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Abstract

Flow of current in an electric conductor is attributed to movement of electrons in the opposite
directions. In this paper a second- order differential equation of an electron is formed taking into
account ! a damping force owing to collisions between electrons and two more applied forces,
magnetic field and alternative electric field in perpendicular directions and has been completely
solved in closed form subject to the prescribed initial conditions. The governing differential
equation of motion of the electrons is separated into two tractable simultaneous equations by
use of complex number iota (I = v/—1). It is proved that the effect of damping partially dies
away after sometime vis-a-vis theoretically after a long time, say after infinite time. The
acceleration, velocity and distance described by the electron at any instant of time are

determined. Thereafter their maximum and minimum values are found out.
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1. Introduction

Mahindra Sing Sodha published a paper in Aug 07
issue of Bull IAPT wherein he has considered
damped motion of an electron with formation of
its relevant differential equation of motion in three
cases but without going in for solution to the last
case. “For presentation in 27" IAPT annual
convention, Cochin University, Nov 02-04-2012.”
To, Dr. P. Radhakrishrian Email:

radhak(@cusat.ac.in”.

1. When the damped force acting on the
electron is proportional to its velocity

2. When an electric field of constant
magnitude is coupled with the damping
force.

3. When the electron is acted on by three
forces altogether, magneticand electric
fields of contact magnitudes at right
angles and the damping force.

Sodhl, however, examined its motion

reaching the steady state and the heating

effects together with current density are also
discussed by him S. N. Maitra® solved the
relevant differential equation of motion of an
electron in presence of damping force and two
mutually perpendicular magnetic and electric
fields of constant magnitudes with a subtle

technique of a complex number iota (I =

V—1) subject to given initial conditions and

subsequently explained the reasons for the

electron attaining the steady state wherein the
acceleration disappears. F  acceleration
acquired by the electron at any instant of time
and the corresponding distance described by
it. Nonetheless, in the present paper the entire
problem vis-a-vis the third case is modified in
a more cumbersome manner introducing an
alternative electric field instead of electric
filed with constant magnitude and is

ultimately solved in closed form.

1. Differential equation of motion

Let

7 =Ix+jyand v =Iv,+ jv, be the position
and velocity vectors of an electron of mass m with
charge e at any instant of time t with respect to a
fixed frame OXY with origin at O and i, j as unit
vectors along axes OX and OY at right angles,
respectively. The electron moves under the

following forces: Alternative electric Field

Electric Field = E coswyt = (IEy +j E})

Magnetic field perpendicular to the electric field

of magnitude B,
B=kB

Where, k = unit vector perpendicular to i, j and

damping force.
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With constant damping factor k, k = unit vector
perpendicular to I, j. Hence in view of (1) to (3),
the vector equation governing the motion of the

electron is

Which, can be rewritten in scalar form

avy , .dv; , , _ e
[+ =2+ k(iV, + j1;) = ——[IE, +
JEy)coswot + (IVe + jV,)xk B ........... (6)

Equating the coefficients of I and j from both side
(6),

Ve + kV, = —a, coswy t —wl, V, + kY, =
—ay coswot =Wl (7)

Or

Ve + kVy + WV, = —a,coswyt............ (8)

V, + kV, —wV, = —a, coswyt............ 9)

€Ey eEy, eB
a, = —.a., = —
x m>Y

And the dot sign derivatives with respect to time t.

2. Complete solution to motion of the

Electron.

Multiplying equation (9) by (I= v—1) and
thereafter adding to and subtracting from (8) we
get two linear equations i.e. first order differential

equations

(Ve + 1) + (k — Iw)(V, + V) = —(ay +
Iay) (COSWoE) covviniiiiii (11)

(Ve = 1%)° + (k + W) (V, — 1Vy) = —(ay —
Iay) (COSWot)..ooviiiiiiiiii (12)

It can be noted that (12) can be obtained by
replacing I by —I in (11)

Let us introduce the initial conditions that at t=0,

x=0,y=0,V, = 0and V, =0 .............. (13)

this, means that the electron starts from the origin
at rest and is accelerated owing to the applied

electric and magnetic fields;

In order to solve (11) we find its integrating factor

L = e(k—IW)t
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So that
eWot{le — I(wy — w)}

k? + (wy —w)?
e Wotlk + I(wy + W)}

e=IWE L (Vo +1V,))  + (k — Iw)(Vy +

IVy)e(""’W)t = —(a, + Iay)e(k_“"’)t coswy t 12+ (Wy + )2
k—I(wy—w)
Or —{ > —
k? 4+ (wyg —w)
d _ 1 k+Iwyg+w)_
E{(Vx + IVy) e(k IW)t} — E(ax + Iay)(elwot + T (WO m W)Z}e {k—1wit
e WOty (14)
Therefore;
By use of (15)
etWol = coswyt + Isi nwgt

1
1 Ve +1V, = —>(ay + Iay)
coswyt = > (elWol 4 g=1Wol) 2

[(k coswy t) { ! + ! } +

siwgt = —(e/Wot —eIWot) .. (15) k2+(Wo-w)?  k2+(wo+w)?
21
; ~(Wo—w) (wWo+w)
(Sl Wo t) {kz+(wo—w)Z + k2+(wo+w)2} +
I {—(wo—w) (coswyt) (Wo+w) (cos wyt)
kZ2+(wo—w)?2 kZ+(wo+w)?2
Integrating (1)subject to the conditions (13), once ksinwet ksinwet ) it { K coswot
gets k2+(wo-w)? k2+(wo+w)2} k2 +(wo—w)>2
k coswyt _ (Wo—w) sinwgt _ (Wo+w) sinwgt _
{V, + 1V, }e{k"""}t k2+(wo+w)? k2+(wo-w)2 k2 +(Wo+w)2 }
x Y (Wo+w) cos wt . (Wg—w) cos wt k sinwt
_ ! t {le+1(wo—w)}t { k2 +(wo-w)? k2 +(wo+w)? k2+(wo—w)?
__E(ax-l_lay) Oe k sinwt 16
Ehvamenri] EESS (16)

+ e{k—I(Wo'I‘W)}t dt

Wherefrom equating the real and imaginary parts

we get components of the electron along X and Y

1 .
V., +1V, = — > (a, + Iay) axes respectively.
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dx
e~ X

(Wo+w) coswyt—k sinwgyt
k2+(wo+w)?2

]

_ﬂ{(w0+w) sinwot—k coswot
2 k2+(wo+w)?

=V, =2 +
2

(Wo—w) coswpt+k sinwgt
k24 (wo—w)?2

(Wo—w) sinwgt—k coswyt
k24 (wo—w)?2

}_

e_kt [ax {kcos wt—(wo+w)sin wt
2 kZ+(wo+w)?2

kcos wt—(—wo+w)sin wt ay {ksin wt+ (wg+w)cos wt
k2+(wo—w)?2 2 kZ+(wo+w)?2

ksin wt+(—wg+w)cos wt }}
k2+(wo—w)?2

dy Vo= ay[(w0+w) sinwgt+k coswgt
a Y 2 kZ+(wo+w)?2

]

_ﬂ{(w0+w) coswot—k sinwet
2 k2+(wo+w)?

_|_

k coswgt+(wo—w) sinwyt+
k2+(wo—w)?2

(Wo—w) coswgt—k sinwgt
k24 (wo—w)?2

}_

e_kt [ay {kcos wt—(wo+w)sin wt
2 k2+(wo+w)?2

kcos wt—(—wo+w)sin wt ay {ksin wt+(wo+w)cos wt
k2+(wo—w)?2 2 kZ+(wo+w)?2

ksin wt+(—wg+w)cos wt }}
k2+(wo—w)?2

Integrating (17) and (18) and applying the initial
conditions, we obtain the distance travelled by the

electron along the axis:

w . k
(1+W—0) sin Wot—(w—o)(l—cos wot)

a
Yy
x =
2 [ k2+(wo+w)?

w . k
(W—O—l) sinwgt + (W—O)(l—cos wot)

k2 +(w-wg)?

ax {(1+W10)(1—cos WOt)+(WL0) sinwgt

2 k2+(wo+w)?2

+

Wo

(i—l)(l—coswot)— (WLO) sinwot} N

k2+(w-wq)?

—ktx {k{k[(l—cos wt)+w sin wt]—(wo+w)[w (1—cos wt)—k sin wt]
e 5 {k2+(wo+w)2} (k2 +w2)
k{k[(1—cos wt)+w sin wt]-(W—-wg)[w (1—cos wt)—k sin wt] } .

(k2 +(W-wo) 2} (k2 +w?)

ay {k{w[(l—cos wt)—k sin wt]+(wo+w)[k (1—cos wt)+w sin wt] }
2 {kZ+(wo+w)2}(k2+w?2)

k{w[(1—cos wt)—k sin wt]+(w-wq)[k (1—cos wt)+w sin wt] }
{k2+(w—w()2}(k2+w?2) }}

w k .
ay (1+W—0)(1—cos wot)+(70) sinwyt

y=-—-1

k2+(wo+w)?2

(WLO) sinwgt — (Wio—l)(l—cos wot)

k2 +(w—-wp)?

_ﬁ{(lﬁﬁ%) sinwot—(WLo)(l—coswot)

2 kZ+(wo+w)?2

(Wio_ 1) sinwgyt+ (WLO) (1—coswy t)}

k2+(w-wg)?

—kt[%y {k{k[(l—cos wt)+w sin wt]-(wo+w)[w (1—cos wt)—k sin wt]

el (k2 +(wo+w)2} (k2 +w?2)

k{k[(1—cos wt)+w sin wt]-(W—-wg)[w (1—cos wt)—k sin wt] }
{k2+(w—-w()2}(kZ2+w?2)

+

+

Ax k{w[(1-cos wt)—k sin wt]+(wo+w)[k (1—cos wt)+w sin wt] }
2 { {kZ+(wo+w)2} (k% +w?)

k{w[(1—cos wt)—k sin wt]+(w—-wq)[k (1—cos wt)+w sin wt] }
{k2+(w—w()2}(kZ2+w?2) }}

Nevertheless the expressions for the velocity

components can be put as

_ ﬂ{ cos(wot+p) cos(wot—q) } _

x 2 (VkZ+w+wg)2 k2 +(w-wg)?
%{ sin(wgot+p) _ sin(wot—q) }_
2 (VEZ+(w+wg)?2  Jk2Z+(w-wg)?
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e—kt{a_Y{ cos(wt—p) cos(wt—q) }
2 WKZ+(w+wo)? — JkZ+(w-wo)?

sin (wt-q) }} ........ (21)

VEZ+(W+wg)? B VEZ+(W—wg)?

ay { sin (wt—p)
2

_ _%{ cos(wot+p) cos(wot—q) }_
Y 2 [k HwHwe)?  JKZH(w-wp)?

a_y{ sin(wot+p) . sin(wgt—q) }_
2 (VEZ+(W+wp)2 k2 +(w—wg)?

e—kt{&{ cos(wt—p) cos(wt—q) }_
2 (ViZ+(w+wo)? * JkZ+(w-w)?

ﬁMMﬂ)b ...... (22)

VEZ+(W+wg)2 k2 +(w-wy)?

ay { sin (wt—p)
2

Where tan p = k/( w+w,) and tan g = k/( w+wy)

Or otherwise with tan a = % e (23)
y

sz

f 2 2
ax“tay {cos(w0t+p+o<) n cos(wot—q—oc)}

2 VEZ+(W+wg)?2 VEZ+(Ww—wg)?2

—_kt | cos(wt—p—) cos(wt—q—«)
e {\/kz‘l'(W‘l'Wo)z + \/k2+(W—W0)2} ......... (24)

f 2 2
Vo= ax“+ay {sin(w0t+p+oc) sin(wot—q—o()}

Yy 2 VEZ+w+wg)2 (k2 +(w—wp)?

—kt | sin(wt—p—o) sin(wt—q—«)

{\/k2+(W+W0)2 + \/k2+(W—W0)2} ......... (25)
Integrating (24) and (25) and employing the initial
conditions (13), we can also find the position (x,y)

of the electron at any time t.

But differentiating with respect to time t rather
than {(17),(18)} or {(21),(22)} we can find the

acceleration components in more simplified form:

/axz+ay2 in(wot )
sin(wot+p+«
[WO { 0 p +

fo =V =" T G ?

sin(wot—q—«) n e_kt [W { sin(wt—p—x)
o) T+ Gutwo?

sin(wt—q—o) cos(wt—p—)

Vi w-woz) | it wrw)?
cos(Wt—q—x)
Nrzorme 1) RESE (26)
2
f = V — _W [W {CO s(Wot+p+) _

cos(Wot—q—o)) e_kt [W { cos(Wt—p—)
Tertrmm) T+ Gwrwo?
cos(wt—q—tx)} _ k{ sin(wt—p—-x)

Testmmwor) )

sin(wt—q—ox)
N (26)

Squaring and adding (24) and (25) we have an

expression for velocity

b2 = ax2+ay2 [{ 1 N 1 }(1 +

4 k2+(wo+w)?  kZ+(wo—w)?

o —2kt) +2{cos(2w0t+p—q)+e'2ktcos (+a)]
VEZ+W+wg)2 k2 +(w—wy)2

2
(ax2+ay ) _kt [{co s(wot+p+)

2 VEZ2+(Ww+wg)?2

cos(wot—q—x) { cos(Wt—p—o) cos(Wt—q—x) }
\/k2+(W—W0)2} VEZ+(W+wg)2 k2 +(w—wg)?

{sin(wot+p+o<) . sin(wot—q—oc)}{ sin(wt—p—o)
VEZ+(W+we)2  Jk2Z+w-wp)2” k2 +(W+w)?

sin(wt—q—)
Nrarscrmr 111 ERSRRE (28)

Discussion and Conclusion:

After a lapse of time t, e ¢ —»
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0Oast —® oo and so from (28), one gets, v; =

axz+ay2 1 1
0 }

2

— <rv<
k2+(w-wo)?2  JkZ+(w+wo)Z) T T

2
,ax2+ay { 1 1 }
U2

2 VEZ+(W+wg)2  JkZ+(w-wg)? -

. (29)

Which, rectifies that as the time passes, the
velocity of the electron attains the minimum and
the maximum values v; and v, respectively as

shown in (29).

Similarly, squaring and adding (26) and (27) we

get its acceleration f:

f2

B (a,” + ayz)wo2 [{ 1

4 k? + (wy + w)?

1
* k? + (wy — W)Z}
2{cos(Qwot +p — q) + e " **cos (p + q)
- VK2 + (w+wp)2 k2 + (w—wy)?
+ e—kt fl + e—Zkt fz

—

Where f; and f, are not constanmut circular
functions of time t and are finite as t == o. So
as the time passes, e %, e 2¥'_5 0, which
confirms that in light of (29)

Equating equation (19) and (20) representing the
position (x, y) of the electron at time t can be

written as

After a significant time i.e. as t — oo,

e~ 2kt —»( 5o that (32) and (33) yields

f 2 2
ax“tay {sin(w0t+p+oc) n sin(wot—q—oc)}

VEZ+(W+wg)2 K2+ (w-wg)?

X =

2W0

Ax

(W+W0) _ (W—WO) _ e—kt
2wo {\/kz"'(W"'Wo)z \/k2+(w—w0)2} 2 {flax +

_ Gyk 1 _ 1
fzay} 2Wwo {\/k2+(W+W0)2 \/k2+(w—wo)2}.“(32)

f 2 2
ax“+ay {cos(w0t+p+oc) cos(wot—q—oc)}

x= 2wy JEZ+(WHwe)2  JEkZ+(w-wg)2
ay { (w+wg) _ (w—wyp) }_

2wy (VEZ+(w+wg)2  JEkZ+(w-wg)2

e—kt

> {ax ki (coswt,si nwt) +

ok 1

Wo {ﬁ k2+(W+W0)2 N

a, ky(coswt,si wt)} + 2a

1
N

R*=(x—x)*+ ¥ —y1)?

_al ay2 { 1
N 4 W02 k2 + (WO + W)Z

1
+ k? + (wg — W)Z}
N 2cos(2wot+p —q)
V2 + (wwg)2 k2 + (w—wy)?

....(34)
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As t increases further i.e on the whole as

t —poo because of —1 < cos(wogt+p—q) <

1 get,

/axz+ay2 { 1 1

VEZ+(Ww—wg)? - VEZ+(W+wg)?

/axz+ay2 { 1 1

VEZ+(W+wg)2  JkZ+(w-wg)?

}SRS

ZWO

}.....(35)

ZWO

Where, R is the distance of electron from a fixed

point P(x4, y;), given by

Y = { wWHwo) — (w-wy) }_
L7 2w VkZ+wHwo)?Z  JKZ+(w—wg)2
ayk{ 1 . 1

2wy JEZ+(wHwg)2  JkZ+(w—wg)2’’

_ % { (wW+wo)  (w=wp) }
Y1 2wy (VKkZ+(wW+wg)2  JkZ+(w-wg)2
1 1

axk { _
2wo VEkZ+(WHwg)2 2+ (w-wp)2

1......(36)

The above inequality suggests that as the time
passes, the effect of damping partially dies away
and the electron ultimately remains in motion with
its distance R from the above fixed point

fluctuating between two values 1y, and r, given by

,ax2+ay2 { 1 1 }

= 2wg JKZ+(w—wg)2 - JI2 4 (wiwg)?
= 2 we {m —

1
m} .............. (37)

N z
—
k B
i E, Cos wyt
\ -
S y
1
—
E, Cos w,t E Cos wt

X

Figure 1, Path of an electron under mutually
perpendicular alternative electric and constant

magnetic fields.
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