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Abstract

What is the solution of the equation of motion of a single classical charged particle with
radiative damping? Contrary to the physical expectation, the mathematical solution is
anti-damped! Attempts to curb these runaway solutions lead to pre-acceleration. Worse,
despite a century of effort, there is still no way to obtain a proper solution in a general
context. This failure of classical electrodynamics is intrinsic, irrespective of the hydrogen
atom, and hence needs to be remedied. We outline a general method to resolve the
infinities of quantum electrodynamics (renormalization problem). The same method was
recently applied to resolve the infinities of classical electrodynamics. This involves a
modification of Maxwell’s equations at the microphysical level. The resulting equations of
motion of even a single charged particle with radiative damping are functional differential
equations (FDEs). These FDEs can and have been solved. The implications for quantum
mechanics are postponed to the next article.

1 Recap

In two earlier articles[1, 2] in this series,
we saw that functional differential equations
(FDEs) are fundamentally different from or-
dinary differential equations (ODEs). Hence,
doing physics with FDEs leads to a paradigm

shift in physics. To solve retarded FDEs, for
example, we need to specify past history, not
initial data alone, as is the case with the
ODEs of Newtonian mechanics. Again, with
FDEs, volume in phase space is not, in gen-
eral, preserved (so fine-grained entropy does
not stay constant), so we must reconsider sta-
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tistical mechanics. These significant quali-
tative differences between FDEs and ODEs
also mean that FDEs cannot, in general, be
validly approximated by ODEs.

We also saw that FDEs arise naturally in
physics, so that this new physics does not
involve any new physical hypothesis, but is
a matter of doing the math right. That is
because FDEs are equivalent to a coupled
system of ODEs and PDEs. Hence, FDEs
arise naturally in the context of the electro-
dynamic 2-body problem, which involves a
coupling between the Heaviside-Lorenz force
law (ODEs) (according to which each parti-
cle moves) and Maxwell’s equations which are
partial differential equations (PDEs) (accord-
ing to which each particle acts on the other).
This understanding of FDEs also explains

the need for past data. To solve Maxwell’s
equations we need to specify the appropriate
Cauchy data, which is the counterpart of ini-
tial data for PDE. That is, we need to specify
the electric and magnetic fields on a hyper-
surface (i.e., at an “instant” of time). If we
use retarded Green functions, actually spec-
ifying these fields on an entire hypersurface
requires data for the entire past world lines of
the particles which produce those fields. This
requirement of past data, subtly hidden by
the field picture, is only made manifest by
using the particle pictures and FDEs.
How exactly does this affect electrodynam-

ics? To this end we re-examined the ques-
tion of the classical hydrogen atom. Physi-
cists are taught in high-school that classical
electrodynamics cannot describe the hydro-
gen atom. The argument for this proceeds as
follows. It first supposes that in the absence

of radiation damping, central orbits are sta-
ble for the electrodynamic two body problem.
It then concludes, heuristically, that due to
radiation damping those orbits are actually
unstable.

With our new understanding of FDEs it is
clear that this conclusion is based on faulty
reasoning. The Coulomb force does not equal
the full electrodynamic force. The full electro-
dynamic force leads to FDEs, so approximat-
ing it by the Coulomb force involves approx-
imating FDEs by ODEs, a process known to
be incorrect in general. Therefore, the claim
that central orbits are stable in the absence
of radiation damping was never properly es-
tablished.

The first actual solution of the FDEs of the
electrodynamic 2-body problem, with the full
electrodynamic force, was carried out by this
author only in 2004.[3] It showed that the
solution with the Coulomb force is, in fact,
incorrect. Heuristically, we observed that re-
tardation leads to a delay torque, so that an
electron tends to fall out of the atom, in the
absence of radiation damping.

We concluded with the natural question:
what happens in the presence of radiation
damping? Are there motions (not necessar-
ily circular orbits) for which the delay torque
and the radiation damping cancel (either ex-
actly or on an average)?
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2 The problem of

radiative damping

2.1 The formula for radiative

damping

A peculiar difficulty arises in trying to give
a rigorous answer to this question. First,
we obviously need a quantitative account of
radiation damping. Now, standard physics
texts (e.g., [4], equation 11.80, p. 467) give a
formula (Abraham-Lorentz formula) for the
force due to radiative damping

F rad =
µ0q

2

6πc
ȧ, (1)

where µ0 is the permeability of free space, q is
the charge, c is the speed of light, a is the ac-
celeration of the charge, and, as before, dots
denote derivatives with respect to time. The
physical understanding of this formula is that
an accelerating charge radiates energy, and
therefore its motion must be damped. This
formula describes the self-force on the elec-
tron responsible for the damping.

2.2 The equation of motion of

a charge

But this force has a peculiarity: it depends
upon the derivative or rate of change of ac-
celeration. Thus, the equation of motion of
an accelerated charged particle under the in-
fluence of an external force F ext is

ma = F ext + F rad

= F ext +
µ0q

2

6πc
ȧ. (2)

Because of the appearance of ȧ =
...
x this is

a third order ODE, unlike the ODEs of clas-
sical mechanics which are all of second order.
Hence, to solve for the motion of a single
charged particle, one must now prescribe also
ȧ(0) or the initial acceleration of the charge.

2.3 The runaway solutions

It is not clear on what principles the specifi-
cation of a(0) would be based, but let us see
what happens in the simplest case. That is we
consider a particle moving in one dimension,
without any external forces, so that F ext = 0.
In this case the equation (2) can be rewritten
as the simple equation

τ ȧ = a, (3)

where

τ =
µ0q

2

6πmc
. (4)

The equation (3) has an equally simple solu-
tion

a(t) = a0e
t

τ , (5)

where a0 is the initial acceleration.
But this is catastrophic! It is evident that

so long as a0 6= 0, no matter what its value,
the acceleration of the particle, a, increases
exponentially. Thus, an arbitrary non-zero
initial acceleration blows up, so these are
known as runaway solutions. Under its own
self-action, due to radiation damping, the
particle continuously accelerates! Instead of
damping (as expected on physical grounds),
the mathematics tells us what we have here
is unbounded anti-damping!
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This difficulty has been known for so long
that physicists have become a bit blasé about
it, and easily satisfied with various partial so-
lutions which have been offered. To under-
stand these, let us first find a general solution
of (2).

2.4 General solution of the

equations of motion

To this end, let us rewrite (2) as

m(a− τ ȧ) = F ext. (6)

To help solve the equations, we introduce a
new variable a1(t) by

a1(t) = e−
t

τ a(t) or a = e
t

τ a1(t). (7)

Then

ȧ =
1

τ
e

t

τ a1 + e
t

τ ȧ1. (8)

Hence,
a− τ ȧ = −τe

t

τ ȧ1, (9)

so that (6) can be rewritten

ȧ1 = −
1

mτ
e−

t

τ F ext. (10)

Equation (10) can be solved just by inte-
grating it.

a1(t) = −
1

mτ

∫ t

0

e−
t
′

τ F ext(t
′)dt′ + a1(0),

(11)
where a1(0) is a constant of integration or the
initial value. Note that a1(0) = a(0) by the
definition (7). Hence, the general solution of
(6) can be rewritten

a(t) = a(0)e
t

τ −
1

mτ

∫ t

0

e
(t−t

′)
τ F ext(t

′)dt′.

(12)

2.5 Dirac’s proposal

Now, nothing in earlier physics tells us what
principles we should use to fix the value of
a(0). Therefore, Dirac[5] in 1938 suggested
we should fix it by the formula

a(0) =
1

mτ

∫

∞

0

e−
t
′

τ F ext(t
′)dt′. (13)

To see the point of this, let us plug in this
value of a(0) into (12). We now obtain

a(t) = e
t

τ

(

a(0)−
1

mτ

∫ t

0

e−
t
′

τ F ext(t
′)dt′

)

=
e

t

τ

mτ

(
∫

∞

0

e−
t
′

τ F ext(t
′)dt′ −

∫ t

0

e−
t
′

τ F ext(t
′)dt′

)

=
e

t

τ

mτ

(
∫

∞

t

e−
t
′

τ F ext(t
′)dt′

)

=
1

mτ

(
∫

∞

t

e
(t−t

′)
τ F ext(t

′)dt′
)

. (14)

Since (t − t′) < 0 for t′ ∈ (t,∞), the inte-
gral will converge for any reasonable exter-
nal force described by an integrable (or even
slowly increasing) function F ext. We can see
this more clearly, by making the change of
variables t′ = t+ τs, to rewrite (14) as

a(t) =
1

mτ

∫

∞

0

e−s
F ext(t+ τs)ds. (15)

Hence, the acceleration remains finite for all
time.

2.6 Pre-acceleration

However, Dirac’s proposal has a peculiar side-
effect. It is clear from (15) that the accelera-
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tion at time t is decided by a weighted average
over all future forces. Hence, if, for example,
an impulsive force is applied to a charged par-
ticle, it would start moving before the force
is applied.

To see this, consider the case of 1-
dimensional motion, and suppose a δ func-
tion force is applied at time t = 0. That is,
Fext(t) = δ(t). For the integral in (15) to be
non-zero, we must have t + τs = 0, and this
is possible only for t < 0. So, the solution is

a(t) =

{

1
mτ

e
t

τ if t < 0

0 if t ≥ 0.
(16)

That is, the particle accelerates before the
force is applied, and stops accelerating when
it is applied. Hence, this is called pre-
acceleration. This is considered “unphysical”
since non-causal.

The usual defence is that the “violation” of
causality takes place over a small time. For
the case of an electron, the constant τ in (4)
may be rewritten as

τ =
2

3
·

q2

4πǫ0mc3
=

2

3

re

c
, (17)

where re is the classical radius of the electron,
so that τ is of the order of the time it takes
for light to traverse the classical radius of the
electron; τ ≈ 10−23s is also called the relax-
ation time of the electron. So, the argument
is that the violation of causality takes place
over such small times that it is of no conse-
quence.

2.7 Discussion

Now, I have been advocating the rejection of
perfect “causality” for over 35 years,[6] and
for the last 20 years I have been arguing that
rejecting (mechanistic) “causality” in physics
is a matter of elementary commonsense,[7]
and the only way to explain mundane “causal-
ity” or the mundane experience of billions of
people repeated thousands of time each day.
So I cannot regard the failure of (mechanis-
tic)1 “causality” as some kind of a “violation”
to be concerned about.

However, the real problem with the above
solution is this: the formula does not do its
basic job. It is small consolation to know that
the acceleration is finite, because we cannot
calculate its value! This matter has been sub-
ject to a long debate, and several variants
on Dirac’s technique and the Lorentz-Dirac
equation have been proposed. But this ob-
jection also applies to other proposed “solu-
tions” such as the one suggested by Plass:[9]
the initial or boundary values are required to
hold exactly. The slightest variation from it
restores the runaways, so these methods of
supposedly taming the infinities of classical
electrodynamics are impractical for the prob-
lem at hand which is this: to calculate the
motion of the electron in a hydrogen atom
with radiative damping.

1The term “causality” is vague and can have dia-
metrically opposite meanings, which are often con-
founded in philosophical discussions. Specifically,
mechanistic “causality” as used by physicists as physi-
cists means the exact opposite of mundane “causal-
ity”, as used by physicists as human beings! Conflat-
ing these two causes great confusion see, e.g., [8].
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A simple-minded way out is to say that
Maxwell’s equations anyway fail for the hy-
drogen atom where quantum mechanics ap-
plies. However, the failure of Maxwellian elec-
trodynamics, as analysed above, is intrinsic,
and makes no reference to the hydrogen atom.
Therefore, we need to understand why this
celebrated Maxwellian theory, which is oth-
erwise useful, fails so miserably that it can-
not describe the motion of even a single elec-
tron! More pragmatically, understanding the
reasons for the intrinsic failure of Maxwell’s
equations may suggest an appropriate cor-
rection which opens the path to a fresh un-
derstanding of quantum mechanics, which is
needed to resolve the problems facing quan-
tum computing today.
Therefore, let us press on with our enquiry

into the infinities which arise in the motion
of a single charged particle in Maxwellian
electrodynamics, their origin and their reso-
lution.

2.8 The finite size electron

The most obvious suspicion is that these in-
finities have something to do with the as-
sumption that charged particles must be like
idealised geometric points. Radiation damp-
ing is attributed to the self-action of a charge.
In the field picture, that self-action is de-
scribed by a charge interacting with its own
field. That field, however, blows up at the
position of the particle if that is assumed to
be a point.
The next obvious step is to suppose that

the point-charge description is a simplifica-
tion, and what we really have is a finite dis-

tribution of charge. That, in fact, was the
first proposed solution to this problem, ironi-
cally proposed by Lorentz.

However, this notion of a finite-size elec-
tron encountered several serious problems. In
the first place, suppose we simply smear out
the electron charge over a sphere or shell. The
Coulomb repulsion of one part of the charge
distribution acting on another would blow
apart the charge distribution. What holds
it together?

One could get around this problem by pos-
tulating some new forces which hold the elec-
tron together. There is, however, a far more
serious problem with this solution: it is not
Lorentz invariant. We can hardly abandon
Lorentz invariance because the requirement
of Lorentz-invariance is tied to the current
definition of time measurement, as I have ex-
plained in my book[10] and in an earlier ar-
ticle in this journal, and we cannot do any
physics without a way to measure time. A fi-
nite distribution of charge cannot easily be de-
scribed in a Lorentz invariant way. A sphere
in one frame would not remain a sphere in
another, for the Lorentz transform distorts a
sphere into an ellipsoid. The problem of a
Lorentz invariant or covariant extended elec-
tron has resisted attempts at a solution for
the past century.

2.9 Is the limiting procedure

valid?

We could get around this problem too, but
there is another subtle problem which has not
been noticed, but is rather serious. The usual
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derivation of the third order radiation reac-
tion force (1) does start by assuming a finite
distribution of charge (for example, [4] starts
with a dumb-bell charge distribution). Since,
however, this finite charge distribution can-
not be described in a Lorentz invariant way,
the usual derivation proceeds to the limit of
a point charge. The problem of Lorentz in-
variance disappears in the limit.

But is this limiting procedure valid? The
question was first raised by me long ago, in
this very journal.[11] The doubt about the
validity of the limiting procedure may be ex-
plained in simple terms as follows. In a fi-
nite charge distribution, when one part of the
charge distribution acts on another, there is a
retardation or delay involved. Therefore, the
equations involved are FDEs; we have seen
that. However, when we proceed to the limit
of a point charge, the final equation of mo-
tion with radiative damping is just an ODE,
as above.

So, mathematically, the limiting procedure
amounts to “Taylor” expanding in powers of
the delay, and then proceeding to the limit as
the delay goes to zero. This limiting process
converts an FDE into a higher-order ODE.
We have seen[1] that this is an incorrect pro-
cedure, therefore the limiting process is not
valid, even though it looks plausible, and is
followed by all texts in electrodynamics to-
day! Thus, there is a fundamental problem
concerning the derivation of very formula for
radiation damping (1).

3 Infinities of classical

and quantum

electrodynamics

3.1 A connection?

How to correct the derivation of radiation
reaction? Long ago, Wheeler and Feynman
thought that the infinities of quantum elec-
trodynamics might be fixed by correcting the
corresponding infinities in classical electrody-
namics. Today, physicists believe that the
infinities in quantum electrodynamics have
been fixed through what is called renormal-
ization. But the infinities of classical elec-
trodynamics still stay unfixed! Nevertheless,
the hunch of a connection between the two
infinites was right.

Thus, long ago, I suggested a novel method
of renormalization in quantum field the-
ory. The method was presented at my
guide’s festschrift, and published in the
proceedings,[12] but never advertised, or fur-
ther developed. Hence, it is hardly known,
and the following is a brief explanation.

3.2 The renormalization

problem

The propagators of quantum electrodynamics
are what mathematicians call fundamental so-
lutions of PDEs. The fundamental solution
of the Dirac equation is the spinor propaga-
tor, while that of the relativistic wave equa-
tion or Klein-Gordon equation is the photon
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propagator. These are also known as Green
functions.
These propagators involve entities like the

Dirac δ function, which are regarded as gen-
eralised functions or Schwartz distributions.
On the orthodox formalist exposition of the
Indian calculus, as found in university calcu-
lus texts today, the derivative is defined as a
limit. This definition forces a differentiable
function to be continuous. However, in a
situation like that of shock waves, the need
arises in physics to differentiate a discontinu-
ous function.
The Schwartz theory of distributions mod-

ifies the conventional calculus of limits, by al-
lowing discontinuous functions (like the Heav-
iside jump function) to be infinitely differen-
tiated. However, the limitation of the new
theory is that generalised functions or distri-
butions cannot be multiplied: the Schwartz
theory assigns a meaning to δ, but not to the
product δ · δ.
Some writers on shock waves, such as

Taub,[13] have wrongly maintained (on
“physical grounds”) that this is a trivial prob-
lem . Taub wrote “Fortunately the prod-
uct of such distributions (as arise) is quite
tractable.” He argues as follows. Let θ de-
note the Heaviside function,

θ(t) =

{

0 if t < 0

1 if t > 0,
(18)

(the value at 0 does not matter2). Then, θ2 =
θ, so that differentiation gives 2θ · θ̇ = δ. But

2since the Schwartz theory is based on the
Lebesgue integral where the value of a function at one
point is irrelevant, since a point has measure zero.

θ̇ = δ hence θ ·δ = 1
2
δ. The problem with this

is that we also have θ3 = θ, so that 3θ2δ = δ,
so that, since θ2 = θ, θ · δ = 1

3
δ. Another

example is that of (x−1 · x) · δ = δ 6= 0 =
x−1 · (x · δ). Thus, neither the product rule
for differentiation nor the associative law may
be safely assumed in dealing with products of
Schwartz distributions.

The infinities of quantum field theory have
long been believed to arise because (Fourier
transforms of) products of propagators (gen-
eralised functions) enter into the S-matrix ex-
pansion. Thus, for example, if ˆ denotes the
Fourier transform, (δ · δ)̂ = δ̂ ⊗ δ̂ = 1 ⊗ 1 =
∫

∞

−∞
1dx, where ⊗ denotes convolution, and it

is blindly assumed (as in quantum field the-
ory) that a Fourier transform carries products
to convolutions (even when the former is un-
defined!).

What I showed long ago was that this belief
is wrong: the problem does not lie with prod-
ucts of distributions alone. I defined a natu-
ral product of distributions[14], still the only
such definition which works for both classi-
cal physics and quantum field theory.[15] This
definition earlier used non-standard analysis,
but the definition actually works perfectly
well with a so-called non-Archimedean or-
dered field, such as the number system of “un-
expressed fractions” (rational functions) rou-
tinely used from the 5th c. by traditional
Indian mathematicians while developing the
calculus. Anyway, with my definition, all
propagator products arising in quantum field
theory are finite, in one dimension.[16] My
analysis[12] identified the problem as really
that of defining compositions not products.
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What difference does that make? The diffi-
culties which arise with compositions are dif-
ferent from those that arise with products.
Thus, I did define compositions along with
products,[14] but the issue is as follows. The
propagators need to be defined on the null
cone λ = 0. How should we define the com-
position δ(λ)? For any hypersurface Σ = 0,
we can naturally define δ(Σ) just as δ(n), lo-
cally, wherever there is a unique normal to
Σ and n denotes the coordinate normal to Σ
in Gaussian normal coordinates, so that the
equation of Σ locally is n = 0. That is we
can define δ(λ) everywhere on the null cone
except at its vertex. For the particular case of
the δ function, we can extend the definition of
δ(λ) even to the vertex of the null cone. But
in the case of a general distribution f , there
is a geometrical difficulty in defining f(λ) at
the vertex of the null cone because there is
no unique normal vector there.
This understanding immediately suggests

a very simple and elegant solution to the
problem of the infinities of quantum field
theory.[12] Namely, eliminate that vertex and
replace the support of the propagators by a
Lorentz-invariant hyperboloid. Unlike a cut-
off, this preserves the Lorentz invariance of
the theory, which is essential for all current
physics as already noted. Unlike a regularisa-
tion left on, the support of the propagators
is not fuzzy, so interactions do not creep out-
side the null cone, and positivity of energy is
preserved.
Changing the propagators is equivalent to

changing the underlying PDEs (Dirac equa-
tion, Klein-Gordon equation), of which these
propagators are fundamental solutions. That

does not really matter, since all calculations
are actually done only with the propagators.
For example, look at the way we use the
Green function to get solutions of Maxwell’s
equations. Once we have the propagator, or
the Green function, we also have the solution,
and we don’t really need to refer back to the
equation.

3.3 Back to classical

electrodynamics

The point of this long digression into quan-
tum electrodynamics is this. Can this solu-
tion to the problem of infinities in quantum
electrodynamics be applied to get rid of the
infinities of classical electrodynamics? Indeed
it can! This was done some time ago.[17] This
is described below using the covariant formu-
lation of electrodynamics to emphasize that
everything is done in a Lorentz covariant way.

As regards the Lorentz-invariant hyper-
boloid, which replaces the null cone, there
are two possibilities. A hyperboloid of one
sheet would give a Lorentz-covariant model
of a spatially extended particle, but this does
not give radiation reaction. To get radiation
reaction, we need a hyperboloid of two sheets,
or what one might call “particles extended in
time”. We denote the separation by d, as-
sumed to be a constant for the moment.
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4 Modified Maxwell

equations

4.1 Obtaining the new

equations of motion

Thus, the new retarded Green function for
classical electrodynamics is given by

Gr(x,y) = δ((x− y)2 + d2)θ(x0 − y0), (19)

where θ is, as before, the Heaviside step func-
tion, and δ is its derivative the Dirac delta.
Exactly how this changes Maxwell’s equa-
tions has been worked out, but is irrelevant
as explained above.
We follow the original article,[17] and use

the metric diag(−c2, 1, 1, 1), i.e.,

||x||2 = xµxµ = −c2(x0)2 +
∑

i

(xi)2. (20)

For vectors satisfying (x − y)2 = −d2, a
Lorentz transformation cannot change the
sign of x0 − y0. Hence, the Green function
in (19) is Lorentz invariant.
Scalar and vector potentials are obtained

as usual.

Aµ(x) =
1

2πǫ0c

∫

jµ(y)G(x,y)d4y + ∂µχ,

(21)
where χ is an arbitrary scalar function which
vanishes in the Lorenz gauge.

For a point charge q, with worldline αµ(s)
and proper time, s,

Fµν(x) =
q

4πǫ0c (ζ · α̇)
2

(

α̈[µζν]

−
α̇[µζν] (c

2 + ζ · α̈)

ζ · α̇

)

.

(22)

Dots now denote derivatives with respect to
proper time, evaluated at retarded/advanced
time, τr, τa, obtained as the solution of

||xµ − αµ(τ)||2 + d2 = 0. (23)

The retarded time τr is the solution for which
x0 > α0(τr), while the advanced time τa is
the solution satisfying the opposite inequality.
Further, the vector ζ is defined as the retar-
dation vector pointing from the retarded posi-
tion to the current position: ζµ = xµ−αµ(τr),
and similarly in the advanced case, using the
advanced time τa instead. For a slow moving
particle, the delay τd ≡ τ − τr ∼

d
c
.

The equation of motion of a charged parti-
cle obeying the modified Maxwell equations
is

α̈µ =
q

m
α̇νF

µν , (24)

where F µν is the net field strength and in-
cludes the field from the particle.
This equation looks the same as in the

Maxwellian theory, but because of the separa-
tion constant d there is retardation involved
even in the case of self-action, where F µν is
solely the self-field. Hence, the resulting equa-
tions of motion for even a single accelerating
charged particle is now an FDE, not a third-
order ODE.

4.2 Consequences of changing

Maxwell’s equations

What difference does that make? The dif-
ference is this. Unlike the runaway solu-
tions of the 3rd-order ODE, arising from
Maxwell’s equations, this FDE arising from
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the modified Maxwell’s equations has glob-
ally bounded solutions. However, locally
the value of the radiation reaction remains
roughly the same as that described by the
third order term. This is as expected, since
the modification of Maxwell’s equations is
“small”, since the delay involved, τd ∼ d

c
, is

very small, and roughly the same as the re-
laxation time of the electron defined in (17),
if we suppose that d ∼ re.

Most importantly, we reiterate that this
gives us a way to actually solve the problem
of the motion of a classical charged particle
with radiation reaction. Thus, unlike all the
previous attempts in the past century, this
modification of Maxwell’s equations resolves
the problem of how to actually calculate the
motion of a charged particle with radiative
damping.

There are no doubt technical difficulties in
obtaining a numerical solution. For example,
for the case of the hydrogen atom, the prob-
lem is numerically stiff: there are two widely
different time-scales in the problem: the time
scale of the radiation reaction and the time
scale of orbital motion. Nevertheless, there
does exist a code called RADAR to solve nu-
merically stiff FDEs,[18] and we have actu-
ally used it. The details are in the original
paper.[17]

However, it should be clear by now that
the rigorous solution of the classical electro-
dynamic 2-body problem, and even the 1-
body problem, is a complex matter. But, why
should we bother to find a solution to such
FDEs? Don’t we already know that quantum
mechanics is the right theory? Is it worth the

effort? Is any of this going to lead to quan-
tum mechanics?
We will see the answers to these questions

in the next part of this series of articles.
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