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Abstract 
 

Generations of physicists have at some point wondered about the role of complex numbers in quantum theory.  

None have had this point explained.  Taking this as a pedagogical issue, this article elucidates the origins of the 

complex requirement and draws the connection between these origins and the requirement that the state 

vector be complex.

 
 

1. Introduction 
A recent article by Sivakumar[1] highlights an 

important pedagogical void which has long plagued 

the teaching of introductory and fundamental 

principles of quantum theory.  That is, there is no 

generally accepted explanation available for the 

apparent requirement for complex numbers in the 

mathematical formulation of the theory.  Sivakumar 

provides a simplified demonstration (due to Sakurai[2] 

and Townsend [3]) that, in fact, the complex numbers 

are required.  In this article, we continue beyond the 

demonstration and attempt to explain the underlying 

issues. 

Quantum theory employs unit vectors to 

mathematically represent states of physical objects.  

In the following, we will identify four requirements 

which must be satisfied by these vectors.  We then 

show that the four requirements are not satisfied by 

real vectors, but can be satisfied by complex vectors. 

 

 

In the next section, we begin by simply stating the 

four requirements.  We then devote an individual 

section to each requirement and discuss the physical 

and theoretical origins of that requirement.Turning 

from origins, we then consider them simply as a set of 

requirements on vector structure.  By identifying this 

set of specific requirements on the vectors, we see 

clearly at exactly what point and for exactly what 

reason real vectors fail to satisfy the requirements. 

We note up front that the article intent is pedagogical.  

Accordingly, points are presented in what is, 

hopefully, an intuitive, and conceptual way.  We ask 

some leeway in completeness and rigor. 

We also note that some closely related issues are put 

aside.  For example, why the theory adopts use of 

vectors and the Born rule as a representational 

convention is an important foundational question.  

Here, we accept as a starting point that the theory 



Physics Education                                                                                              Apr- Jun 2015 

 

Volume 31, Issue 2, Article Number : 8                                                                                                             www.physedu.in  

does this.  By making these choices, we focus on the 

question of, assuming that vectors are to be used in 

this way, why must the vectors be complex. 

 

2. The Requirements 

As mentioned, the theory uses vectors to represent 

states of physical objects.  In particular, we will be 

interested in the representation of angular 

momentum states.  It is in representing these states 

that the complex requirement arises. 

The following four requirements must be satisfied by 

any vector, V, used by the theory to represent an 

angular momentum state.  We will show that they are 

not satisfied by real vectors. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors{ bi 

}(i = 1 , n).  Each constraint is of the form, pi = l ( V , bi ) l 
2 

(where the parenthesis indicates inner product). 

R2:  Vector V is n-dimensional. 

R3:  Vector V must vary with two real variables, “r” 

and “c”. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

In the next sections, we discuss these requirements 

individually with emphasis on their origins. 

 

3. Requirement R1 

In this section we state and discuss requirement R1. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors { bi 

}(i = 1 , n) .  Each constraint is of the form, pi = l(V , bi)l
2. 

Discussion: 

In constructing the mathematical structure of any 

physical theory, some convention must be adopted for 

the representation of physical phenomena by 

mathematical structures.  Quantum theory adopts, by 

postulate, the following representational convention: 

P1:  States of physical objects are represented by unit 

vectors, V. 

P2:  The probability for a transition between two 

states is represented by the “Born Rule”.  The “Born 

Rule” yields the probability as an inner product 

function on two vectors, V and b, which represent the 

two physical states involved in the transition, p = l ( V , 

b ) l 2 . 

The important point that we recognize in this section 

is that adoption of the Born Rule, in fact, imposes a 

constraint on vector V relative to vector b. 

The familiar use of the Born Rule is to enter with the 

two state vectors, V and b, and obtain the transition 

probability, p.  Here, we are recognizing a different 

perspective.  It is the probability that is the observed 

physical fact.  The vectors are merely mathematical 

structures employed to represent physical states.  By 

adopting the Born convention to represent transition 

probabilities we are required to choose vectors which 

yield the correct probability value.  From this 

perspective, the Born Rule, in fact, defines the vector 

pair (a partial definition) by specifying their relation.  

Consequently, we recognize a Born Rule expression as 

a “Born Constraint” on a state vector, V, relative to a 

transition state vector, b. 

In addition to recognizing that the Born Rule imposes 

Born Constraints, requirement R1 also claims that 

there are n independent Born Constraints (with 

respect to the basis set).  How do we know this? 

A Born expression, p = l ( V , b ) l 2 , represents the 

probability for a single transition from one state to 
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another.  It is observed physical fact, however, that an 

object in a given state can transition into one of some 

number, n, of alternative possible transition states.  

Each transition has some observed probability, pi , and 

since they are mutually exclusive and exhaustive,   (i = 

1 , n) ( pi ) = 1 .  This fact about probabilities imposes a 

requirement on the set of Born expressions 

representing the probabilities for the set of possible 

transitions. 

That is: 

 (i = 1 , n) ( pi ) =  (i = 1 , n) (l ( V , bi ) l 
2 ) ,     (Eqn. 1) 

We can recognize this as, in fact, a requirement on the 

vector space used to represent states by the Born 

rule.  That is, the vector space must come equipped 

with a defined L2 vector norm. 

The L2 vector norm is defined as follows: 

l V l =  (i = 1 , n) (l ( V , bi ) l 
2 ) . 

If vector V is a unit vector, then, 

 (i = 1 , n) (l ( V , bi ) l 
2 ).    (Eqn. 2) 

We see then that the choice to represent a set of 

transition probabilities by the Born Rule (Eqn. 1) has 

imposed the requirement that the vector space must 

be defined to have an L2 vector norm (Eqn. 2). 

Recognizing that the vector space has an L2 vector 

norm is useful as follows.The set of vectors{ bi }(i = 1 , n)in 

(Eqn. 2)are an orthonormal basis set.  Consequently 

there is a set of n individual Born Constraints on 

vector V, one associated with each basis vector.  These 

constraints are independent because each is relative 

to a basis vector that is orthogonal to all of the others. 

We therefore have the result R1 stated above.  Any 

vector V used by the theory to represent the state of 

an object must satisfy requirement R1. 

We note, in passing, an interesting and pedagogically 

useful point.  The explanation of why quantum theory 

employs Hilbert space vectors to represent states is 

sometimes opaque.  Here we understand that the 

theory makes an, early and fundamental commitment 

to the use of vector spaces which have an L2 structure.  

If one generalizes the structure of a vector space in 

every way, dimensionality, etc., but retains the L2 

structure, then that is the set of Hilbert spaces.  

Quantum theory employs Hilbert spaces because the 

theory makes use of the L2 structure. 

 

4. Requirement R2 

In this section we state and discuss requirement R2. 

R2:  The vector is n dimensional. 

Discussion: 

Having done the work of the previous section, we 

immediately recognize this requirement on any state 

vector.  As explained, vector V is in a vector space 

spanned by the n orthonormal basis vectors { bi }(i = 1 , 

n).  Consequently, V is n dimensional. 

 

5. Requirement R3 

In this section we state and discuss requirement R3. 

R3: Vector V must vary with two real variables, V (r, c). 

Discussion: 

It is an observed physical fact that angular momentum 

states vary as a function of orientations or directions 

in physical space.  The point is general, but can be 

seen by considering a simple example of two spin 1/2 

objects.  Suppose one object interacts with a Stern-

Gerlach apparatus oriented in the z direction and 

deflects up along that direction.  The second object 
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interacts with a machine oriented along the 

(direction and deflects up along that direction.  

Subsequent to the interactions, these two objects are 

in objectively different physical states.  What does it 

mean to be in different states?  It means that 

subsequent observations made on the objects1 will 

yield different results.  They are observably different.  

We can state this same physical fact in another way by 

saying that angular momentum states vary with 

orientations in physical space. 

It is a general point that in constructing a 

mathematical theory, for any mathematical object 

chosen to represent the physical state, that 

mathematical object must have the ability to vary as 

the physical state does.  In particular, any vector we 

employ to represent angular momentum states must 

have the ability to vary with orientations in physical 

space.  We can recognize this explicitly by writing the 

state vector as a function of orientation, V ( O ), where 

“O” is an orientation in physical space.  

Orientations in three dimensional physical space vary 

with two degrees of freedom.  Typically, polar 

coordinates, ( are chosen to label spatial 

orientations.  Here it will be useful to choose a 

different coordinatization.  Select an arbitrary 

orientation, O2 , then let real variables ( r , c ) label 

variation in radial and circumferential degrees of 

freedom relative to O2 . 

We can explicitly recognize this variation in two 

degrees of orientation freedom by writing the above 

state vector, V ( O ), as V ( r , c ) with “r” and “c” 

coordinates as defined. 

We therefore have requirement R3 as given above.  

We note that the point here is to recognize that any 

vectors representing angular momentum states must 

                                                           
1 The difference involves probabilities and 
consequently is observed on ensembles of 
similarly prepared objects. 

have the ability to vary as the actual physical state 

varies, i.e., with two orientation degrees of freedom. 

 

6. Requirement R4 

In this section we state and discuss requirement 
R4. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

(Since requirement R4 references the R1 Born 

Constraints, we copy again R1. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors 

{bi}(i = 1 , n).  Each constraint is of the form, pi = l(V , bi)l
2) 

Discussion: 

In the last section, we recognized the physical fact 

that angular momentum states vary with physical 

space orientations.  Here, we recognize a second 

empirically observed fact characterizing angular 

momentum states.  That is, for two angular 

momentum states associated with two different 

physical space orientations, O1 , and O2 , the 

probability for a transition from one state to the other 

varies as a function of the separation angle between 

the two orientations. 

Here is where we can take advantage of the “r” and 

“c” coordinates defined earlier.  If we take O2 to be 

our arbitrary fixed reference, then the separation 

angle between the two orientations, O1 , and O2 , is 

given by the coordinate “r”.  Consequently, pi = pi( r ). 

For the Born Constraints to vary parametrically with 

“r” we have made an assumption.  That is, vector V is 

associated with one spatial orientation, O1 , and all of 

the transition state vectors, { bi } are associated with a 
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single orientation, O2 .  This is appropriate for angular 

momentum observations.  Suppose an object is in the 

state represented by vector, V ( O1 ).  The object then 

interacts with a Stern-Gerlach apparatus oriented 

along O2 .  In this case, there are a set of n possible 

transition states, but we note the important fact that 

they are all associated with physical space orientation, 

O2 . 

Consequently, we have the result that the initial state 

vector is subject to a set of Born Constraints relative 

to the transition state vectors, { bi }, and these 

constraints all vary parametrically with the separation 

angle parameter “r”. 

 

7. Satisfying The Requirements 

In this section we collect again the four requirements 

and show that they are not satisfied by real vectors, 

but can be by complex vectors. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors { bi 

}(i = 1 , n) .  Each constraint is of the form, pi = l(V , bi)l
2 

R2:  Vector V is n dimensional. 

R3:  Vector V must vary with two real variables, “r” 

and “c”. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

We show first that real vectors do not satisfy these 

requirements as follows: 

Point 1:  Number of variables present 

Assume V is real.  Real vectors vary with one real 

variable per vector dimension.  Requirement R2 

requires that V is n-dimensional.  Therefore, V varies 

with n variables. 

Point 2:  Number of constraints present 

We see from R4 that the set of R1 constraints vary 

parametrically with variable “r”.  If we consider any 

fixed value of “r”, then the R1 constraints impose n 

independent constraints on V (with respect to the 

orthonormal basis set { bi }. 

Points 1 and 2 imply:  It follows that vector V is fully 

specified with respect to the basis set { bi } (for any 

fixed “r”).  There are n variables and n independent 

constraints.  All variables present are assigned values 

by the constraints. 

Therefore if vector V is real, and satisfies 

requirements, R1, R2, and R4, then it: 

1. Is fully specified by “r”, and 
2. Varies as a function of “r”. 

 

Therefore:Having satisfied requirements, R1, R2, and 

R4, vector V cannot satisfy requirement R3.  Vector V 

varies with and is fully specified by “r”.  Consequently, 

it is not possible for the vector to vary (nontrivially) in 

the second variable, “c”, as is required by requirement 

R3. 

We have shown that if vector V is real then it does not 

satisfy the set of requirements.  Having done this 

analysis, however, one sees how substituting complex 

vectors for real vectors avoids the constraint 

limitation.  The constraint encountered by real vectors 

is due to the availability of only n variables in the face 

of n constraints.  A complex vector, however, provides 

2n independent real variables.  In the face of only n 

constraints, a 2n variable complex vector provides 

sufficient freedom to vary in both “r” and “c” degrees 

of freedom. 

 

8. Discussion 
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Hopefully the analysis presented in this article is of 

pedagogical value.  We have separated out issues in 

order to provide good access to the role of complex 

number in the theory. 

We have identified a set of four specific requirements 

on the vectors employed by the theory.  The goal was 

to facilitate two different perspectives linked by this 

set of requirements. 

One perspective is mathematical.  One can disregard 

the origins of the requirements and consider them 

simply as given.  From this starting point, the exercise 

is one of vector structure.  One can observe the 

interplay of freedom and constraint considerations 

that prevent the requirements from being satisfied by 

real vectors. 

The other perspective is physical.Here we disregard 

the mathematical implications, and trace back the 

origins of the requirements.  What specific features of 

the physical phenomena or adopted theoretical 

conventions impose these requirements? 

The set of four requirements therefore serves as a 

point on which to stand and contemplate both 

available perspectives.   From there, the student of 

foundational quantum theory can find a traceable 

connection all the way from the physical and 

theoretical origins through to their end consequence, 

a particular mathematical detail in the formal theory, 

the presence of complex numbers.  More importantly, 

the student has a useful framework to separate out 

issues and make their own evaluation of the 

requirements, their origins, and their implications. 

We point out two particular results of our analysis. 

It is sometimes commented in the foundational 

literature that to explain some particular 

mathematical detail of the theory would be to 

elucidate its physical origins.  Here we see that there is 

an identifiable physical origin.  The complex 

requirement is, in part, a consequence of the fact that 

angular momentum states vary in two physical space 

orientation degrees of freedom.  There is, however, a 

second equally important origin.  It is the theory’s 

adoption of a particular representational convention 

that imposes very substantial pairwise constraints on 

the vectors employed.  Thus we see that, in this case, 

elucidating physical origins is not sufficient.  We also 

must elucidate the theoretical representational 

conventions adopted. 

We also mention a second result.  We now have an 

answer to the big question, why are complex numbers 

required by the theory?  The fundamental reason that 

they are required is to resolve a disappointingly 

mundane issue of freedom versus constraint.  Quite 

simply, they provide more variables than real vectors.  

State vectors are subject to the significant “Born 

Constraints” yet must also honor a freedom demand 

when representing angular momentum states.  The 

vectors must satisfy both.  As we have seen, real 

vectors come up short on available variables.  

Consequently, we find complex vectors employed to 

represent states of physical objects. 
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