
Physics Education    1 Apr – Jun 2015 

 

Volume 31, Issue 2, Article Number : 3                                                                                                      www.physedu.in  

 

Note on the magnetic energy of a rotating charged metal sphere 

Sergey N. Sazonov
1  

1Ufa State Aviation Technical University 
Ufa 450000, Bashkortstan Republic, Russia.  

 
(Submitted 12-01-2015) 

 
Abstract 

Contribution of the magnetic energy to the energy of field of a rotated charged conducting 
spheroid is calculated by a method which does not use either the integration of the magnetic 
energy density as the surface integration of the scalar product of the current density vector 
or the vector potential of field. The method may be interesting for a student, studying the 
classical electrodynamics course.  

 
 

1. Introduction 
The problem of magnetic field calculation, created 
by a rotating charged conducting sphere, is a 
traditional part of university textbooks on 
electrodynamics ([1]). If the sphere’s radius is a, it’s 
angular velocity is  and the net charge on sphere is 
Q = 0· 4 a

2, then, in Gaussian units, the solution of 
the Poisson equation for the vector potential A( R ) 
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is the sphere’s dipolar moment,  
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is the magnetic field induction inside it, R, ,   are 
the spherical coordinates, defined so that Oz axis is 
along the vector  and the center of sphere 
corresponds to R = 0, e is the correspondent unit 
vector.  
To tell strictly, even in the zero electron mass 
approximation, which will be used further, the action 
of the Lorenz force on electrons will disturb the 
surface charge density 0 (we can consider the thin 
metal film sputtered on a dielectric ball instead of to 
consider the metal ball). However, it is easy to show 
(as in [2]), that the relatively rearrangement  /0 
of the charge density at any point of sphere is 
proportional to  2 where  =  a / с (c is the speed 
of light in vacuum). Considering  << 1 we will not 
pay attention on this effect beneath. 
To spin the ball with charged metal film, it’s 
necessary to spend the work W against the eddy 
electric field among other. The quantity W is called 
the magnetic field energy. Contrary to (3) – (6), the 
W value is not presented in [1]. Meanwhile this 
quantity is called for the theoretical physics as it is 
seen from the original journal articles. In [3] 
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(Appendix), author uses for the calculation of W the 
formula  
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(R3 is the symbol of integrating over all space, 
Brot(R) is the magnetic field induction in an arbitrary 
point) and derives  
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In [4] (Appendix) authors computed (8) with the help 
of formula  
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what is the more simple way owing to Dirac 
function presence in (2). The aim of this note is to 
show that an undergraduate student studying the 
classical electrodynamics may not spend the time for 
reproducing the routine algebraical calculations and 
to derive (8) more simply than in [4] if he orients 
freely in the theme of magnetostatics of 
ferromagnets in the volume, for example, of [5]. The 
method of calculation of the rotating charged body 
magnetic energy will be applied to the spheroid. For 
auditory purposes an educator may adapt this 
method turning the spheroid to sphere primarily and 
expelling a part of mathematics beneath.  

2.Magnetic energy of a rotating 
charged metal spheroid 

Let the thin metal film is sputtered onto the 
dielectric so that the equation of the external metal 
surface is: 
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where 22 yx  . The distribution of the surface 

charge density (z) is ([6]): 
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After the body began to rotate the linear current 
density of the surface charge is  
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where the angle  is defined in the Figure 1 and the 
equation tg = d / d| z| = z ·a2 / ·b2 for the    

 
FIG. 1: Vertical section of metal spheroid (the dielectrical core is not 

shown). Q – arbitrary point on it’s surface. n – normal to surface in Q, 

 is the line, tangent to spheroid in Q. 

spheroid surface was used.  

The magnetic field induction Brot(R) created in all 
space by such current distribution coincide with the 
just one Bmagn(R) created by the spheroidal 
permanent magnet of the same shape (10) with the 
magnetization  
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in accordance with the well-known statement ([6]) 
that the uniform magnetization M is equivalent to 
molecular current with the linear surface density 
                              nMi ; c ,                            (14) 

where n is the unit vector of outer normal at the 
given point of magnet surface. Let us call such a 
magnet as the equivalent one for our rotating charged 
metal spheroid.  
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Let the two ideal conductors, screaning completely 
any external variable magnetic field inside it at zero 
temperature, move from infinity to the equivalent 
magnet as it is shown in Figure 2. Everyone of the 
two has one flat surface with the deepening as the 
half of our spheroid. When the conductors will 
taught the magnet, the field of screaning currents 
Bj(R) will compensate the field of magnet in all 
space so that Bj(R) + Bmagn(R) = 0. So the magnetic 
energy (7) of our rotating spheroid is equal to the 
magnetic energy of currents in conductors which is, 
by definition, the work of external forces F1 , F2 
being spended for the conductors transition from 

 FIG. 
2: Permanent magnet and the ideal conductors. F1 and F2 are the 
external forces transferring the last two. Jsc are the screening 
currents appeared by this. 

infinity.  This work will increase the free energy   
of the system “magnet + ideal conductors”: 
                      ext W ,                (15) 

where ext  is the free magnetostatic energy of the 

retired equivalent magnet. As it was discussed in [7],  
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where B is the micro field, acting on the magnetic 
moments inside the spheroid, H is the magnetic field 
strength there, k depends only of a crystal lattice 

type of material of magnet and V is it’s volume. (k is 
ignored often in literature as it is made in [5]) 
Formula for   is presented in [8]:  

                       V j
2
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FIG. 3: The demagnetized magnet inside the system of two 
ideal conductors. P1 – PN are the magnetic moments of 

atoms. 

without any comments and references what reflects 
it’s evidence for professional physics-theoreticians. 
For students the next comment may be done.        
Let us imagine that the equivalent magnet is 
magnetized in the presence of the ideal conductors 
enveloping it from the initial state where the 
magnetic moments pi of atoms (i = 1 … N) lie 
chaotically in the Oxy plane (Figure 3). During the 
magnetization process pi vectors rotate up to Oz axis  
so that the value of angle   between pi and Oz axis 
is just the same for all atoms at any moment of time 
( =  / 2 in Figure 3). Then the vectors B and Bj 
became functions of  and (di is the vector of 
infenitizemal rotation of pi): 
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Taking in (18) Bj = 0 and B ()  cos  · ez, we 
derive (16). But for the screaning currents it must be 
Bj()  B () as the consequence of the Maxwell 
equation rot H = 4  j / c linearity. So at any , it will 
be Bj ()  cos  · ez and we came to (17).  

Using (16) – (17) in (15) we obtain 
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where Nx and Nz are the demagnetization factors of 
spheroid along Ox and Oz axes and, as it resulted 
from (13),  
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For the sphere Nx = 4 / 3 and we return from (19) to 
(8). In the general case of the arbitrary m = b / a it is 
conveniently to present the result as the W / Wel 
dependence of m where Wel = Q2/ 2C is the 
electrostatic energy of the charged metal spheroid 
and C is it’s capacity. Taking the expressions for C 
from [6] and for Nx from [9] we have: 
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for the oblate spheroid and 
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for the prolate one. Formulae (21) – (22) are 
illustrated graphically in the Figure 4. 

Formula (19) with  derived from (20) must became 
the strict one for infinite cylinder when the tangential 
component of the Lorenz force acting on the free 

electrons disappears. Inserting B = 4 M in (20) and 
using (20) in (19) with Nx = 2, we return to (7). 

 

  

FIG. 4: The dependence of the value F = (3 /  
2
)· W / Wel as function 

of the spheroid parameter m = b / a 
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