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Abstract

The article traces the contributions of the pioneers of the theory of gravitation, in
particular the heliocentric model of Nicolaus Copernicus, planetary data collected by
Tycho Brahe, Johannes Kepler’s analysis of Tycho’s data leading to the formulation of his
three laws of planetary motion, and the “falling of apple” episode that gave Newton a
sudden flash of a larger vision that unified the orbital motion of the moon, the orbital
motion of the planets and the falling of terrestrial objects downward, into one single law of
universal gravitation. Based on the model of the heliocentric universe the geocentric paths
of Venus and Mars have been constructed in two ways, using a geometrical method, and
plotting the relevant parametric equations. The orbital radius R and the time period T of
each planet’s revolution around the sun has been calculated from the observed value of the
angle of its maximum deviation from the sun and the measured value of its synodic period.
Kepler’s laws of planetary motion have been reviewed and the third law has been checked
using the calculated values of T and R. The role played by the 3rd Law of planetary
motion in shaping Newton’s law of universal gravitation has been highlighted. How the
inverse square nature of the law of gravitation relates the orbital motion of the moon to
the falling of an apple has been worked out in mathematical details.

∗This article is part of a book on Mechanics, pub-
lished by Pearson (2012) by the author.

1 Newton and the Apple

and the Moon

We have all heard the story that Newton was
led to the law of universal gravitation while
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watching an apple fall to the ground. This
story has become as much a landmark in the
history of science as the discovery that fol-
lowed it. We shall piece together relevant
parts of the story to make a story of our
own and make a picture of the mind of a ge-
nius that saw in such an insignificant event a
glimpse of a much larger scheme of the uni-
verse that works behind the motion of the
moon around the earth, the motion of the
planets around the sun, as much as in the
falling of an apple, unifying all such diverse
and unrelated phenomena into one single law
of nature[1, 2, 3, 4, 5, 6].
The period was 1665-1666, the years of

plague, when many public institutions were
closed and Isaac Newton, now 23 years old,
had to leave Cambridge to take shelter in
his mother’s farm Woolsthrope Manor near
Grantham in Lincolnshire. One moonlit
evening he was sitting in the garden. His
mind was immersed in a deep thought, seek-
ing answer to the question, “what force makes
the moon go round the earth?” He looked up
to the sky and saw the moon and thought
of the force of gravity (of the earth) extend-
ing to its orbit. An apple fell from a tree
nearby. Spurred by this incident, an idea
came to his mind that the same force that
the earth exerted on the apple making it fall
straight down might also be exerted on the
moon making it go round. His conjecture:

Conjecture 1 The moon is a falling body,
just like an apple, falling under the earth’s
force of gravity.

We shall explain how Newton calculated
the rate of falling of the moon. Let us con-

sider an apple which has been thrown into
the air from the ground, as shown in Fig.1(a).
The trajectory is a parabola. At the top of
the trajectory its tangent is a horizontal line.
The fall of the apple in time t is the dis-
tance y, measured vertically downward from
the horizontal tangent, and is given by the
well known formula

y =
1

2
gt2. (1)

Newton applied the same principle to the
“falling moon”. However, the trajectory of
the moon in this case is not a parabola, but
a circle. The surface of the earth, lying un-
derneath the moon, curves into a sphere as
the moon travels along its orbit, whereas for
an apple or a cricket ball, whose range of
flight is negligible compared to the radius of
the earth, the ground underneath is nearly a
flat surface. Nevertheless, Newton calculated
the distance y by which the moon would be
falling in a small time t≪ T , where T the pe-
riod of one complete revolution of the moon
around the Earth. He probably used sim-
ple geometry and Pythgoras’s theorem for his
calculations.
Fig. 1(b) depicts (part of) the circular tra-

jectory of the moon around the earth. The
speed of the moon in the orbit is v = ωR
where ω is the angular velocity of revolution
of the moon around the earth, and R is the
radius of the moon’s orbit.
Let us get some crucial data first. The ra-

dius of the moon’s orbit, as calculated by the
Greek astronomer Hipparchus in 130 B.C.,
was approximately 3.8 × 108 m, which New-
ton should have used for his calculations. The
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Figure 1: Trajectories of a projected apple in (a), and the Moon in (b).

period of the moon’s revolution around the
earth is T = 27.3 days ≈ 2.4 × 106 s. From
these two figures we can calculate the orbital
velocity v of the moon v = ωR = 2π

T
× R =

2×π×3.8×108

2.4×106
≈ 103 m/s = 1 km/s.

At a certain time t = 0 the moon is at
the point P. We have drawn the Cartesian X
and Y axes through P such the the X axis
is tangential to the circular path pointing in
the direction of the moon’s motion, and the
Y axis is pointing down radially to the centre
of the circle. If there had been no Earth,
the moon would be following a straight path,
along the X axis. The Earth’s gravity bends
the path downward.

Let P and Q be two locations of the moon
differing by a very small time interval δt (say,
1 second.) The coordinates of Q are (x, y).
x ≈ v δt = ωR δt. y is the distance by
which the centre of the moon “drops” ver-
tically downward in time δt from the straight
line path along the X axis. For the very small
time δt this drop y is very small compared to
the distance x the moon travels. For exam-
ple if we take δt= 1 s, then x = v δt = 1000
m, whereas y ≈ 1.3 mm, as we shall soon
find out. In the following estimate we shall
therefore set y ≪ x.
Note that EN = R − y. By Pythagoras’s

theorem EN
2
+NQ

2
= EQ

2
. In terms of the

coordinates,
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(R− y)2 + x2 = R2.

CancellingR2 on both sides, −2Ry + y2 + x2 = 0.

Or, neglecting y2 compared to x2, y ≈ x2

2R
= (ωR δt)2

2R
= 1

2
(ω2R) δt2. (2)

Comparing Eq. (2) with (1) we find that
in every tiny interval of time δt the moon
drops perpendicular to the tangent drawn to
its trajectory and the acceleration of this fall
is:

gmoon = ω2R =
ω2R2

R
=
v2

R
. (3)

This is also the familiar expression for what
we often refer to as the “centripetal acceler-
ation”. Taking the values of v and R already
given, Newton obtained the acceleration of
the moon to be

gmoon =
106

3.8× 108
= 0.26× 10−2m/s2. (4)

The distance through which the moon falls in
the tiny interval δt, say 1 second, is then

y =
1

2
gmoon δt

2 = 0.13× 10−2m. (5)

This acceleration given in (4) is too small
compared to the the acceleration due to grav-
ity near the surface of the earth, given as
g = 9.8m/s2, which is also the acceleration
of the apple. The fall distance given in (5) is
also incredibly small compared to a fall dis-
tance of 4.9 m in one second for an apple.
Such small values puzzled Newton. He left
the problem of “falling moon” for the time

being and diverted his mind to seek answer
to a larger question “what forces are acting on
the planets making them follow the orbits as
described by Kepler’s laws of planetary mo-
tion?”

2 Heliocentric Model of

Copernicus

2.1 Motion of planets as seen

from Earth - Geocentric

view of the Greek school

The theory of universal gravitation did not
descend on Newton’s mind in one stroke with
the falling of an apple. Newton arrived at this
theory primarily by analyzing Kepler’s laws
of planetary motion. Kepler had earlier for-
mulated these laws by a meticulous analysis
of the data on the position of Mars and other
planets observed and recorded over a period
of thirty five years by Tycho Brahe. These
historical anecdotes are important and should
be part of one’s understanding of gravitation.
We shall try to present an elementary sketch
of what had happened before Newton[7].
The ancients had keenly observed the pat-

tern of the motion of the heavenly objects
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in the sky, and had invented a scheme of
their motion around the Earth. The Greek
philosophers, from Aristotle to Plato, from
Ptolemy to his followers, had drawn up an
earth-centric model of the universe, known
as the geocentric universe, in which the Earth
was considered to be fixed in space, and con-
stituted the centre of the universe. The heav-
enly objects, namely the sun, the moon, the
planets and the stars, were hypothesised to be
moving in perfect circles, on crystal spheres,
in perfect harmony, because a circle was con-
sidered to be a perfect curve, and because
for the heavenly bodies only the perfection of
circular motion was permitted.
This simplistic idea came into conflict with

the apparent motion of the planets. Seen in
the background of the stars the planets were
moving non-uniformly. They moved eastward
nearly straight for much of the time, in what
is now referred to as the direct motion. How-
ever, at certain points they slowed down, re-
versed the motion westward, made a loop-
the-loop, then preceeded eastward, as before.
This reverse motion was called retrograde mo-
tion [8, 9].
We have shown this pattern in Fig.3a for

Venus and in Fig.5a for Mars. In both fig-
ures we have labelled the background stars
as “fixed stars”.
The ancients had also observed that the

brightness of the planets was not constant
but changed with time. The retrograde mo-
tion and the varying brightness pointed to a
complex motion of the planets, quite differ-
ent from a simple minded uniform circular
motion, in which the distances of the planets
from the earth were continuously changing.

The Greek philosophers, strongly rooted in
the faith that only circular motion was per-
missible for heavenly bodies, had tried to ex-
plain away the above mentioned anomalous
movement of the planets by hypothesizing
the planetary motion to be a combination of
two or more circular motions. We have il-
lustrated this idea in Fig. 2. With the earth
E as the centre, the planet P moved on a
smaller circle, called Epicycle, the centre of
which moved on a bigger circle called Defer-
ent (fixed on the crystal sphere), as shown
in (a). If this construction did not fit the
observation, they added further epicycles, as
shown in Fig.(b). [10, 11]

2.2 Motion of planets as seen

from Earth - Heliocentric

Explanation of Copernicus

A different model of the universe was sug-
gested by a Polish astronomer Nicolaus
Copernicus in 1543 in his book De revolu-
tionibus orbium coelestium (On the revolu-
tions of the Celestial Spheres). In the Coper-
nican system the Sun was the centre of the
universe and assumed to be immovable. The
stars were also fixed on the “immovable celes-
tial sphere” with its centre on the sun. The
planets, including the Earth, moved around
the sun in a uniform circular motion. This
model was called the Heliocentric universe
(Helio=the Sun). Another feature of Coper-
nicus’s proposal was that the Earth rotated
about its axis, once a day, as it moved along
its orbit around the sun.

Copernicus had cited the Greek philoso-
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Figure 2: Epicycle on Deferent

pher Aristarchus as the source of his central
heliocentric idea.

This new model came in direct conflict
with the pre-existing Ptolemic view, the geo-
centric universe, which was also the most
natural and obvious thing to believe, and
which had the support of the Roman Catholic
Church. Copernicus, himself a cleric under
the Catholic church, in order to avoid any
controversy, suggested that this model was
for mathematical convenience only, and was
not necessarily the truth. The mathemati-
cal calculations needed to predict the position
of the planets in the sky, as in the Ptolemic
scheme, could only be simplified if one used
this model.

2.3 Geocentric path of Venus

from the Copernican

model

We shall follow the hint given by Copernicus,
use the heliocentric model as a starting point,
and reconstruct the Ptolemic paths of the
planets Venus and Mars, each moving on its

own epicycle around a deferent, and causing
the “loop-the-loop” retrograde motion. We
shall refer to this path as the geocentric path,
or g-path for abbreviation.

For the geometric constructions that will
follow, it will be convenient to distinguish
between the inferior planets, or, the inner
planets, having orbital radii less than that
of the Earth, and the superior planets or the
outer planets, having orbital radii larger than
that of the Earth. Venus belongs to the first
category, and Mars to the second. We shall
measure planetary distances in Astronomical
Unit (AU). One AU is equal to the mean ra-
dius of the Earth’s orbit around the Sun, and
is equal to 1.496× 1011 m.

In this subsection we confine ourselves to
Venus, and illustrate our construction of the
g-path of the planet in Fig. 3. The Earth,
the Sun and Venus have been represented by
the letters E,S and V respectively.

Fig. 3(b) shows the Copernican picture of
the motion of E and V around S. Here S is the
centre of the universe. It is fixed and is the
origin of the Cartesian coordinate system.
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Figs. 3(c),(f) show the g-path of V. Here E
is the centre of the universe and the origin of
the Cartesian axes X and Y. Seen from E, the
Sun S is moving on the Ecliptic, which in this
case is the Deferent. And V, which is actually
moving around S, is seen to be moving on
the Epicycle which is a moving circle with its
centre always lying on the deferent.

We shall use the following data [12] for our
calculations and plotting. The radii of the or-
bits of the Earth and Venus around the Sun
are RE = 1 AU and RV = 0.72 AU respec-
tively. The period of one complete revolution
around the Sun is TE = 365.25 days for the
Earth and TV = 224.7 days for Venus.

The orbital angular velocities of E and
V follow from their periods. ωE = 2π

12

rad/month, and ωV = 2π
12
× TE

TV
= 2π

12
× 365.25

224.7
≈

1.63 × 2π
12

rad/month. Converting into de-
grees, ωE = 300 per month, and ωV ≈ 1.63×
300 ≈ 490 per month. We shall adopt one
month as the unit of time.

In Fig. 3b we have shown two concentric
circles, of radii RV and RE on which E and V
are revolving around the centre S in the an-
ticlockwise direction. This is the Copernican
view.

The locations of V at equal time intervals
of one month are represented by large bold-
face sans serif numerals 0,1,2,3,4,.... Sim-
ilarly normal size numerals 0,1,2,3,4,... indi-
cate the locations of E in Fig. (b) and the
locations of S with respect to E in Fig (c) at
the same time intervals.

Let us now get a qualitative understanding
of the geocentric motion on the basis of the
Copernican hypothesis (Fig. c). The point

S is always located at a distance RE from E.
As seen from E, it is moving in a circle of
radius RE anticlockwise. This circle is called
the Ecliptic. For our purpose this circle is the
Deferent.

The point V is always moving around S in a
circle of radius RV, according to the Coper-
nican model. In the geocentric picture S is
moving, and therefore V is moving in a circle
of the same radius about the moving point E.
This moving circle is then identified with the
Epicycle.

In Fig (c) we have shown the epicy-
cle at seven instants of time t =
0, 1, 2, 3, 4, 5, 6, labelling them by slanted nu-
merals 0,1,2,3,4,5,6.

Let us now consider the instant t = 0. In
Fig (b) V and E are both on the right side
of the centre S. Therefore, in Fig (c) S and
V are on the left of the centre E and (0, 0)
mark the locations of (S,V).

After one month, i.e., at t = 1, V moves to
1 and E moves to 1 in Fig. (b). In Fig (c)
E remains stationary at the origin, whereas
V is riding on the epicycle. The centre of the
epicycle has moved by angle 300 to its new
location 1, whereas V has moved by angle
490 to 1.

Note that the line
−→
1E in (c) is parallel to

the line
−→
S1 in (b), and the line

−→
11 in (c) is

parallel to the line
−→
S1 in (b).

At the end of two months, i.e., at t = 2, V
moves to 2 and E moves to 2 in Fig. (b). In
Fig (c) the centre of the epicycle has moved
further by another angle of 300 to its new
location 2, whereas V has moved further by
another angle of 490 to the location 2. The
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line
−→
2E in (c) is parallel to the line

−→
S2 in (b),

and the line
−→
22 in (c) is parallel to the line−→

S2 in (b).
Proceeding in this way we find the posi-

tions of V at t = 3, 4, 5, 6, shown as 3,4,5,6.
Joining the points 0,1, ... ,6 by a smooth
curve we have completed the construction of
the g-path 0-1-2-3-4-5-6 traced by Venus
in six months, from t = 0 to t = 6.
We can extrapolate the path to the past,

from t = 0 to t = −6, by making an in-
version of the original curve 0-1-2-3-4-5-
6 and then adding to it. This extrapolated

curve is labelled as -6→0 .

We have thus obtained the g-path of Venus,
spread over one full earth year, from t = −6
to t = +6 (time measured in months) on the
basis of the heliocentric model of Copernicus.
The loop-the-loop cusp is prominent at t = 0,
i.e., around the point 0 in Fig.(c).
The same path can be obtained using co-

ordinate geometry and “gnuplot”. For this
we need the transformation equation that
will convert the Copernican orbit into a
Ptolemian orbit.
Referrring to Fig.(d) the radius vectors of

V and E, are rV and rE. The radius vector of
V relative to E is rV E = rV − rE. Then

rV = RV (cosωV t i+ sinωV t j) (a)
rE = RE(cosωEt i+ sinωEt j) (b)

rV E = (RV cosωV t−RE cosωEt)i + (RV sinωV t− RE sinωEt)j. (c)
(6)

We have shown the graphical construction
of the vector rV E in two different ways. In
Fig. (d) the vectors rV and rE are drawn
according to Eq. (6 a,b). The straight line
joining E to V is the relative displacement

vector rV E.
In Fig. (e) rES is the displacement of the

sun S with respect to the “fixed” earth E, and
rSV = rV is the displacement of Venus V with
respect to the “moving Sun”. Adding these
two vectors we get back rV E = rES + rSV .

rES = RE [cos(π + ωEt) i+ sin(π + ωEt) j] = −RE(cosωEt i+ sinωEt j) (a)
rSV = RV (cosωV t i+ sinωV t j) (b)
rV E = (RV cosωV t−RE cosωEt)i + (RV sinωV t−RE sinωEt)j. (c)

(7)

We can now plot the g-path of Venus, given by the radius vector rV E, at different times.
Taking the values of RE, RV and ωV , ωE obtained at the beginning of this subsection, we
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write the parametric equation of the path, with t as the parameter.

x = RV cosωV t−RE cosωEt = 0.72 cos(1.63× 2πt
12
)− cos 2πt

12

= 0.72 cos(1.63τ)− cos τ.

y = RV sinωV t−RE sinωEt = 0.72 sin(1.63× 2πt
12
)− sin 2πt

12

= 0.72 sin(1.63τ)− sin τ.

(8)

In the last equalities we have chosen a new
parameter τ = 2πt

12
. We have made a plot of

the above curve in Fig. 3(f) from τ = −π/2
to τ = 9π, covering 4.75 years. The numer-
als 1,2,3,..., 25 written alongside the path are
in increasing order of time, but not placed
at equal time intervals. The “loop-the-loop
cusps” appear at the points 1,13,23. These
are the points where retrograde motion of the
planet appears to take place.

The g-path we have just plotted is not what
is seen from the Earth. It is seen by a sta-
tionary observer sitting on the Z axis (i.e.,
the axis passing through the origin E in Figs.
c and f) above the plane of the Ecliptic .
An earthbound observer sees the projection
of the g-path on the “celestial sphere”. Not-
ing that the plane of the orbit of Venus makes
an angle of 3.40 with the plane of the Eclip-
tic [16] (though in our drawing we have taken
them to be coplanar) one should be able to
show that this projection is similar to the
path shown in Fig. (a).

2.4 Geocentric path of Mars

from the Copernican

model

Mars has a special place in our narrative. By
a painstaking analysis of the observation data
of Mars, taken earlier by Tycho Brahe, Ke-
pler was able to obtain his laws of planetary
motion.

Let us obtain the necessary data for Mars.
Radius of the orbit RM = 1.524 AU. Period of
one complete revolution around the Sun TM=
686.98 days. The orbital angular velocity of
Mars: ωM = 2π

12
× TE

TM

= 2π
12
× 365.25

686.98
≈ 0.53× 2π

12

rad/month. Converting into degrees, ωM ≈
0.53× 300 ≈ 160 per month.

We have illustrated the construction of the
g-path of Mars, both by geometrical con-
struction and by plotting of the parametric
equation, in Fig. 5. The Earth is represented
by E and Mars by M. This construction is
similar to the one for Venus with one im-
portant difference. Venus is an inner planet
having its orbit inside that of the Earth, and
Mars is an outer planet having orbit outside
Earth’s. For the interior planets the ecliptic
(larger circle) is the Deferent and the orbit
(smaller circle) is the Epicycle. The roles get
interchanged when we go to the outer plan-

Volume 28, No. 2 Article Number: 4. www.physedu.in
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ets. Now the orbit of the planet (larger circle)
is the Deferent, and the Ecliptic (smaller cir-
cle) is the epicycle. Since this requires some
clarification, and can be confusing, we shall
first show a simpler construction of a part of
the orbit of Mars in Fig. 4.
Fig. 4(a) shows the heliocentric motion of

the Earth and Mars, and their locations at
equal intervals of one month, with the Sun
S fixed at the origin, all drawn to scale.
The Earth and Mars are moving on their re-
spective circular orbits around the Sun, of
radii RE and RM and covering angles 300 per
month and 160 per month respectively. As
in the case of Venus we adopt one month as
the unit of time. At t = 0, E and M are
in conjunction, i.e., they lie on one straight
line passing through S. We denote their loca-
tions as E0 and M0 respectively. At t = 1, E
has moved by 300 to E1 and M has moved by
160 to M1. Continuing this way we get the
locations (E2,M2), · · · , (E6,M6), correspond-
ing to t = 2, · · · , 6.
Going backward in time we get the lo-

cations (E−1,M−1), · · · , (E−6,M−6), corre-
sponding to t = −1, · · · ,−6. Note that the
Earth comes back to the same location after
12 months, and therefore, the point E6 co-
incides with point E−6, and we have merged
the two points with the label E6,−6. The dis-
placements of Mars relative to the Earth at
the times t = n are given by the vectors rn,
stretching from En to Mn; n = −6, · · ·+ 6.
We have brought these vectors to a com-

mon staring point at the location E in
Fig. 4(b) The displacements of M relative to
E at equal intervals of one month are now
clearly seen.

In Fig. 4(c) we have joined the tips of these
vectors with a smooth curve. This curve is
the g-path over a period of one year, spread
equally before and after the conjunction time
t = 0.

We now come to a more methodical con-
struction and plot of the g-path in Fig. 5.
Since this construction is similar to the one
for Venus, we shall avoid some of the details.
Fig. 5(b) gives the Copernican picture of the
positions of E and M at equal intervals of 1
month, with the Sun at the centre, and E and
M going around it.

Fig. 5(b) shows the Copernican picture of
the motion of E and M around S. Here S is
the centre of the universe. It is fixed and is
the origin of the Cartesian coordinate system.

Fig. 5(c) has E fixed at the origin of the
Cartesian coordinates, as we are analyzing
the motion of M relative to E. S goes on the
smaller circle of radius RE labeled Ecliptic
with angular velocity ωE, and M on the big-
ger circle of radius RM labeled Orb with an-
gular velocity ωM . At t = 0, S is at S0 and M
is at M0.

After time t, S has moved on the Eclip-
tic, through an angle ωEt, to the location
St. And M, riding on the Orb, has moved
through an angle ωMt to Mt. Let a, b, c rep-

resent the displacements
−→
ESt,

−−→
StMt,

−−→
EMt re-

spectively. Then a+ b = c

Here a is the displacement of S relative to
E, as the former moves through the angle ωEt
on a circle of smaller radius RE. Similarly, the
vector b is the displacement of M relative to
S, as the former moves through the angle ωMt
on a circle of larger radius RM .
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Figure 4: Simple construction the g-path of Mars. (a) Heliocentric motion of E and M; and the
relative displacemnt {rn;n = −6,−5, . . . ,−1, 0, 1, . . . , 5, 6} of M with respective to E over one year
at 1 month intervals; (b) Relative displacement vectors {rn} drawn from E; (c) Joining the tips of
the vectors {rn} with a smooth curve to get the g-path.

Now, independent of S,E and M, the vec-
tor b can be looked upon as a displacement,
in the anticlockwise direction, on a circle of
larger radius RM , and a as a displacement, in
the same direction, on a circle of smaller ra-
dius RE. Also c = b+a. We have illustrated
this in Fig 5(d).

We come to the conclusion that the net dis-
placement of M, represented by the vector c
is same as a displacement on a bigger circle
(deferent), represented by the vector b, fol-
lowed by a displacement on a smaller circle

(epicycle), represented by the vector a.
In summary, E is fixed. An imaginary

point I (shown in Fig 5d) is moving on the
deferent of radius RM around E. Around this
point I the planet M is moving on an epicy-
cle of radius equal to the radius of the Earth
RE.
Using the same graphical method em-

ployed for Venus we have done a graphical
construction of the g-path of Mars in Fig 5(e).
To obtain the parametric equation for the

g-path let us first note that:

a = rES = −RE(cosωEt i+ sinωEt j) (see Eq.7a) (a)
b = rSM = RM(cosωMt i+ sinωMt j) (b)
c = rEM = (RM cosωMt− RE cosωEt)i+ (RM sinωMt− RE sinωEt)j. (c)

(9)
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We now write the parametric equation of the g-path as

x = −RE cosωEt+RM cosωMt = − cos 2πt
12

+ 1.524 cos(.53× 2πt
12
)

= − cos τ + 1.524 cos(.53τ).

y = −RE sinωEt +RM sinωMt = − sin 2πt
12

+ 1.524 sin(.53× 2πt
12
)

= − sin τ + 1.524 sin(.53τ).

(10)

The parametric gnuplot of g-path is shown
in Fig. 5(f). It has been drawn over the range
τ = π/2 to τ = 9π, i.e., covering 4.75 years.
However, (as in the case of Venus) this is not
what is seen from Earth. An earthbound ob-
server sees the projection of the g-path on the
“celestial sphere”. Noting that the plane of
the orbit of Mars makes an angle of 1.90 with
the plane of the Ecliptic [16] one should be
able to show that this projection is similar to
the path shown in Fig 5(a).

2.5 Calculation of the periods

of the planets by

Copernicus

Copernicus had also obtained the distances
of the planets from the Sun and the time pe-
riods of their orbital motion. The ancient
astronomers, starting from Ptolemy, had ob-
tained the same or similar data. This should
not be surprising since in the ancient world
astrology, rather than astronomy, held sway,
and it was of paramount importance to pre-
dict the time of appearance of a planet at a
specified location in the sky, for astrological
predictions.

We shall take a quick look at the trigono-

metrical methods which might have been ap-
plied by Copernicus to obtain the periods and
the orbital radii of the planets.

First the period. The interval of time TP

in which a planet completes one full orbit
around the Sun is the period of revolution
of the planet. From our observation station,
the Earth, we cannot determine TP directly.
We can, however, determine the Synodic Pe-
riod τ of a planet by direct observation, from
which one can obtain TP .

We have explained synodic period in Fig. 6.

Let us take the planet P to be an outer
planet, say Jupiter. There is a moment when
when the Sun S and the planet P are in oppo-
sition with respect to the Earth. This means
that they lie on the same straight line as E,
but located on opposite sides of E, as seen in
the configuration SE1P1 in Fig. 6(a). We can
identify this moment by noting the date when
P crosses the celestial meridian at midnight.

Now, both E and P are revolving around
the Sun, but E is revolving faster than P
(it should have been a common knowledge of
the ancient astronomers that the angular mo-
tion of the sun around the ecliptic was faster
than the angular motion of the outer planets
on the celestial sphere.) After some time τ ,
S and P will come back to opposition once
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Figure 6: Explaining Synodic Period. (a) Inner planet; (b) Outer planet.

again, to the new configuration SE2P2. This
time τ is the synodic period of the planet.
This will happen because in this time τ the

planet will move through an angular displace-
ment ψ, whereas E will go through an extra
angle 2π, i.e., go through a total angular dis-
placement 2π + ψ. (This is similar to the
movement of the minute hand over the hour
hand in a clock.)
The angular velocity of E relative to P is

ωrel = ωE − ωP . Then

ωrelτ = 2π. ⇒ 2π
TE

− 2π
TP

= 2π
τ
.

⇒ 1
TE

− 1
TP

= 1
τ
.

(11)

Inserting the vaue of τ obtained from mea-
surement, and TE = 365.26 days in Eq. (11)
we get the required period TP .
In the case of the inner planets, they will

never be in opposition. We could have used
their conjunction instead, i.e., position of the
planet in the direction of the Sun along the

line joining E and S. However, it is not possi-
ble to view the planet when it is in conjunc-
tion. Therefore we can offset the planet from
the ES line by a certain angle φ. For example
we view Venus some day when it makes angle
φ = 300 with the ES line (which will be, say
2 hours after sunset), and wait till it again
makes the same angle φ = 300 with the ES
line. The period of waiting, τ , is the synodic
period of the planet.
In this case ωP > ωE, and ωrel = ωP − ωE.

Therefore,

ωrelτ = 2π. ⇒ 2π
TP

− 2π
TE

= 2π
τ
.

⇒ 1
TP

− 1
TE

= 1
τ
.

(12)

As in the previous case we obtain TP from the
known values of TE and τ .
We now list below the Synodic Periods and

the Time Periods of the planets as recorded
by Copernicus.
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Table 1: Copernican estimate of Time Periods of Planets (in years)

and comparison with modern values*.

0 1 2 3 4 5 6

1 Category → inner inner outer outer outer

2 Planet → Mercury Venus Earth Mars Jupiter Saturn

3 τ (days) → 115.88 538.92 - 779.04 398.96 378.09

τ (years) → 0.317 1.475 - 2.133 1.092 1.035

4 Formula: Eq.(12) ↓ Eq.(12) ↓ Eq.(11) ↓ Eq.(11) ↓ Eq.(11) ↓

0.24 0.596 1.885 11.869 29.57

5 Copernican → 0.24 0.615 1 1.882 11.87 29.44

6 Modern → 0.24 0.615 1.00 1.881 11.862 29.457

*Rows 3, 5 and 6 are taken from A.P.French, op. cit.

2.6 Calculation of the orbital

radii of the planets by

Copernicus

Copernicus calculated the orbital radii of the
five planets (other than the Earth) known to
the ancients. We shall obtain these values
in Astronomical Units (AU), from direct ob-
servation of what one may call the angle of
maximum deviation, denoted by θm.

We first take up the case of the inner plan-
ets. There are two planets in this category,
Mercury and Venus. Mercury is the inner-
most planet. Venus comes next, its orbit
placed between those of Mercury and the

Earth.

We assume that to a first approximation
the motion of the inner planet, as seen from
the Earth, is along an epicycle of radius RP ,
riding on a deferent of radius RE. Here the
subscripts P and S stand for the Planet and
the Earth respectively. We have illustrated
this in Fig. 7(a). The Sun S is at the cen-
tre of the epicycle, moving around E on the
Deferent.

The planet P makes an angle θ with the
Sun when it is at any arbitrary point P. How-
ever, there are two locations on the deferent,
A and B, at which this angle has the max-
imum value θm. This angle is the angle of
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Figure 7: Determination of the orbit radii of planets. (a) Inner planet; (b)-(e) Outer planet.

maximum deviation.
Imagine that the planet is located at A.

From the geometry of Fig. 7(a) the radius of
the planet’s orbit is

RP = SA = ES sin θm = RE sin θm

= sin θm, (in AU),
(13)

since RE = 1 AU.
Let us turn to Venus as a special case.

Venus is called the the morning star if seen in
the morning and evening star 1 [14] , if seen in

1“The Greeks thought of the two as separate

the evening (say, about 50 days later). Let us
watch Venus in the evening. It can be seen as
a bright object in the sky. Venus will set some
time after Sunset. The time gap between the
Sunset and Venus-set changes with time, but
at a certain time of the year it reaches a max-
imum value, say τm (in hours). This time gap
can be translated into θm It is obvious that
θm = Tm

24
× 3600.

Alternatively, we can measure θm by mea-

stars, Phosphorus and Hesperus untill the time of
Pythagorus in the sixth century BC”. See Wikipedia.

Volume 28, No. 2 Article Number: 4. www.physedu.in



Physics Education 18 Apr - Jun 2012

suring the maximum time lag τm between
Venus-rise followed by Sunrise and convert it
into θm applying the same formula.
The angle θm is half of the angle that the

angle ∠AEB that the whole epicycle subtends
at the centre of the deferent. This should be
clear from from Fig. 7(a). We shall apply this
principle for the outer planets.
Let us now come to one of the outer plan-

ets (Mars, Jupiter, Saturn.) We have shown
the planet in Fig. 7(b). In this case the def-
erent is the planet’s orbit, of radius RP , and
the epicycle is the Earth’s orbit of radius RE.
(See conclusion on page 12.) As in the case
of the inner planets, we take θm as half of the
angle that the whole epicycle subtends at the
centre of the deferent. How to find the angle
θm from observation?
The angle θm is half of the angle that the

Earth’s orbit subtends at the centre of P.
To show this we have drawn a heliocentric
(Copernican) view of S,E and P in Fig. 7(c).
The outer circle is the orbit of P, the inner
circle is the orbit of E, the Sun is at the cen-
tre S. The straight line PQ is a tangent to
the Earth’s orbit, so that the angle γ is half
of the angle that the Earth’s orbit subtends
at the centre of P. Now compare the trian-
gles △ABE and △SQP appearing in Figures
(b) and (c) respectively. They are congruent,
because they are both right angled triangles,
AE = SP = RP , and AB = SQ = RE. Hence,
∠AEB = ∠SPQ = γ. Q.E.D.
One can now think of the following proce-

dure. Let us find the location of P against a
marker α on the celestial sphere (it can be a
star, a nebulae, or some other astronomical
object many light years away so that it can

be taken to be permanently fixed on the ce-
lestial sphere) when S and P are in opposition
(see page 14), as shown in Fig. 7(d).
We have drawn Figs. (d) and (e) on a light

shaded background to demarcate their upper
parts from the domains of Figs. (a)-(c).
A look at Table 1 shows that the time

period of a planet’s revolution around the
Sun increases (and its angular velocity de-
creases) with increasing radius of its orbit.
This means that the angular velocity ωP of P
is less than the angular velocity ωE of E (the
latter is 300 per month.) After some time t, E
and P go to new locations as shown in Fig.(e),
such that the angle ∠PES is a right angle, so
that PE is tangent to the Earth’s orbit and
the angle ∠EPS is same as θm. (This will
happen, for instance, on the day the planet
crosses the meridian at sunset.) At this time,
when viewed from Earth, P is seen against
another marker β on the celestial sphere.
From the time periods of the planets listed

in Table 1 we can find out ωP . We have also
measured t. Therefore we can find the angle
ψ = ωP t by which P has moved from the
straight line Ŝα, as shown in Fig.(e). Let φ

be the angle between the straight lines Ŝα
and Ŝβ, as measured from Earth. Then θm =
φ + ψ = φ + ωP t. We now return to Fig.(b).
The radius of the orbit we want to measure
is given as

RP = EA = AB csc θm = RE csc θm

= csc θm, (in AU).
(14)

We have tabulated in Table 2, the values of θm
that were probably known to Copernicus, and
the values of orbital radii he had obtained.
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Table 2: Copernican estimate of orbital radii of planets* (in A.U.),

and comparison with modern values.

0 1 2 3 4 5 6

1 Category → inner inner outer outer outer

2 Planet → Mercury Venus Earth Mars Jupiter Saturn

3 θm (deg) → 22.5 46 41 11 6

4 Formula: RP = sin θm ↓ sin θm ↓ csc θm ↓ csc θm ↓ csc θm ↓

0.382 0.719 1.524 5.24 9.57

5 Copernican → 0.376 0.719 1.000 1.520 5.219 9.174

6 Modern → 0.3871 0.7233 1.0000 1.5237 5.2028 9.5389

*Data in rows 3, 5 and 6 are taken from A.P.French, op. cit.. The values of θm listed in Row 3 are

attributed to the ancient Greek Philosopher Ptolemy.

3 Kepler’s Struggle with

Mars

One important landmark in the path to the
discovery of the law of universal gravitation
was the arrival of a Danish astronomer named
Tycho Brahe (1546-1601) who had made his
observatory near Copenhagen with the pa-
tronage of the king of Denmark, but later
moved to Prague to continue his study of the
planets. Paradoxically the model of the uni-
verse as propagated by Tycho (the Tychonic
model) was similar to the Platonic model
with suitable modifications.

Johannes Kepler, a German astronomer
(1571-1630) with extraordinary mathemati-
cal skills, was invited by Tycho to work with
him in Prague. However, Kepler could not
fall in line with the Tychonic model, but had
faith in the Copernican system. After Ty-
cho’s death Kepler dedicated much of his life
in analyzing the tables of planetary positions
Tycho had left behind, after obtaining them
with difficulty from the unwilling hands of his
heirs.
Kepler’s life is a saga of the indomitable

human spirit, of the difficult battle a sin-
gle individual fights against all odds and ad-
versities, to follow the star of his conviction
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with the power of a superlative mathemati-
cal mind, and comes out unvanquished. He
lived at a time when religious dogma reigned
over reason, and any independent thinking
differing from the official tenets of the church
was met with religious persecution, humilia-
tion and death. Elderly women living alone
were charged with witchcraft and burnt alive
at the stake. It is said that Kepler’s discov-
eries prompted a war, in which thousands of
innocent people died, including Kepler’s wife
and son.
Kepler had a dream, described in his sci-

ence fiction Somnium, in which he told the
story of space travelers going to the Moon,
and watching Earth-rise from the lunar sur-
face. Such an imagination was considered to
be outrageous and heretic (as it came into
conflict with the Earth-centred universe). It
is said that his mother had to pay a heavy
price for this heresy. She was carried away in
a laundry basket in the middle of night.
Kepler’s earlier work, when he was teach-

ing secondary school mathematics, in Graz,
Austria, was a discovery, which he called
Cosmic Mystery. When teaching a class of
bored students, his mind drifted to a dif-
ferent world, trying to find an order among
the orbits of the six planets known to the
world at that time, the radii of which had
been found out by Copernicus. He was vis-
ited by a revelation that the orbits of the
planets could be fitted into the geometrical
solids of Pythagorus, in which he also found
the answer why there existed only six planets.
His geometrical construction is an outstand-
ing artwork of sheer delight, and should be
seen and studied by students of mathemat-

ics, physics and art, by all those who love to
discover beauty in geometrical shapes.
We quote Feynman. “He quickly devised

a model in which the six invisible spheres
that regulated the orbits of the six planets
then known were fitted on either side of each
of the five perfect solids of antiquity (solids
having all sides the same: the tetrahedron,
cube, octahedron, dodecahedron, and isoca-
hedron), nested one inside the other. Sure
enough, by arranging the solids in the right
order, the diameters of the spheres came out
to be in almost the same ratios as those of
the orbits of the planets.
“Kepler’s model explained why there were

six, and only six planets - because there were
five and only five perfect solids”
Kepler’s discovery was published in his

book Mysterium cosmographicum in 1596.
However, this discovery lost part of its rel-
evance after the discovery of extra planets
Uranus, Neptune and Pluto.
Kepler left Graz, anticipating the horror

of religious persecutions that would follow,
and came to work under Tycho in Prague as
we have already mentioned. Here he concen-
trated his study on the position of Mars based
on thirty five years of data collected by Ty-
cho. “What real motion of the Earth and
Mars about the Sun could explain the appar-
ent motion of Mars in the sky, including its
retrograde loop through the background con-
stellations, as recorded by Tycho?”. This was
the raging question in his mind and he left
no stone unturned to seek its answer. Ty-
cho had earlier wanted Kepler to study the
motion of Mars, because compared to other
planets Mars appeared to move in the most
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anomalous manner, difficult to explain with
the help of circle over circle.

Tycho’s data consisted of measurements of
the angle between Mars and the “fixed stars”
at different times. These measurements were
valid with respect to an observatory fixed on
the earth. Like his predecessors Kepler had
faith in circular paths for the planets, because
a circle was considered to possess the per-
fect geometrical shape, and such perfections
only deserved to be the attributes of heav-
enly bodies. Therefore Kepler, transformed
the angles from Tycho’s table of data into an-
other set of angles that would be valid with
respect to a frame of reference fixed at the
centre of the sun. Assuming that the earth
was spinning about its axis, and was also re-
volving around the sun in a circle, he applied
his superb mathematical skill to perform the
required transformation of the angles 2 and
made “seventy attempts” to fit them into the
assumed circles. However, somewhere there
was an error of “eight minutes” of arc (there
are sixty minutes of arc in one degree), which
could not be patched up with the imagined
circular motion.

When all such attempts failed Kepler could
see the light at the end of the tunnel, with the
realization that an ellipse rather than a circle
will fit Tycho’s data beautifully. That was

2 This is the reverse of we have done in the previ-
ous subsection, in which we drew the g-path of Mars
on the basis of heliocentric circular orbits. Tycho’s
data gave the projection of the true g-path on the ce-
lestial sphere, as in Fig. 5a. From this, we guess, Ke-
pler constructed the true g-path using his genius, and
then “transformed” that into the heliocentric paths
of the Earth and Mars.

the greatest revolution in the history of as-
tronomy, and this discovery is known as Ke-
pler’s First Law of Planetary motion.
Kepler also realized that the prevailing no-

tion that a planet moved with uniform speed
along the orbit will be inconsistent with the
available data. The data indicated that the
planet moved faster when it is near the Sun,
and slower as its distance from the Sun in-
creased. In this process of varying speed, one
thing remained constant. It is the areal ve-
locity, by which we mean the rate at which
the planet sweeps out area around the Sun.
This realization had occurred to Kepler ear-
lier but came to be known as Kepler’s Second
Law of Planetary motion.
We shall explain these two laws with the

help of Fig.8.
In Fig. (a) we have shown an imaginary ob-

ject P moving around the Sun. We call such
an object a Planet. The path that the planet
follows is an ellipse. The ellipse has a char-
acteristic point F called its Focus, where the
Sun will be always residing. In other words,
the planet always moves in an ellipse in such
a way that the Sun is always at the focus F.
This is the first law.
Suppose the planet P moves from K to L

in a given time interval τ . After some time P
goes to another point M, and moves from M
to N in the same time interval τ . The sector
KL makes a certain area A at the focus F.
Then the sector MN will make the same area
A at the focus F. In other words the planet
will sweep out equal areas at the focus F at
equal intervals of time. This is the second
law.
Let us introduce the term “eccentricity” e
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Figure 8: Orbits of some planets around the Sun

at this point without going into its definition.
For an ellipse e is a number that gives a mea-
sure of how far the rounded figure is elon-
gated in one direction (flattend in the other)
compared to a circle. For an ellipse e is less
than one. A circle is a very special case of an
ellipse with e = 0.

Let us take another look at the elliptical

path of the hypothetical planet P in Fig. (a).
As the planet moves around the Sun, which
is fixed permanently at F, its distance from
F is continuously changing. This distance is
a minimum, and equal to r1 when it is the
point P, called the perihelion of the planet,
and maximum, and equal to r2 when it is at
the point A, called the aphelion of the planet.
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Its dimension in the X direction is equal
to 2a, and is referred to as its major axis
(the distance a is called the semi-major axis).
And its dimension in the Y direction is equal
to 2b, referred to as its minor axis (the dis-
tance b is called the semi-minor axis).
The relationship between e and the other

parameters is given as

r1 = (1− e)a; r2 = (1 + e)a;
b

a

=
√
1− e2.

(15)

It is seen that when e → 0 the ellipse re-
turns to a circle with a = b, r1 = r2 = a.
The hypothetical planet in Fig (a) moves in

an ellipse of eccentricity e = 0.5. In Fig (b),
(c) and (d) we have shown true plots of the or-
bits of Mars, Venus and Mercury (using gnu-
plot), having e = 0.093, 0.007, 0.206 respec-
tively. It is seen that the orbit of Venus looks
almost like a circle[15]. There is a marked de-
parture from circle of the orbit of Mars and
further departure for the orbit of Mercury.
In both cases, even if the orbit looks nearly
circular, there is a marked shift in the posi-
tion of the Sun from the “centre”. It is this
anomaly, in the case of Mars, that showed up
in the form of an error of eight minuites of arc
when Kepler tried to patch up Tycho’s data
with a circle.

4 Kepler’s Third Law -

Key to Inverse Square

Let us make a formal statement of the three
laws of planetary motion discovered by Jo-

hannes Kepler. We have already explained
with diagram what the first two laws are.
We shall now write all the laws together to
summarize Kepler’s most important work on
planetary motion.

Kepler’s Laws of Planetary Motion

1st Law. All planets move in elliptical paths.
2nd Law. A straight line drawn from the
Sun to a planet sweeps out equal areas in
equal times.
3rd Law. Let T represent the time period
of one complete revolution of a planet around
the Sun, and let a represent the semi-major
axis of its (elliptical) orbit. Then the ratio
T 2

a3
is the same for all planets. In other words

T 2 ∝ a3.
Let us spend a little time understanding

the 3rd law, which says

T 2 = c a3 (16)

where c is a constant, same for all planets.
For convenience we shall assume that the
planetary orbit is (approximately) a circle,
and replace a by the average distance of the
planet from the Sun, which we shall call the
average radius and represent by R. For Earth
T = 1 Earth-year, and R = 1 AU. Therefore
if time is measured in Earth-year, and radius
in AU, then the constant c in Eq. (16) should
come out to be equal to 1. We shall now make
a table for T 2 and R3 for some planets, to test
Kepler’s third law. We shall take the values of
T and R, as obtained by Copernicus, and as
tabulated in Tables 1 and 2, although Kepler
had used different values, and had obtained
better agreement.
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Table 3 : R and T for the planets, and the value of c.

0 1 2 3 4 5

Planet ↓ R R3 T T 2 c = T 2

R3

AU E-year

1 Mercury 0.376 0.53 0.24 .0576 1.087
2 Venus 0.719 .372 0.615 .378 1.016
3 Earth 1 1 1 1 1
4 Mars 1.520 3.51 1.882 3.54 1.008
5 Jupiter 5.219 142.15 11.87 140.90 0.991
6 Saturn 9.174 772.10 29.44 866.71 1.123

The average of the numbers given in col-
umn 5 comes out to be c=1.037. The varia-
tion of T with R can now be represented the
empirical relation

T =
√
cR

3

2 = 1.02R
3

2 , (17)

where R is given in AU and T in Earth-year.
We have plotted the above relationship in
Fig. 9, and shown the approximate locations
of the six planets on the plot. We have repre-
sented the inner planets Mercury and Venus
by the lower case letters m and v, the Earth
by E, and the outer planets Mars, Jupter and
Saturn by the upper case letters M, J and S
respectively.
We shall review how Kepler’s 3rd law led

Newton to his discovery. As before, we shall
approximate the planetary orbit by a circle
of (average) radius R. Now we introduce a
different constant K and write the third law
in the form of the following relationship.

R3 = KT 2, (18)

Then (18) means that

R3

T 2
= K. (19)

Instead of T we shall use the angular velocity
ω.

ωT = 2π ⇒ T =
2π

ω
. (20)

Then from (19) and (20)

R3ω2

4π2
= K (21)

Now, the centripetal acceleration, as cal-
culated by Newton, is given by, using the
symbol a to denote this acceleration (this a
should not be confused with the semi-major
axis).

a = ω2R. (22)

Then from (21) and (22)

R2a

4π2
= Ks. Or, a =

4π2Ks

R2
=

Ks

R2
. (23)
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Figure 9: Relationship between R and T for the six planets

In the above we have “normalized” constant
Ks to Ks ≡ 4π2Ks. We have also added sub-
script s to mean that the proportionality con-
stant is now associated with the force of grav-
itation emanating from the Sun.

Note the important inference we have de-
rived from Kepler’s third law: The acceler-
ation of a planet “freely falling” under the
gravitational pull of the Sun, is inversely pro-
portional to the square its distance from the
Sun.

The gravitational force Fs of the Sun on
the planet whose mass is m is then

Fs = ma =
Ksm

R2
. (24)

The force of the Sun’s gravity Fs acting on
a planet, like its acceleration a, is inversely
proportional to the square of its distance of
the planet.

If the above force law is truly universal,
then the same relation should also apply to
objects moving under the gravitational pull of
the Earth, as Newton surmised. Hence New-
ton conjectured

Conjecture 2 The force of gravity Fe on a
particle of mass m under the Earth’s gravita-
tion is

Fe = mg =
Kem

R2
. (25)

where g and Ke replace a and Ks respectively.
The subscript e now implies “Earth”, and
g stands for the acceleration due to Earth’s
gravity. This acceleration is then

g =
Ke

R2
. (26)
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Now,

Rapple = radius of the earth
= 6, 371 km.

Rmoon = radius of the moon’s orbit
= 384, 000 km.

(27)
so that

Rmoon

Rapple
= 60.3 (28)

Hence, by Eqs. (26) and (28), and noting that
gapple = acceleration due to gravity near the
surface of the earth = 9.81 m/s2, we get

gmoon

gapple
=

(
Rapple

Rmoon

)2

=

(
1

60.3

)2

≈ 1

3636
(29)

It now follows that

gmoon =
9.81

3636
≈ 2.7× 10−3m/s2. (30)

Newton now found complete agreement with
his estimate given in Eq. (3). It was a his-
toric triumph of Newton’s uncanny vision
and crowning of the Law of Universal Gravi-
tation.

5 The Law of Universal

Gravitation

There is another element in Newton’s discov-
ery. This is about the constant K. The grav-
itaional force Fe between the Earth and the
Moon is proportional to the (inertial) massm
of the Moon (see Eq. 25). Similarly, the grav-
itational force Fs between the Sun and the
Earth is proportional to the (inertial) mass

m of the Earth (see Eq. 24). It made sense to
Newton that the gravitational force between
two objects A and B must be reciprocal. If A
pulls B with a force F then B should also pull
A with the same force F . (This comes un-
der a wider principle called Newton’s Third
Law of Motion.) And this force must be pro-
portional to the “material content” of A and
also proportional to the material content of
B. One may call this unspecified “material”
quantity the gravitational masses of A and B.
Call them mg(A) and mg(B) respectively.
If A is the Sun, and B the Earth, then

Eq. (24) shows that mg(B) is to be identi-
fied with the (inertial) mass m of the Earth.
Similarly, if A is the Earth, and B the

Moon (or the apple), then Eq. (25) shows
that mg(B) is to be identified with the (iner-
tial) mass m of the Moon (or the apple).
Therefore let us recognize the gravitational

mass and the inertial mass to be identical,
and when we say mass, we may mean either
of them. In the following we shall represent
the mass by a capital italic, e.g., M .
Newton therefore formulated his Theory of

Universal Gravitation as follows.

Conjecture 3 Two particles A and B, hav-
ing masses MA and MB, when separated by
a distance r, attract each other along the line
AB joining them with a gravitational force Fg

which is proportional to MA and MB, and in-
versely proportional to the square of the dis-
tance r between them.

Fg ∝
MAMB

r2
. (31)

There is a constant of proportionality G,
called Gravitational constant. We can now
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write the above equation more completely as

Fg = G
MAMB

r2
. (32)

In the SI system mass is measured in kg, dis-
tance in meters and force in newtons. In that
case

G = 6.67× 10−11N.m2/kg2. (33)

The value og G was first measured by Henry
Cavendish many years after Newton.
In writing the force law, either in (31)or in

(32), we have assumed the objects A and B to
be point particles, as illustrated in Fig. 10a.
In Fig. 10b we have shown two large size ob-
jects A and B, of which A can represent the
sun and B a planet. We would like to find
the gravitational force between these two ob-
jects on the basis of the force law given in
(32). This can be achieved by treating A
and B to be composed of a very large number
of particles. The force between every parti-
cle in A and every particle in B is given by
Eq. (32). We add such forces between pairs
of particles, and obtain the force Fg between
A and B. This force takes a very special and
simple form when the distribution of matter
in each of A and B is spherically symmetrical,
as Newton proved himself.

Lemma: 1 Let there be two spheres with
centres at A and B containing massesMA and
MB respectively distributed in a spherically
symmetric manner, and let r be the distance
between their centres. Then the force be-
tween these two spheres is given by Eq. (32).
In other words, the gravitational force be-
tween two spherically symmetric distributions

of matter A and B is exactly same as the
force between two point particles coinciding
with the centres of these spheres, and carry-
ing the entire masses of A and B respectively,
provided that there is no overlapping of these
spheres.

In order to prove the above theorem, we
will need to introduce the concept of gravi-
tational field, which we will defer for another
occasion.
Let us now consider two LARGE non-

symmetrical massive objects A and B (for ex-
ample, A can be the Himalaya mountain, and
B the Alps mountain) as shown in Fig. 10c
we have shown. What is the force between
them?
We can again begin with Eq. (32), add

forces between pairs of particles, as in the pre-
vious example, to calculate the force between
A and B. However, in this case the answer is
not so simple. One may be tempted to say
that the force is still given by Eq. (32) where
r is the distance between the centres of mass
of A and B. But that would be WRONG!!
The force in this case will be very compli-
cated. The force here will NOT be a pure
inverse square force [17].
However, if the distance r between the

“centres” of A and B is very large compared
to the size of the objects, the force is almost
the same as given by the inverse-square-law.
Consider, for example an asteroid at a dis-

tance of r = 400 million kilometers from the
sun. It may be just a rocky mountain of ir-
regular shape having a maximum dimension
of, say 100 km. The diameter of the sun is
about 1.4 million km. Therefore the force
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Figure 10: Mutual forces of gravitation between (a) two point masses, (b) between two spherically
symmetrical masses, (c) between two non symmetrical masses?

with which the sun pulls the asteroid is al-
most exactly the same as given by the inverse
square law. The same is true for the gravita-
tional force of the earth acting on an artificial
satellite, like the sky lab with its elaborate
solar panels and housing colonies.

From the account we have given it may
appear that Newton’s role in the discovery
of the inverse-square-law of gravitation may
have been partly eclipsed by the pioneering
work of Kepler. Newton himself acknowl-
edged his debt to his predecessors when he
said, “If I have seen further than others, it
is because I was standing on the shoulders of
giants”.

We should pay due respect to the greatest
genius of physics by recounting how he con-
tributed to our understanding of the theory
of gravitation in another way, characteristic
of his greatness. Newton was the inventor of
calculus (it is said that the German mathe-
matician Gottfried Leibniz also invented cal-
culus about the same time.) Newton had re-
alized that it is impossible to absorb and ap-
ply the principles of mechanics without calcu-
lus. He showed us that all the laws of plane-

tary motion, discovered by Kepler by analyz-
ing Tycho’s data, can be reconstructed from
the inverse-square-law of gravitation and his
second law of motion, with the use of calcu-
lus. Also it is his genius that recognized the
common thread between the planetary mo-
tion and the motion of objects near and far
from Earth under its own gravitational in-
fluence, making the inverse-square-law truly
universal.
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