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Abstract

An electrostatic potential minima does not exist in three dimension. However, an alternating electric field
can produce a dynamical potential minima in three dimensional space and charged particles can be
trapped within such potential well. A system of trapped ion/s is almost free from unknown external
perturbations and hence such a system finds enormous applications in different fields. This article explains
how such a potential minima can be developed with electric field only and how the charged particles can be
trapped within it. Some important applications of trapped particles have been outlined here with a
demonstrative experiment for realization of the technique.

1 Introduction

‘Let us consider a particle at rest’-this is often the in-
troductory sentence in our text books or while teach-
ing in classroom. But can we have a particle at rest in
practice? A famous remark from Erwin Schroedinger
may be quoted in this regard, ‘We never experiment
with just one electron or atom or (small) molecule. In
thought-experiments we sometimes assume that we
do; this invariably entails ridiculous consequences’.
However, it has now become a reality to have a par-
ticle almost at rest. A single particle like an atom, or
even an electron can be confined in space within a re-
gion of few micrometers. For confinement of charged
particles, two different techniques were developed by
two pioneers Wolfgang Paul (the device, named af-

ter him, known as Paul trap [1]) and Hans Georg
Dehmelt (the device, named after Frans Michel Pen-
ning, known as the Penning trap [2]). In Paul trap,
the charged particles can be trapped by using a static
electric field together with a time varying electric field
while in Penning trap, a static magnetic field is re-
quired in association with a static electric field. Both
of these devices are regularly used as important tool
in different fields, both of fundamental physics in-
terests and commercial applications. Here we will
restrict ourselves in discussions related to the Paul
trap. The readers are, however, referred to an arti-
cle [3] which covers discussions on both the Paul trap
and the Penning trap.

The article has been arranged in the following way.
In section 2, the fundamental technique of creation
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of potential minima using only the electric field (as
associated with the Paul trap) has been described.
The equation of motion of a single charged particle
within such a dynamic potential well is reviewed in
section 3. In section 4, a demonstrative experiment
has been presented. The applications of trapped ion
system in different fields have been outlined at the
end of this article (section 5).

2 How to create a potential
minima in 3D?

A particle in one dimension can be confined by a
restoring force proportional to its displacement from
the equilibrium position (the force as associated with
a simple harmonic motion). In other words, it re-
quires a quadrupole potential (proportional to the
square of the displacement). Naturally, for three di-
mensional trapping of a particle, the potential should
be quadrupolar in all three dimensions and is de-
scribed as follows:

Φ(x, y, z) = Ax2 +By2 + Cz2, (1)

where A, B, C are constants. For a charged parti-
cle, this potential can be chosen as the electric poten-
tial. Thus the force on a particle of charge e under
the influence of this potential is given by

~F (x, y, z) = −e~∇Φ(x, y, z)

= −2e(Axx̂+Byŷ + Czẑ). (2)

As is necessary for trapping, the force ~F should be
restoring in nature and thus it follows that the con-
stants A, B and C are all positive (for a positively
charged particle). However, any electrostatic poten-
tial in free space should satisfy the Laplace’s equation
(∇2Φ(x, y, z) = 0), following which, at least one con-
stant must be negative for this electrostatic potential.
Thus it can be concluded that no electrostatic poten-
tial minima exists in three dimension 1.

So how to create the electric potential minima in
three dimension? The answer to the this challenge

1This is, in literature, known as Earnshaw’s theorem
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Figure 1: The hyperbolic geometry of the electrodes
with necessary electrical connections for develop-
ing the quadrupole potential as defined in eqn. 5.
The dotted lines show hyperbolic equipotential sur-
faces (eqn. 3).

was addressed by Wolfgang Paul who demonstrated
that a time varying electric potential can produce a
‘dynamic minima’ in three dimension. The idea is
to vary A, B and C with respect to time, such that
the potential having its minima in one direction at
an instant, rotates to the other direction at a later
instant. If the rotation of the potential minima is
faster as compared to the motion of the charged par-
ticle, the particle will experience a time-averaged po-
tential minima in all directions. The particle will be
confined within the potential well if the average po-
tential depth is larger than its kinetic energy. This
can be compared to a ball placed on a rotating saddle
(see, for reference, a nice demonstration in youtube,
the mechanical analogue of Paul trap [4]).

In order to produce the quadrupole electric poten-
tial, suitable geometry of the electrodes is required. If
there exists a rotational symmetry about the z axis,
A = B, and hence C = −2A. Consider, for exam-
ple, the electrode geometry depicted in fig. 1. As can
be seen from fig. 1, two coaxial bowl-shaped elec-
trodes at the ends, together with the ring electrode
at the middle are hyperboloids of revolution about
the z axis. If the radial and axial dimensions of the
trap are respectively r0 and z0, the equations for the
hyperbolic electrode surfaces are given by [5]
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Figure 2: Potential surface in the r−z plane at differ-
ent instant. (a) Harmonic oscillator Potential along
r(in x − y plane) and inverted oscillator potential
along z at t = 0. (b) Harmonic oscillator Poten-
tial along z and inverted oscillator potential along r
at t = π/Ω. The minima of the potential surface ro-
tates in the r−z plane with angular frequency Ω, the
frequency of the applied alternating potential.

r2 − 2z2 = r20,

r2 − 2z2 = −2z20 , (3)

where r2 = x2 + y2. When voltage is applied to
the middle electrode or on the end electrodes, it pro-
duces equipotential surfaces defined by eqn. 3. The
potential inside the trap can therefore be written as

Φ(r, z) = A(r2 − 2z2). (4)

Now, the coefficient A should be chosen in such a
way that the potential has its minima along r (i.e. in
the x− y plane) at an instant, and in the z direction
at a later instant. To elucidate the statement, let us
consider the following form of the potential:

Φ(r, z, t) =
U + V0 cos Ωt

2r20
(r2 − 2z2). (5)

It is seen from eqn. 5 that, at time t = 0 the poten-
tial resembles that of simple harmonic oscillator along

r and inverted harmonic oscillator along z [fig. 2(a)].
However, the vice-versa hold at t = π/Ω [fig. 2(b)].

3 Motion of a Trapped Ion

The equation of motion of a single particle of charge e
and mass m under the influence of the potential (de-
fined by eqn. 5) follows from Newton’s law of motion
and can be described by the following equations:

d2r

dt2
= − e

mr20
(U + V0 cos Ωt)r,

d2z

dt2
=

2e

mr20
(U + V0 cos Ωt)z. (6)

Using a common symbol u for both r and z, and
introducing the dimensionless parameters au, qu and
ζ the eqn. 6 can be rewritten as

d2u

dζ2
+ (au − 2qu cos 2ζ)u = 0, (7)

where

az = −2ar = − 8eU

mr20Ω2
,

qz = −2qr =
4eV0
mr20Ω2

,

ζ =
Ωt

2
. (8)

The equation of motion (eqn. 7) is a standard dif-
ferential equation in mathematics, known as Mathieu
differential equation. The solutions of this equation
result in either stable or unstable motion depending
on the values of the parameters au and qu, defined in
eqn. 8. There exists a region in au vs. qu diagram
for which the ion-motion is stable along a particular
direction, for example along r (fig. 3). A similar sta-
bility region exists for the motion along z direction.
An intersection between these two stability regions
(the shaded region in fig. 3) is where the stable mo-
tion in three dimension is sustained.
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Figure 3: Stability region in au vs. qu diagram for
an ion trap. The regions bounded by the dotted line
and bold line correspond to stable motion along r
and z respectively. The motion is stable along both
r and z directions in the shaded region and the trap
operating parameters au and qu are chosen in this
region.

In the ‘adiabatic approximation’ (i.e. for small au
and qu values), the solution of Mathieu differential
equation can be represented in the following form [5]:

u = c
(

1− qu
2

cos Ωt
)

cosω0ut, (9)

where c is a constant and

ω0u =
βuΩ

2
. (10)

The parameter βu, for small au and qu, can be
defined as

βu ≈
√
au +

q2u
2
. (11)

Eqn. 9 shows that the ion oscillates with a fre-
quency ω0u and its motion is modulated with the fre-
quency Ω of the applied alternating potential (fig.4).
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Figure 4: The motion of a trapped ion in one di-
rection. A low frequency motion, called the secu-
lar motion is modulated by a high frequency mo-
tion, the micromotion. The simulation of the tra-
jectory is done for qr = 0.5, Ω = 2π × 50 rad/s and
ω0r = 2π × 8.5 rad/s.

For βu < 1, ω0u < Ω. The slow frequency motion
(at ω0u) is called the macromotion or secular motion
while the higher frequency motion (at Ω) is termed
as the micromotion.

4 An Experiment

In this section, a demonstrative experiment has been
described. Dust particles, here chalk dust, have been
trapped in a ring trap at the line frequency, at 50 Hz.

The trap setup is shown schematically in fig. 5.
The surfaces of two end electrodes are hyperboloids
of revolution about the z axis and the ring electrode
at the middle has hyperbolic cross section, a similar
geometry that is described in fig. 1. In the experi-
ment, the electrodes are made of brass. The ring is
taken of diameter ∼ 10 mm (r0 = 5 mm) and the end
cap electrodes are separated by a distance (2z0) of
7 mm (note that, r20 = 2z20 , a dimensional constraint
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Figure 5: Schematic of a ring trap setup. The end
electrodes are connected together and the alternat-
ing potential is applied between the ring and the end
electrodes.

of this electrode geometry as necessary for efficient
trapping). The end electrodes are electrically con-
nected together and an alternating voltage is applied
between the ring electrode and the end electrodes.
The line voltage (230 V, 50 Hz) is passed through a
variac and fed to a step-up transformer for necessary
voltage amplification. A typical voltage used for trap-
ping is 1500 V. It is to be noted that no dc potential is
applied here i.e. U = 0 and hence au = 0 (dc poten-
tial just modifies the effective potential depth). The
chalk dust are taken in a syringe and injected inside
the trap. The dust get ionized due to injection and
are trapped inside. A photograph of the experimen-
tal setup with trapped dust particles at the center is
presented in fig. 6.

The dust particles form thread-like clusters and os-
cillate inside the trap. If the trapping voltage is sta-
bilized and the system is adequately isolated from
the surroundings, the particles can be stored for days
within the trap. It is possible to estimate the charge-
to-mass ratio of the trapped dust clusters. For sta-
ble and efficient trapping, the q parameter should be
around 0.5. With the applied ac voltage V0 = 1800 V,
at frequency Ω = 2π × 50 rad/s, the charge-to-mass
ratio (e/m) is estimated from eqn. 8 as 3×10−4 C/kg.

Figure 6: A photograph of the setup with trapped
chalk dust. A laser beam is incident on the trapped
dust at the center and is scattered by the dust parti-
cles for clear visualization of ion trapping.

5 Applications

Ion traps provide best realization of ‘particle at rest’
and hence it is used as an important tool in many
applications. The thermal motion of trapped ion can
be reduced by laser cooling technique and it can be
localized within its de Broglie wavelength which is
few µm [6]. Thus a single trapped and laser cooled
ion represents a perturbation-free quantum system.
A series of experiments are being performed for test-
ing and demonstrating wide aspects of fundamental
physics. A single or few ions are used for preci-
sion measurement of various atomic properties such
as lifetime of atomic states [7], transition frequency
or ac Stark shift [8], quadrupole moment of atomic
states [9], atomic parity violation [10] etc. A sin-
gle trapped ion is used for developing atomic fre-
quency standard [11]. Single or few trapped ions are
used for quantum teleportation [12], quantum infor-
mation processing [13] and designing quantum com-
puter [14]. Large ion traps are used for Coulomb crys-
tal study [15], mass spectrometric applications [16]
and many more [17].
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