6r6)
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To simplify the last output (%o11), set

sqrt(r2 − 2ar + a2) =

{
(a− r) if, (a > r)
(r− a) if, (a < r)

(131)

and get
4× 48a2r7

16a6r6
=

12r

a4
for the first case and 0 for the second.

Input/Ouptut for Integral #5

(%i1) bb: 2*(r̂ 2 + â 2)*cos(x) - ( (cos(x))̂ 2 +3)*a*r;
(%o1) 2 (r2+ a2) cos(x) - a r (cos2(x) + 3)
(%i2) dd: (r̂ 2 -2*â 2 + a*r*cos(x) )*sin(x) ;
(%o2) (a r cos(x) + r2- 2 a2) sin(x)
(%i3) f: (bb̂ 2-dd̂ 2)*cos(x) - 2*bb*dd*sin(x);
(%o3) cos(x) ((2 (r2+ a2) cos(x) - a r (cos2(x) + 3))2

- (a r cos(x) + r2- 2 a2)2sin2(x)) - 2 (a r cos(x) + r2- 2 a2)
(2 (r2+ a2) cos(x) - a r (cos2(x) + 3)) sin2(x)

(%i4) ets: r̂ 2+â 2 - 2*r*a*cos(x) ;
(%o4) - 2 a r cos(x) + r2+ a2

(%i5) h: (f/(etŝ 5))*sin(x) ;
(%o5) (sin(x) (cos(x) ((2 (r2+ a2) cos(x) - a r (cos2(x) + 3))2

- (a r cos(x) + r2- 2 a2)2sin2(x)) - 2 (a r cos(x) + r2- 2 a2)
(2 (r2+ a2) cos(x) - a r (cos2(x) + 3)) sin2(x)))/(- 2 a r cos(x) + r2+ a2)5

(%i6) assume (a-r > 0) ;
(%o6) [a > r]
(%i7) ’integrate (h, x, 0, %pi ) ;
(%o7) ...
(%i8) changevar (%, abs(sqrt(ets)) - y, y, x) ;

Is y positive, negative, or zero?
pos;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%o8) ...
(%i9) %,nouns;

Is sqrt(r2+ 2 a r + a2) - sqrt(r2- 2 a r + a2) positive, negative, or zero?
pos;
Is r + a zero or nonzero?
nonzero;

(%o9) 0
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