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Abstract
We usually study or teach physics in the three dimensional or four dimensional space in
classrooms. But now a days there is a growing interest among researchers [1-11] in
multidimensional physics. In this article, we make a study of the Blackbody
Radiation(BBR), Bose Einstein Condensation(BEC) and Pauli para magnetism in different
dimensions. The reader can see that the study of physics is very much enjoyable with
interesting surprises when we study some phenomena in higher or lower dimensions.

1 Introduction

The purpose of this article is to present three
simple but interesting phenomena in statis-
tical mechanics from the dimensional point
of view. We organize the paper as follows.
First we describe the Planck radiation law,
Stefan Boltzmann law and Wien’s law in d
spatial dimensions and then discuss Bose Ein-
stein condensation in arbitrary dimensions.

Finally we discuss Pauli para magnetism in
three dimensions. Although some of these re-
sults about black body radiations are known
in literature[1-6] we approach the derivations
in a method as given in Pathria[3] which may
be familiar to most of the students. BEC
studies in different dimensions has been done
earlier[7,8] but mainly it was done with mas-
sive bosons. We here study BEC with dif-
ferent energies in different dimensions. Pauli
para magnetism in arbitrary dimensions has
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also been reported[9] but we present here a
simple method for its dimensional variation
in 1, 2 and 3 dimensions. Nowadays it has
become rather common to study the phenom-
ena and underlying physics in arbitrary di-
mensions. The existence of extra dimensions
has been a subject of intensive research study
during the past few years [10-11]. The in-
clusion of extra dimensions plays a crucial
role in many physical concepts, mostly in the
construction of various models such as super
string theory and general relativity [12-14].
The d dimensional dependence of physical
laws would help us to understand their na-
ture more profoundly and may give an answer
to why our universe possesses three dimen-
sions and not some other dimensions. Be-
sides, from the point of view of physics ed-
ucation we can formulate various such sim-
ple problems in class rooms on higher dimen-
sional physics which may stimulate the stu-
dents’ curiosity and imagination.

1.1 Planck’s distribution
law(PDL)

A black body cavity can be imagined to be
filled with a gas of identical and indistin-
guishable quanta called photons with zero
rest mass and with energy E = ~ω. The
energy of photons vary from 0 to infinity.
Here we first analyze the blackbody radia-
tion in a universe with 1, 2, 3 and d-spatial
dimensions. Such a study was started by
De Voss A in 1988[1] where no explicit ex-
pression for Stefan-Boltzmann constant in

d dimension was obtained. Later an exact
derivation of Planck distribution law[PDL],
Wien’s displacement law and Stefan Boltz-
mann law were given by Peter T Landsberg
and Alexis De Vos [2] based on principles of
electrodynamic waves in cavities. In 2005
there were 2 papers[5] and [6] which also gives
the same ideas from different point of view.
We approach the derivation in a pedagogical
way based on the phase space principles in
statistical mechanics as given by Pathria[3].
Such a study will help the students directly
study any multidimensional problem other
than BBR. The number of micro states in
phase space is given by

Ω =
π
d
2RdLd

hd
(
d
2

)
!

Substituting R = p = hν
c

the number of states
between ν and ν + dν is

g(ν)dν =
dπ

d
2 νd−1Ld

cd(d
2
)!

Internal energy is given by

U = kT 2 ∂

∂T
ln Z

lnZ = −gI
∫ ∞
0

g(ν) dν ln(1− e−βhν)

where Z is the grand partition function, β =
1
kT

and gI is the internal degree of freedom.
Taking 2 internal degrees of freedom for pho-
tons

U

Ld
=

∫ ∞
0

2dπ
d
2hνd

cd(d
2
)!

1

e
hν
kT
−1
dν
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u(ν)dν =
2dπ

d
2hνd

cd(d
2
)!

1

e
hν
kT
−1
dν

This is the PDL in d dimensions and we get
Planck ′ distribution functions as

u(ν)dν =
8πhν3

c3
dν

e
hν
kT − 1

u(ν)dν =
4πhν2

c2
dν

e
hν
kT − 1

u(ν)dν =
2hν

c

dν

e
hν
kT − 1

Among the three first is the conventional
Planck’s distribution law in 3 dimensions and
others are in 2 and 1 dimension respectively.

1.1.1 Thermodynamics of photon gas
in d- dimensions

It is always informative to find the thermo-
dynamics of photons and we do this here in
different dimensions.

Pressure

We have

lnZ = −gI
∫ ∞
0

g(ν)dν
∞∑
l=1

(−1)e−βhνl

l

From[3] we know

PLd

kT
= lnZ

On integrating we get

P =
2 d!π

d
2(

d
2

)
!

k(d+1)T (d+1)

cd hd

∞∑
l=1

1

ld+1

P ∝ T d+1

which is Stefan-Boltzmann law in d dimen-
sions.

Energy density

Using the equation for energy we get

U

Ld
=

2 d d!π
d
2(

d
2

)
!

kd+1T d+1

cdhd

∞∑
l=1

1

ld+1
(1)

U ∝ T d+1

Then the relationship between the pressure
and energy density for a photon gas is

P =
1

d

U

Ld

For 3 dimensions we get P = 1
3
U
V

Entropy

Using the relation A = U−TS, where A is the
Helmholtz free energy, S is the entropy and
with A = −kT lnZ (since chemical potential
of photon gas is zero) we get

S =

(
1 +

1

d

)
2dd!π

d
2(

d
2

)
!

kd+1T d

cdhd
Ld

∞∑
l=1

1

ld+1

S ∝ Ld T d
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1.1.2 Wien’s displacement law

PDL curve rises and become a maximum and
then decreases and there is a λ = λmax for
which intensity is a maximum. From the dis-
tribution law for frequency, using c = νλ we
get

u(λ)dλ =
−2dπ

d
2hc

λd+2(d
2
)!

1

e
h c
λ k T

−1
dλ

When λ = λmax,

du(λ)

dλ
= 0

we get
xex

ex − 1
= d+ 2

where x = hc
λmaxkT

. This is a transcendental
equation for whom some solutions are

x1 = 2.8214

x2 = 3.9207

x3 = 4.9651

x4 = 5.9849

x5 = 6.9936

In 3 D
xex

ex − 1
= 5

Using these equations we can show that the
color of the sun with surface temperature
6000 K will be yellow in 3 dimensions, near
red in 2 dimensions and infra red in 1 dimen-
sion.

1.1.3 Stefan Boltzmann law

This law was deduced from experimental ob-
servation by Stefan in 1879; five years later
Boltzmann derived it from thermodynamic
consideration. The energy radiated per unit
area per unit time is related to energy density
of the body as[2],

R =
U

Ld
Rd

where

Rd = c
Γ(d

2
)

2
√
πΓ( (d+1)

2
)

Substituting the value of U we get

R = σdT
d+1 (2)

where d dimensional Stefan- Boltzmann con-
stant is

σd =
2π

d−1
2

Γ( (d+1)
2

)

Γ(d+ 1)ζ(d+ 1)

hdcd−1
Rd+1

Equation[2] is the d dimensional Stefan
Boltzmann law. In 3 D

σ3 = 5.67× 10−8Wm−2K−4

In 2 D

σ2 = 1.92× 10−10Wm−1K−3

In 1 D

σ1 = 9.46× 10−13WK−2

These equations show that σ is a dimensional
dependent constant. The 1 D equation ex-
presses the thermal noise power transfer in
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one-dimensional optical systems and we get a
similar equation for Johnson noise or Nyquist
noise[2]. As already indicated in the abstract
we can see some interesting and surprising re-
sults like the dimensional dependence of the
color of the sun, dimensional dependence of
Stefan Boltzmann constant etc.

2 Some Low dimensional

problems

2.1 Bose Einstein
Condensation

Now we consider another topic BEC which
is now an active research problem. All the
particles in nature may be classified as either
bosons or fermions according to the value of
their spin angular momentum. Particles with
integer spin are bosons and particles with
half integer spin are called fermions. Most
of the fundamental building blocks of matter
(e.g. electrons, neutrons, and protons) are
fermions. A composite particle comprising
an even number of fermionic building blocks
(such as an atom) are also bosons and with
odd number are fermions. The wave function
describing the state of a system of particles
will be symmetric for bosons and anti sym-
metric for fermions. The properties of ultra-
cold atomic gases are dramatically different
for bosons and fermions. Below a critical
temperature, bosons undergo a phase transi-
tion and a macroscopic number of the atoms
are forced into the lowest energy state of the

system. This phenomenon is called Bose Ein-
stein Condensation. Simply speaking Bose
Einstein Condensation is the piling up of par-
ticles in the lowest energy level, below a par-
ticular temperature called critical tempera-
ture. We can see that equations for BEC is
different for different energies.

2.1.1 Massive non relativistic bosons

Consider a gas of bosons with energy p2

2m

where p is the momentum and m is the mass
of the particle.

Three Dimension

In grand canonical formulation

lnZ = −gI
∑
p

ln
(
1− ze−βεp

)
where εp is a function of p. Here Z is the
grand partition function z is the fugacity
which is related to the chemical potential µ as
z = eβµ and gI is the internal degree of free-
dom which is 1 for a classical particle. Taking
all these

lnZ = −
∑
p

ln

(
1− ze−β

p2

2m

)

On simplifying using the number of states be-
tween p and p + dp as g(p)dp = 4πp2dpV

h3
we

get

lnZ = g 5
2

(z)
V

λ3
(3)
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where g 5
2
(z) =

∞∑
l=1

zl

l
5
2

and thermal De Broglie

wavelength λ = h

(2πmkT )
1
2

. Here k is Boltz-

mann constant.

The total number of bosons in a given state
can be obtained by using the expression

N = z
∂

∂z
lnZ (4)

N =
V

λ3
g 3

2
(z)

For the Bose particles there is no restriction
on the number of particles to occupy any level
in the system. Let N0 be the number of par-
ticles in the ground state. For temperature
very much greater than critical temperature,
the number of particles in the ground state
will be very very small. Hence we can write

N =
V

λ3
g 3

2
(z) + N0

at T = Tc, z = 1[3] V = Nλ3c
g 3
2
(1)

Substituting this in the equation for N we get,

N0

N
= 1−

(
T

Tc

)3

This is the equation of BEC. The right hand
side of the equation is the fraction of to-
tal number of particles in the ground state.
We can see that at T = Tc, N0 = 0 which
means no particle in the ground state. When
T < Tc, N ≈ N0, which means the signifi-
cant fraction of total number of particles are
in the lowest possible energy state. When
T = 0, N = N0 all the particles are in the

ground state which is BEC. Now this curious
phenomenon can be done in 2 and 1 dimen-
sions.

Two and one Dimension

For 2 dimensions we will get lnZ = A
λ2
g2(z)

and N = A
λ2

g1(z) = A
λ2
ζ(1). For one di-

mension we will get lnZ = L
λ
g 3

2
(z), N =

L
λ
g 3

2
(1) = L

λ
ζ(

1

2
) for µ = 0. The expressions

for N are non physical or the condensation
for massive bosons in 2D and 1-D does not
occur.

BEC for bosons with relativistic
massless and harmonic oscillator
energy

For massless relativistic, identical, non-
interacting bosons the energy is given by
ε = c |p|. Using the number of states as
for massive bosons we get lnZ =

(
V
λ3

)
g4(z)

where g4(z) =
∞∑
l=1

zl

l4
and λ = hc

2π
1
3mkT

. Then

N =
(
V
λ3

)
g3(z) =

(
V
λ3

)
ζ(3) which has def-

inite value and hence condensation is pos-
sible. For 2 dimensions lnZ =

(
A
λ2

)
g3(z)

. With this N =
(
A
λ2

)
g2(z) =

(
A
λ2

)
ζ(2)

which has once again definite value .This re-
sult shows that massless bosons in 2D do
indeed form a condensate. But for one di-
mension N =

(
L
λ

)
ζ(1) → ∞ which forbids

condensation. For harmonic potential energy
Hamiltonian is of the form H = p2

2m
+ 1

2
mω2r2

Using this Hamiltonian as above we can show
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that BEC is possible in 3 and 2 dimensions=
and not possible in in 1 dimension.

2.2 Pauli Para magnetism

Pauli para magnetism arises due to the align-
ment of the spin magnetic moments of free
electrons. Here we consider low tempera-
ture(absolute zero), low field para magnetism
of metals or free electron gas. We assume
that the electrons with dipole moment µ will
be either parallel to the field B or anti paral-
lel. We thus have two groups of particles in
the gas:

1. Electrons having µ parallel to B, with
energy p2

2m
− µB

2. Electrons having µ anti-parallel to B,
with energy p2

2m
+ µB

At absolute zero, all energy levels up to the
Fermi level εF will be filled, while all lev-
els beyond εF will be empty. Accordingly,
the kinetic energy of the particles in the first
group will range between 0 and (εF + µ B),
while the kinetic energy of the particles in the
second group will range between 0 and (εF -
µ B). The respective numbers of particles in
the two groups will, therefore, be equal to the
number of levels and then will be equal to

N+ =
4π V

3h3
(p+F )3; N− =

4π V

3h3
(p−F )3

for 3 dimensions

N+ =
π A

h2
(p+F )2 ;N− =

π A

h2
(p−F )2

for 2 dimensions and

N+ =
L

h
p+F ;N− =

L

h
p−F

for 1 dimension where p+F = [2m(εF +µB)]
1
2 ,

p−F = [2m(εF − µB)]
1
2 , V is the volume, A

is the area and L is the length of the ma-
terial. The intensity of magnetization M =
µ(N+−N−) and using the expression for sus-
ceptibility χ = limB→0 = M

VB
we get

χ3D = C1(εF )
1
2

χ2D = C2

χ1D = C3(εF )−
1
2

We can see that at low magnetic field and at
absolute zero Kelvin, Pauli para magnetism
in 2 dimension is a constant independent of
Fermi temperature which indicates that it is
independent of the material which is indeed a
curious result demanding more investigations
on para magnetism.

2.3 Conclusions

In Coulombs law the factor 4πr2 comes be-
cause of the 3 dimensional nature. For all
spherical or 3 D variation this term will be
there. If we express Coulomb’s law in other
dimensions what will be its nature is not al-
ways discussed in regular class rooms or the
dimensionality dependences in the fundamen-
tal laws of physics are not described in most
of the textbooks. Maxwell equations, Lorentz
force, Coulomb law, the Schroedinger equa-
tion and Newton law of universal gravitation
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in d spatial dimensions were obtained[4] by
Masaki Hayashi and Kazuo Katsuura. One
can recognize how the dimensionality of the
world is reflected in these equations and laws.
One problem that exists is the visualization
of the extra dimensions. If extra dimensions
exist, either they must be hidden from us by
some physical mechanism or we do not have
proper techniques to identify them. Studies
point out a possibility that the extra dimen-
sions may be ”curled up” and hence invisible.
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