
Physics Education 1 Apr-Jun 2015

Functional differential equations.

4: Retarded gravitation

C. K. Raju

ckr@ckraju.net

(Submitted 27-06-2015)

Abstract

Are functional differential equations (FDEs) only about electrodynamics? No. They apply also to
gravitation. We explain a recent reformulation of gravitation, called retarded gravitation theory (RGT),
which is Lorentz covariant, and uses functional differential equations. RGT modifies the Newtonian
“inverse square law” gravitational force: the RGT force depends upon (a) retarded distance, and
(b) includes a velocity-dependent term. RGT, since Lorentz covariant, theoretically improves on
Newtonian gravitation. At the same time, RGT has the practical advantage over general relativity theory
(GRT) that a solution of the many-body problem is feasible in RGT. Hence, RGT can and ought to be
applied to the galaxy where Newtonian physics apparently fails but GRT cannot be applied. The tiny
velocity dependence of the RGT force is amplified across a hundred billion co-rotating stars in the galaxy,
so that non-Newtonian velocities of stars in spiral galaxies are to be expected on RGT, even without dark
matter. Possible experimental tests of RGT include the flyby anomaly observed for NASA spacecraft
which depends systematically on velocity-effects due to the rotation of the earth.
We further clarify that Laplace’s objection to pre-relativistic naive theories of retarded gravitation (NRG)
does not apply to RGT. We solve the 2-body FDEs of RGT for the sun-Jupiter case: the system is stable
despite tiny differences from Newtonian gravitation. Thus, FDEs are a general feature of post-relativity
physics.

1 Recap

In three earlier articles[1, 2, 3] in this series, we saw
that functional differential equations (FDEs) are fun-
damentally different from ordinary differential equa-
tions (ODEs). Hence, doing physics with FDEs leads
to a paradigm shift in physics. Further, FDEs arise
naturally in classical electrodynamics: without any
new physical hypotheses but just by doing the math
right. The right way to solve for the classical hydro-

gen atom, even without radiation damping, is to use
FDEs and that changes the qualitative features of the
solution.

What happens if we have radiation damping? The
problem of the motion of even a single charged par-
ticle, in classical electrodynamics, with radiation
damping has remained mathematically unsolved for a
century because of runaways. These runaways can be
controlled by modifying Maxwell’s equations at the
microphysical level, so that the equations of motion

Volume 31, Number 2 Article Number : 1 www.physedu.in



Physics Education 2 Apr-Jun 2015

of even a single charged particle become FDEs.

Before proceeding further to quantum mechanics,
there is one doubt which needs to be settled. Are
FDEs only about classical electrodynamics? No.
They are about resolving a fundamental conceptual
flaw in Newtonian physics. I have dealt with this is-
sue of Newtonian physics in detail in previous articles
in this very journal,[4, chp. 2, chp. 3a, chp. 3b] and
will only summarise the key points here.

2 The problem of time in
Newtonian physics

Consider Newton’s first law of motion. It states that,
in the absence of external forces, a body continues in
its state of rest or uniform motion. Is this mean-
ingful? It is easy to understand “rest”, but what is
“uniform motion”? A body is said to be in uniform
motion if it covers equal distances in equal times. But
what are equal times?

When we say that one hour in the past is equal
to one hour in the future, there is no way to verify
it empirically. Obviously, we cannot bring back one
hour in the past and compare it in the present with
one hour in the future. We must use a clock. But,
clocks differ, so which clock should one use? Uniform
motion according to my heart beats would not be
uniform motion according to a simple pendulum, and
vice versa. Without a definition of equal intervals of
time, or the definition of an “ideal clock”, there is
no basis on which to say that a mechanical clock is
“better” than heart beats.

So, what exactly is an ideal clock? In his Prin-
cipia, Newton admitted that days and nights are un-
equal, as are the swings of a pendulum, and that no
natural phenomenon would provide an ideal clock.
But he reached the strange conclusion that it was
unnecessary to define equal intervals of time. He
said that he was concerned only with “absolute, true,
and mathematical time, which flows on without re-
gard to anything external”. Each of these adjec-
tives: “absolute”, “true”, “mathematical”, and
“without regard to anything external” makes
clear that Newton took time as an aspect of meta-

physics. In short, he thought it was all right if God
knew what equal intervals of time were, even if hu-
mans did not.

This was a mistake because to do physics, humans
too need to know what equal intervals of time are. In-
deed, Newton’s predecessor and mentor Barrow had
emphasized the need for a clear physical definition of
equal intervals of time, saying those who did physics
without it were “quacks”.[5] Why did Newton make
time metaphysical? Newton thought that making
time metaphysical was the way to make “perfect”
the notion of d

dt needed for his second law. This re-
lated to the European misunderstanding of the In-
dian calculus imported into Europe in the 16th c.
This is an interesting but long story, which I have
told elsewhere.[6, 7]

For common applications of Newtonian mechan-
ics, to planetary motion and ballistics, many common
clocks “work”. However, Newton’s failure to provide
a physical definition of equal intervals of time, be-
came prominent during attempts to reconcile elec-
trodynamics with Newtonian physics at the turn of
the 19th c. The solution provided by relativity was to
define equal times in a way which preserved electro-
dynamics but required a modification of Newtonian
physics.

Physics texts teach relativity differently: they
teach that relativity began with the Michelson-
Morley experiment which proved the absence of ether
and the constancy of the speed of light. That, how-
ever, is not correct: one cannot measure the speed of
light or anything else without a clock, and a positive
result in the experiment (as later found by Miller) is
no evidence either for ether or for a varying speed of
light.[4, p. 56–57] In fact, as explained in an earlier
article in this journal, the Michelson-Morley experi-
ment was NOT designed to test the existence of ether:
it was designed to test between the two ether theo-
ries of Fresnel and Stokes. Amusingly, it came out in
favour of the wrong theory: the Stokes theory, which
involved a mathematical absurdity. Hence, Lorentz
thought it was preferable to believe that the arm of
the Michelson interferometer contracted in the direc-
tion of motion.

Now, a clock is required even to measure lengths:
for a moving rod, one must note the positions of
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both ends of the rod simultaneously, and simultane-
ity is decided by a clock. If one postulates that
the speed of light is constant, then a photon bounc-
ing between two parallel mirrors marks equal times
between bounces, and this provides an ideal clock.
The Lorentz-Fitzgerald length contraction is a natu-
ral consequence of using such a clock.

Note clearly that the constancy of the speed of light
is a postulate, not an experimental fact. This pos-
tulate of constant speed of light automatically leads
to the Lorentz transform which Poincaré derived and
so named. That is, the special theory of relativity
came about as the solution to the problem of equal
intervals of time in Newtonian physics.

As for “ether”, the word is confusingly used in
multiple senses. One sense is as an absolute refer-
ence frame. But the original sense of ether (= sky
= ākās.a, as in the Vaíses.ika sūtra) relates to action
by contact (sam. yoga). Eliminating ether also elim-
inates action by contact, and admits, for example,
delayed action at a distance. This is mathemati-
cally equivalent to replacing ODEs by FDEs (which
Poincaré called “equations of finite differences” [4,
p. 116]). Einstein, to whom special relativity is usu-
ally attributed, never understood this point, for he
mistakenly kept approximating FDEs by ODEs, un-
til late in his life.[4, p. 122]

This process of development of relativity, by iden-
tifying and resolving a conceptual flaw in Newtonian
physics, as well as the connection of relativity with
FDEs, are both obscured by usual accounts of the
theory of relativity which focus on glorifying an indi-
vidual, Einstein. (It is on record that Einstein knew
of Poincaré’s work until 1902. In his 1905 special rel-
ativity paper, he casually used the strange term “lon-
gitudinal mass” first circumspectly used by Lorentz
in 1904. Einstein also used the novel term “relativ-
ity” first used by Poincaré in his 1904 paper (instead
of his earlier “principle of relative motion”). Einstein
later denied reading both the 1904 papers, of Lorentz
and Poincareé, and his 1905 paper on (special) rela-
tivity cites absolutely no references.)

3 Modifying gravitation

Special relativity modified Newton’s laws of motion;
but that is not enough, Newtonian gravitation too
must be modified for the two come as a package deal.
Newtonian gravitation involves instantaneous action
at a distance which is incompatible with special rel-
ativity, where the speed of light is a limiting speed.
The general theory of relativity (GRT) did modify
Newtonian gravitation. However, GRT is enormously
complicated: in a century since GRT was formulated,
even the two body problem could not be solved in it.
This creates a peculiar problem as follows.

3.1 Galactic rotation curves

Newtonian gravitation worked well for the solar sys-
tem, but it fails for the galaxy. In the solar system
the rotational speed of a planet of mass Mp is deter-
mined by

GMSMp

r2
=
Mpv

2

r
(1)

where MS is the mass of the sun, v is the rotational
velocity of the planet round the sun, and r is the
distance of the planet from the sun. This means that
the rotational velocities of planets v ∝ 1√

r
decline

with distance r from the centre. Or, in terms of the
time period T = 2πr

v , we must have T ∝ r
√
r. This

accurately fits observations: Pluto some 39.5 times
more distant from the sun than earth takes 39.5 ×√

39.5 ≈ 248 earth years to complete an orbit round
the sun.

However, what happens in a spiral galaxy is starkly
different. In spiral galaxies, the rotational velocities
of stars, instead of declining, are observed to increase
as one moves out from the centre. (Fig. 1) This is
contrary to what one expects from Newtonian gravi-
tation.

3.2 Dark matter

Of course, the Newtonian theory can be easily
“saved” by supposing that there is invisible dark mat-
ter (DM) in the galaxy. Perhaps that is so: but at
least we expect a decline in rotational velocities of
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Figure 1: Rotation curves of various galaxies. The ro-
tational velocities increase and then become roughly
constant.[8] This is contrary to the expected be-
haviour on Newtonian gravitation that, sufficiently
far from the nucleus, rotational velocities must de-
cline as 1√

r
with distance r from the nucleus.

stars as we move to the edge of the visible galaxy.
Unfortunately, even that expectation is belied. It is
clear from Fig. 1 that the rotational velocities of stars,
instead of declining, become approximately constant
at the edge of the galaxy. Therefore, to “save” the
theory we must make one more hypothesis: that the
hypothetical invisible dark matter is distributed in a
peculiar way in the form of a halo round the galaxy,
with its density reaching a peak where the luminous
matter thins out to zero.

Now why should that be so? The hypothetical,
invisible dark matter, whatever its composition, has
exactly the same gravitational properties as the lumi-
nous matter in galaxies. On the scale of the galaxy,
gravitation is the dominant force which decides struc-
ture. So why should luminous matter and dark mat-
ter be distributed in such strikingly different ways?
No clear explanation has emerged so far.

3.3 MOND

Dissatisfaction with the DM hypothesis led to the for-
mulation of another theory: modified Newtonian dy-
namics (MOND).[9, 10] In its original form, the the-

ory simply supposed that the gravitational force law
itself changed at the scale of the galaxy on the phe-
nomenological grounds of observations. Moreover, it
did not initially correct what we now know to be a
critical conceptual defect in Newtonian physics.

Could GRT explain any part of the departure from
Newtonian gravitation? To answer this we need to
be able to apply GRT to the galaxy. Unfortunately,
that is not feasible: GRT is too complex to be used
to solve the many body problem of a galaxy typically
involving hundreds of billions of stars. Even mod-
elling a collection of discrete objects is very difficult
in GRT. Therefore, the only thing available is to fall
back on Newtonian gravitation just believing it to be
a good approximation to GRT at those scales.

4 RGT

This situation motivates retarded gravitation
theory.[7] We know that special relativity is an es-
sential conceptual correction to Newtonian physics.
Can we have a theory of gravitation compatible with
special relativity? Poincaré did attempt to find such
a theory (with a different motivation) but did not
fix on a definite expression for the force, or try to
solve the problem of galactic rotation curves, which
was not known in his time.

Some people might ask: why look for such a theory
when we already have the “ultimate” theory, namely
GRT? One simple answer is this: it is no use having
an ultimate theory which is not usable! It is like say-
ing ultimately “God knows everything”, but we have
no way to read the mind of God! In the context of
the galaxy, the theory which is actually used is New-
tonian gravitation. RGT, being a Lorentz covariant
theory of gravitation, improves on that. As we will
see, RGT does help us to bypass the additional hy-
potheses introduced by both DM and MOND.

4.1 Derivation of the expression for
the force

How does one make gravitation Lorentz covariant?
The derivation of the Lorentz-covariant gravitational
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force is so simple that it can be reproduced in its
entirety here.

We start with a reference frame in which the test
particle (“attracted body”) is a mass point (at rest)
at the origin. The “attracting body” is located at
the retarded position described by the 4-vector X =
(ct, ~x) and moving with a 4-velocity V = γv(c,~v),
both at retarded time t = − rc . Here, ~x = (x, y, z), r =√
x2 + y2 + z2, and γv = (1 − v2

c2 )−
1
2 is the Lorentz

factor.
Let F = (T, ~f) be the 4-force experienced by the

attracted body. This 4-vector transforms in the same
way as the 4-vectors X and V , so we take it to be
given by a linear combination

F = aX + bV, (2)

where a, and b are Lorentz invariants to be deter-
mined. Since a and b are Lorentz invariant, the ex-
pression (2) for the 4-force F would be Lorentz co-
variant, as required.

For the case where the attracting body is also at
rest (~v = 0), we require that the 3-force must ap-
proximately agree with the Newtonian gravitational
force ~f = k( xr3 ,

y
r3 ,

z
r3 ), where k = Gm0m1, the two

(rest) masses are m0 and m1, and G is the Newtonian
gravitational constant. (Note that the sign conven-
tions we are using are the opposite of the usual ones,
since the “attracting body” is at X, and the force is
in the direction of its retarded position.) Therefore,

a ≈ k
r3 . This suggests that a = −kc

3

a31
where a1 is the

Lorentz invariant quantity a1 = X.V = γv(c
2t−~x.~v),

which equals −cr when ~v = 0, and approximately
equals −cr when v = ||~v|| is small compared to c.
That is,

a = − kc3

(X.V )3
≈ k

r3
. (3)

We now use the fact that the components of the
4-force are not independent, but must satisfy [11]

F.U = 0, (4)

where U = γu(c, ~u) is the 4-velocity of the particle on
which the force acts. This comes about simply since

the revised form of the equations of motion is now

m0
d2Y

ds2
= F, (5)

where m0 is the rest mass and s is proper time
along the world line, Y (s), of the “attracted particle”.
Since the 4-force F is parallel to the 4-acceleration of
the particle on which it acts, it must be perpendicu-
lar to its 4-velocity U (which is a vector of constant
norm). Accordingly, taking the dot product of U with
both sides of (2), we obtain

0 = a(X.U) + b(V.U). (6)

Now the dot products X.U and V.U are scalars,
or Lorentz invariants, and the Lorentz invariant a is
already determined. Hence, (6) determines b as a
Lorentz invariant. Explicitly,

b = −a(X.U)

(V.U)
≈ k

cr2
. (7)

Note that we would not have been able to satisfy
the requirement (4) had we already set b = 0 to begin
with. This shows that the Lorentz covariant gravita-
tional force we seek cannot be purely position depen-
dent but must depend also on velocity.

Substituting these values of a and b in (2), the force
in RGT is explicitly given by

F = − kc3

(X.V )3
X +

kc3

(X.V )3
(X.U)

(V.U)
V. (8)

Since the equations of motion (5), and the expression
for the force (8) are Lorentz covariant, we can use
these expressions in any Galilean frame, and are not
tied to any special frame. Note, however, that RGT,
unlike GRT, is restricted to Galilean frames.

In studying motions such as those of stars in the
galaxy we can use the non-relativistic approximate
expressions for a and b given in (3) and (7). This
leads to

F ≈ k

r2

(
X

r
+
V

c
,

)
, (9)

which simple form exhibits clearly the departure from
Newtonian gravitation.
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Thus, we have made two changes to Newton’s “in-
verse square law” of gravitation. First, the RGT
gravitational force uses the retarded distance, not the
instantaneous distance between the two bodies. Sec-
ond, the gravitational force cannot be a pure “inverse
square law” force (even with the retarded distance),
but has a velocity-dependent ( vc ) component. This
RGT modification of Newtonian gravitation is com-
pletely different from other earlier modifications of
the “inverse square law”. Furthermore, it is not ad
hoc or speculative like earlier modifications; rather
RGT is a logical consequence of an essential correc-
tion to a conceptual defect about time in Newtonian
physics.

5 The solution for the galaxy

Now special relativistic effects, such as the v
c term in

the above force, are believed to be relevant only when
velocities approach that of light. However, this piece
of text-book wisdom is true only for the one body
problem, the only problem solved by texts in special
relativity. For the galaxy, however, we need to do a
many-body problem.

Now, stars in a spiral galaxy all systematically co-
rotate in one direction. Could a tiny but system-
atic v

c effect become significant when summed over
a large number of stars? Specifically, The observed
rotation velocities of stars in spiral galaxies are of
the order of a few hundred km s−1 corresponding to
v
c ∼ 10−3, which is small. However, a systematic ef-
fect of this order must be summed over some 1011

stars in a galaxy. Could the sum be significant?
To make a quick check we can re-frame the ques-

tion. Suppose we have numerous mass points spread
in a disk rotating around a central mass. Suppose,
now, we introduce a test mass into this configuration,
and let us further suppose the test mass is moving
with the Newtonian velocity required for equilibrium
at a distance r from the centre. What will happen to
the test mass?

For a test mass, the calculation is very simple, for
the meaning of a “test” mass is that we neglect the
effect of that mass on the remaining particles (the
galaxy). That is we prescribe the motion of the other

particles not only in the past, but for all time. Under
these circumstances of a one-body problem, where
the motion of all remaining bodies is prescribed for
all time, the FDEs of motion in RGT reduce to ODEs,
which can be readily solved. However, the force still
differs from that of Newtonian gravitation.

According to Newtonian gravitation the rotational
velocities of the other masses are irrelevant, and only
the total mass counts. Hence, our test mass which
begins in Newtonian equilibrium, should continue in
equilibrium. On RGT, however, the test particle is
violently accelerated. Depending upon the total mass
it may stay within the system, with a non-Newtonian
velocity, or get thrown out. Therefore, on RGT, a
large number of co-rotating particles can significantly
increase the rotational velocity of a test particle in
Newtonian equilibrium. Further, unlike Newtonian
gravitation, if we consider a shell of rotating particles,
the velocity effect acts on the test particle even inside
the shell.(Fig. 2)

The story has a very important moral: tiny spe-
cial relativistic effects, at non-relativistic velocities,
can add up across a large number of particles, and
become immense. The text book claim that special
relativity matters only at relativistic velocities needs
to be corrected: that claim is true only for the one
body problem.

Thus, RGT predicts that stars in a spiral galaxy
will have non-Newtonian velocities just because the
velocity-dependent gravitational force adds up across
a large number of co-rotating stars. It is not neces-
sary to hypothesize dark matter just to explain non-
Newtonian velocities in spiral galaxies, but if there is
any dark matter, its effects would be in addition to
those predicted by RGT.

What about the other feature of rotation curves
that rotational velocities become constant at the edge
of the galaxy? In principle, this feature too admits
a simple explanation in RGT. Far from the centre of
the galaxy, the gravitational pull of the central mass
becomes weak, and the velocity effect becomes more
prominent. Consider two nearby stars co-rotating at
the edge of the galaxy. The velocity dependent com-
ponent of the RGT gravitational force will tend to
equalise their velocities. Thus, there is a simple and
natural explanation for the approximate constancy of
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Effect of velocity drag for a test particle at the edge of a spiral galaxy

Figure 2: The velocity effect of retarded gravi-
tation: The velocity of a test particle in our model
galaxy increases due to velocity drag, and the parti-
cle escapes. The plot is velocity vs time. Time units
are approximately 10 million years, while length units
are 1 kpc. A central mass of 1.5× 1010 solar masses
is surrounded by 10,000 particles (each of 105 solar
masses) in a rotating ring of radius 12 kpc. The test
particle is initially in Newtonian equilibrium at 12.2
kpc.

star velocities at the edge of the galaxy, and there is
no need to hypothesize halos of dark matter.

Thus, the hitherto mysterious qualitative features
of the rotational velocities of stars in spiral galaxies
are expected on RGT.

RGT, unlike MOND, involves no speculative hy-
pothesis, but proceeds solely on the theoretically nec-
essary principle of Lorentz covariance, and its origins
in the problem of equal intervals of time in Newto-
nian physics. Therefore, even dark matter theorists,
who set aside MOND, MUST take into account the
special relativistic effects incorporated into RGT to
estimate the amount and distribution of dark mat-
ter. Specifically, all current estimates of dark matter
and its distribution obtained by using only Newtonian
gravitation are defective and unreliable, and must be
recalculated using RGT. Because RGT is a completely
general theory, these remarks apply equally to the dy-

namics of clusters of galaxies. (To reiterate, science
is NOT about “authorised knowledge”, or popular-
ity among scientists, or “reputability”; it is about
refutability.)

6 Laboratory tests of RGT

Is there any way to test RGT closer home? Indeed
there is. RGT, unlike MOND, changes the gravita-
tional force at all scales from the laboratory to the
galaxy, and beyond. In a conventional Cavendish ex-
periment, if the two attracting masses are rapidly ro-
tated in opposite directions that would change the de-
flection of the suspended dumbbell, on RGT, though
it would have no effect on Newtonian gravitation. In
particular, if the two attracting and rotating masses
are exactly lined up with the dumbbell, there would
be a non-zero deflection on RGT, but zero deflection
on Newtonian theory.

Of course, very high precision would be required to
carry out such experiments. An unexpected difficulty
here is that the value of the Newtonian gravitational
constant G is not known sufficiently precisely. One
reason for this is that there is an apparent discrep-
ancy between static and dynamic ways of determining
G.

According to RGT, in the dynamic way of deter-
mining G, velocity effects must be taken into account.
If these are neglected, we could end up with a slightly
different value of G. So, the existence of tiny discrep-
ancies between different ways of measuring G consti-
tutes an additional way of testing RGT. While dis-
crepancies have indeed been noted, and it has even
been speculated that these might be due to some fun-
damental issues,[12] the discrepancies are still within
experimental error. Hopefully, these issues will be
clarified in future, since it is anyway important to
determine G to high precision.[13]

7 The flyby anomaly

One experiment which has already been carried out
(and is likely to be repeated with greater precision)
involves spacecraft when in near-earth orbit. On
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RGT, one expects a tiny v
c effect due to the rota-

tional velocity v of the earth. The rotation of the
earth has no effect on Newtonian gravitation.

Between 1990 and 2005, six NASA spacecraft flew
by earth, using the technique of earth gravity as-
sist, to either gain or lose heliocentric orbital en-
ergy. Tiny anomalies were observed [14] correspond-
ing to an unexplained velocity difference of the order
of a few mm/s at perigee. However, the observations
were very precise, with systematic experimental error
ranging from 0.01 mm/s to 1 mm/s, so the observa-
tions could not be put down to experimental error.
Of course, the tiny anomalies may have been poten-
tially due to many causes because the perigee veloci-
ties of the spacecraft were of the order of a few km/s,
but the causes could not be explained despite a care-
ful audit and consideration of various possible factors
including general relativistic effects.[15]

Further, Anderson et al[14] found an empirical for-
mula which fitted all six flybys:

∆V∞
V∞

= K(cos δi − cos δo), (10)

where ∆V∞ was the difference between the incom-
ing and outgoing asymptotic velocity in a geocentric
frame. (Conceptually, this is the hyperbolic excess
velocity at infinity of an osculating Keplerian trajec-
tory, so the difference ought to have been zero on the
Newtonian theory.) Further, δi and δo were the de-
clinations of the incoming and outgoing asymptotic
velocity vectors. The constant K = 3.099×10−6 was
expressed in terms of the Earth’s angular rotational
velocity as ωE (7.292115× 10−5 rad/s), its mean ra-
dius RE (6371 km) and the speed of light c by

K =
2ωERE

c
.

Clearly, this expression for K shows that the flyby
anomaly is an effect related to the rotation of the
earth, a relation expected on RGT, but inexplicable
on Newtonian gravitation. If we look for a v

c term, re-
lated to earth’s rotation, using just dimensional anal-
ysis, K is the natural term that would arise. Clearly,
also, if the incoming and outgoing declinations of the
spacecraft are both zero (i.e., it enters and exits in

the equatorial plane), then the additional RGT force
which accelerates it on entry will symmetrically equal
the force which retards it on exit, so there will be no
net gain or loss of asymptotic velocity. A net gain or
loss will arise only in the event of a difference between
the asymptotic incoming and outgoing declinations.
Thus, the observed anomalous effect in the flybys is
prima facie a systematic v

c effect depending on the
rotational velocity of the earth, as expected on RGT.

Detailed modelling of the earth and exact calcu-
lations using RGT are still to be done. However,
preliminary calculations already give a result which
is very close. The figures below show a couple of cal-
culations done for the Galileo (Fig. 3) and Cassini
(Fig. 4) spacecraft. Past data on the orbits of these
spacecraft was obtained using the NASA Horizons
interface.
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Figure 3: Galileo. The difference in the velocity be-
tween the solutions obtained using the new velocity-
dependent RGT force and the Newtonian force, for
the first flyby of the Galileo spacecraft. The x-axis is
time (in units of 100 s) and the y-axis is difference of
(scalar) velocity in units of km per 100 s.

The above calculations reproduce also the qualita-
tive behaviour that most of the velocity gain or loss
is close to the perigee. The computed increase or de-
crease in velocity is the right order of magnitude, and
we expect greater accuracy with more sophisticated
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Figure 4: Cassini. The difference in the velocity be-
tween the solutions obtained using the new velocity-
dependent RGT force and the Newtonian force for
the earth flyby of the Cassini spacecraft. Same units
as before. The calculated change in velocity is −3.4
mm/s compared to the reported change of −2 mm/s.

modelling of the earth.

8 Two body orbits

8.1 Laplace’s argument

The Lorentz covariant RGT described above should
not be confounded with the naive theories of retarded
gravitation proposed over a century ago. Those
naive retarded gravitation (NRG) theories were pre-
relativistic and aimed to explain the discrepancy
between Newtonian gravitation and the observed
anomalous advance of the perihelion of Mercury.
While they succeeded in that aim, they suffered from
a theoretical defect: two body orbits on those theo-
ries would be unstable, as pointed out by Laplace,[16]
long ago.

Thus, NRG theories typically assumed that the
gravitational force pointed towards the retarded po-
sition of the attracting body (and was equal to the
inverse square of the retarded distance). Laplace’s
objection to this was as follows. Consider two bodies

in circular motion around a common centre of mass—
a typical problem of Newtonian gravitation. The line
of action of the NRG force would not pass through
the instantaneous centre of mass. Consequently, the
system would be unstable (due to a delay torque).

Laplace’s argument does not apply to RGT for var-
ious reasons. First, relativistically, there is no such
thing as “instantaneous centre of mass”.[17] That
does not mean that all relativistic theories are un-
stable! Further, even if one somehow defines some-
thing which can be called the instantaneous centre
of mass, as some people have attempted to do, no
one has proved that the “centre of mass” so defined
plays the same fundamental role in deciding stability
as in Newtonian mechanics. Secondly, RGT involve
FDEs which do not have the same theory of stability
as ODEs.

Finally, RGT differs from NRG in that the RGT
force depends also upon velocity. In the above situ-
ation, of circular 2-body orbits, this means that the
RGT force does NOT point directly to the retarded
position of the other body, as Laplace assumed. An
easy calculation shows that, in the non-relativistic
case, the RGT force points closer to the instanta-

neous centre of mass up to v2

c2 terms (Fig. 5).

Figure 5: Difference between NRG and RGT force:
Because the RGT force includes a velocity-dependent
component, it points closer to the (non-relativistic)
instantaneous centre of mass.

Departures from Newtonian gravitation at the v2

c2

level are not undesirable. Thus, for the case of Mer-
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cury, there is a long-known discrepancy with New-
tonian gravitation. The classical GRT formula for
the advance of perihelion ε, based on geodesics of the
Schwarzschild solution, is

ε = 24π3 a2

T 2c2(1− e2)
(11)

where a is the semi-major axis of the ellipse, e its
eccentricity, T the time period, and c the speed of
light. For e ∼ 0, when the orbit is nearly circular, 2π

T
is an estimate of the angular velocity, and a is just

the radius of the circle, so that 4π2a2

T 2 is just v2. As
such, the anomalous perihelion advance of Mercury

can be regarded as approximately a v2

c2 effect.
Of course, since with RGT, unlike GRT, we can

easily do many-body problems, the right way would
be to do a many body problem, and not just linearly
add up perihelia advances “due to” various causes.

8.2 Two body problem for Jupiter

We conclude with a solution of a planetary 2-body
problem in RGT, as an example of how to do many
body problems in RGT. The relevant equations are
derived in the appendix. The equations initially in-
volve two proper times. To solve them, we need to
rewrite the equations in terms of a single coordinate
time. The only non-obvious trick here is the partic-
ular 3+1 decomposition to use, as described in the
appendix. (It is obvious, once we see it.)

Secondly, since these are FDEs, we need to pre-
scribe past data. For the planetary 2-body problem,
we took up the sun-Jupiter case, and prescribed past
data as perfectly circular theoretical Newtonian or-
bits about a common centre of mass. In the Newto-
nian case, circular orbits remain circular, but with
RGT the circle gets deformed into an ellipse, as
shown in Fig. 6. However, there is no runaway insta-
bility. Had we used NRG instead, that would result
in a runaway instability, as shown in Fig. 7

9 Conclusions

FDEs are an essential feature of post-relativity
physics. RGT arises from modifying Newtonian grav-
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distance is marginally larger, since RGT changes the
prescribed Newtonian circular orbit to an ellipse.
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itation to make it Lorentz covariant. This modi-
fies the Newtonian gravitational force to include a
velocity-dependent term, and the basic equations of
motion of RGT are FDEs. The velocity depen-
dent term suggests a natural explanation of the flyby
anomaly as due to the rotation of the earth. Though
tiny it may add up significantly across a billion stars
in a spiral galaxy, which are all co-rotating. Because
RGT is a theoretically essential correction to New-
tonian gravitation, all galactic simulations and cal-
culations of dark-matter must be redone using RGT.
RGT does not suffer from the instability problem of
pre-relativistic naive theories of retarded gravitation.

Appendix: Equations of motion
in RGT

Consider two particles, with world lines given by
Y1(s1) and Y2(s2), where Y1 and Y2 are 4-vectors,
and s1 and s2 are the respective proper times. The
equations of motion in RGT are

m1
d2Y1
ds21

= F12, m2
d2Y2
ds22

= F21, (12)

where m1 and m2 are the respective rest masses of
the two particles, and F12 the 4-force exerted by par-
ticle 2 on particle 1 is given by the Lorentz covariant
expression

F12 = − kc3

(R2 ret.V2 ret)3
R2 ret

+
kc3

(R2 ret.V2 ret)3
(R2 ret.V1)

(V2 ret.V1)
V2 ret

(13)

≡
[
− kc3

(R2.V2)3
R2 +

kc3

(R2.V2)3
(R2.V1)

(V2.V1)
V2

]
2 ret

. (14)

Here, k = Gm1m2, G is the Newtonian gravitational
constant, c is the speed of light, R2 ret = Y2 ret − Y1
is the retardation vector, V1 = dY1

ds1
and V2 = dY2

ds2
denote the respective 4-velocities, and, in (14), [ ]2 ret

indicates that the quantities with subscript 2 are to
be evaluated at the corresponding retarded proper
time, as explicitly indicated in (13). The other force
F21 is given by interchanging 1 and 2 in (14).

In coordinates, if Y1 = (ct, ~y1(t)), and Y2 =
(ct, ~y2(t)), the retarded coordinate time t12, in the
force F12 acting on Y1 at time t0, is the root of the
equation

c2(t− t0)2 = r212 ≡ (~y2(t)− ~y1(t0))2, (15)

satisfying t < t0. That is, it is the value of t at the
spacetime point where the backward null cone from
Y1(t0) intersects the world line Y2. The correspond-
ing distance r12 is the retarded distance from particle
1 to particle 2. A similar equation holds for t21, the
retarded coordinate time in F21, the asymmetry be-
ing only in the arguments of ~y1 and ~y2.

Since the two equations (12) have to be solved si-
multaneously, it is convenient to use a common time
parameter, which we take to be the coordinate time
t. We assume that the functions t = t1(s1) and
t = t2(s2) are suitably invertible and (at least) twice
continuously differentiable, and will not explicitly in-
dicate them further. Thus, we have dt

ds1
= γ1, and

dt
ds2

= γ2, where γ1 and γ2 are the respective Lorentz
factors. Using an overdot to denote derivatives with
respect to t, we have, by the chain rule, V1 = dY1

ds1
=

dY1

dt
dt
ds1

= γ1Ẏ1. Similarly, dV1

ds1
= dV1

dt
dt
ds1

= γ1V̇1.
Hence, (12) can be rewritten

Ẏ1 =
1

γ1
V1,

V̇1 =
1

γ1

F12

m1
, (16)

with similar equations for particle 2.
Since the zeroth component of these equations is

not independent, we can write them in 3-vector no-
tation using Y1 = (ct, ~y1(t)), Y2 = (ct, ~y2(t)), so that
Ẏ1 = (c,~v1), Ẏ2 = (c,~v2). Let ~u1 and ~u2 denote the
space components of the velocity 4-vectors V1, and
V2, so that ~u1 = γ1~v1, ~u2 = γ2~v2. Further, we let
~r2 ret = ~y2(t12) − ~y1(t), denote the 3-vector corre-
sponding to R2 ret. Then the final equations are

~̇y1 =
1

γ1
~u1

~̇u1 =
1

m1γ1
~f12 (17)
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where
~f12 = a~r2 ret + b ~u2 ret (18)

b = ab̃, and

a = −
[

kc3

(R2 · V2)3

]
2 ret

b̃ = −
[

(R2 · V1)

(V2 · V1)

]
2 ret

(19a)

or

a =

[
k

r32

]
2 ret

b̃ =
[r2
c

]
2 ret

(19b)

Here, (19b) is the non-relativistic limit of (19a).
The equations of motion (17) (accompanied by

(18), (19a) or (19b)), together with the corresponding
equations for particle 2 are the four 3-vector equa-
tions (or 12 equations in all) we actually solved for
the sun-Jupiter problem.

References

[1] C. K. Raju. Functional differential equations.
1: A new paradigm in physics. Physics Ed-
ucation (India), 29(3), July-Sep 2013. http:

//physedu.in/uploads/publication/11/

200/29.3.1FDEs-in-physics-part-1.pdf.

[2] C. K. Raju. Functional differential equations.
2: The classical hydrogen atom. Physics
Education (India), 29(3), July-Sep 2013. http:

//physedu.in/uploads/publication/11/

201/29.3.2FDEs-in-physics-part-2.pdf.

[3] C. K. Raju. Functional differential equations. 3:
Radiative damping. Physics Education (India),
30(3), July-Sep 2014. http://www.physedu.

in/uploads/publication/15/263/7.

-Functional-differential-equations.pdf.

[4] C. K. Raju. Time: Towards a Consistent
Theory, volume 65 of Fundamental Theories of
Physics. Kluwer Academic, Dordrecht, 1994.

[5] C. K. Raju. Time: What is it that it can be
measured? Science & Education, 15(6):537–
51, 2006. http://ckraju.net/papers/ckr_

pendu_1_paper.pdf.

[6] C. K. Raju. Cultural Foundations of Mathemat-
ics. Pearson Logman, 2007.

[7] C. K. Raju. Retarded gravitation theory. In
Waldyr Rodrigues Jr, Richard Kerner, Gentil O.
Pires, and Carlos Pinheiro, editors, Sixth Inter-
national School on Field Theory and Gravita-
tion, pages 260–276, New York, 2012. American
Institute of Physics. 1102:2945v3.

[8] V. C. Rubin, W. K. Ford, and N. Thonnard. Ex-
tended rotation curves of high-luminosity spiral
galaxies iv. Ap. J., 225:L107–L111, 1978.

[9] M. Milgrom. A modification of the Newtonian
dynamics as a possible alternative to the hidden
mass hypothesis. Ap. J., 270:365–370, 1983.

[10] M. Milgrom. A modification of Newtonian
dynamics—implications for galaxies. Ap. J.,
270:371–383, 1983.

[11] J. L. Synge and B. A. Griffith. Principles of Me-
chanics. McGraw Hill, 3rd edition, 1959. Equa-
tion 18.320.

[12] Stephen Schlamminger, Eugene Holzschuh, Wal-
ter Kündig, Frithjof Nolting, and Jürgen Schurr.
Determination of the gravitational constant. In
C. Lämmerzahl, C. W. F. Everitt, and F. W.
Hehl, editors, Gyros, Clocks, Interferometers...:
Testing Relativistic Gravity in Space, pages 15–
28. Springer, Berlin, 2001.

[13] Jun Luo, Qi Liu, Liang-Cheng Tu, Cheng-
Gang Shao, Lin-Xia Liu, Shan-Qing Yang, Qing
Li, and Ya-Ting Zhang. Determination of
the Newtonian gravitational constant G with
time-of-swing method. Physical Review Letters,
102(24):240801(4), June 2009.

[14] John D. Anderson and et al. Anomalous orbital-
energy changes observed during spacecraft flybys
of earth. Physical Review Letters, 100:091102,
2008.

[15] C. Lam̈merzahl, O. Preuss, and H. Dittus. Is
the physics within the solar system really un-
derstood? 2006. arXiv.gr-qc/0604052.

Volume 31, Number 2 Article Number : 1 www.physedu.in

http://physedu.in/uploads/publication/11/200/29.3.1FDEs-in-physics-part-1.pdf
http://physedu.in/uploads/publication/11/200/29.3.1FDEs-in-physics-part-1.pdf
http://physedu.in/uploads/publication/11/200/29.3.1FDEs-in-physics-part-1.pdf
http://physedu.in/uploads/publication/11/201/29.3.2FDEs-in-physics-part-2.pdf
http://physedu.in/uploads/publication/11/201/29.3.2FDEs-in-physics-part-2.pdf
http://physedu.in/uploads/publication/11/201/29.3.2FDEs-in-physics-part-2.pdf
http://www.physedu.in/uploads/publication/15/263/7.-Functional-differential-equations.pdf
http://www.physedu.in/uploads/publication/15/263/7.-Functional-differential-equations.pdf
http://www.physedu.in/uploads/publication/15/263/7.-Functional-differential-equations.pdf
http://ckraju.net/papers/ckr_pendu_1_paper.pdf
http://ckraju.net/papers/ckr_pendu_1_paper.pdf


Physics Education 13 Apr-Jun 2015

[16] P. S. Laplace. Celestial Mechanics, volume 4,
Book 10, chp. 7. Little and Brown, Boston, 1839.
trans. N. Bowditch.

[17] M. H. L. Pryce. The mass centre in the restricted

theory of relativity. . . . Proc. R. Soc. A, 195:62–
81, 1948.

Volume 31, Number 2 Article Number : 1 www.physedu.in


	Recap
	The problem of time in Newtonian physics
	Modifying gravitation
	Galactic rotation curves
	Dark matter
	MOND

	RGT
	Derivation of the expression for the force

	The solution for the galaxy
	Laboratory tests of RGT
	The flyby anomaly
	Two body orbits
	Laplace's argument
	Two body problem for Jupiter

	Conclusions

