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In this article we shall discuss some problems where we find the Hamiltonian of a system starting
from its from Lagrangian using Legendre transformation. We also discuss when the Hamiltonian
can be taken as H = T + V , that is, as the sum of kinetic and potential energy functions, with no
need for Legendre transformation.

In classical mechanics we learn that Lagrangian and
Hamiltonian equations of motion are two equivalent for-
mulations of Newtonian equations of motion, though
much more convenient in many ways, especially in ad-
vanced applications. This means the Lagrangian func-
tion L(q, q̇, t) and the Hamiltonian function H(q,p, t)
of a system contain the same information. ( Here q ≡
(q1, q2, . . . qn), q̇ ≡ (q̇1, q̇2, . . . ˙qn), and p ≡ (p1, p2, . . . pn);
qi’s being generalized coordinates, q̇i’s generalized veloc-
ities and pi’s canonical conjugate momenta. n is the de-
grees of freedom for the system, and t is time) Thus we
should be able to obtain the Hamiltonian from the La-
grangian and the the vice versa. The general method
for doing the is through Legendre transformations. The
functions L(q, q̇, t) and H(q,p, t) form a Legendre trans-
formation pair - that is, one is the Legendre transform of
the other. Mathematically this means:

H(q,p, t) =
n∑

i=1

q̇ipi − L(q, q̇, t) (1)

where, the conjugate momenta pi are defined by

pi =
∂L

∂q̇i
(2)

The transformation given by Eq.1 is used to obtain H

when we have L. We see that the right hand side is a
function of qi, q̇i and t, whereas the Hamiltonian on the
left hand side is a function of qi, pi and t. But this is
easily taken care of by eliminating q̇i’s using the Eq. 2,
as we shall see in the examples to follow.

The reverse transformation (to obtain L from H) is
given by simply rewriting eq. 1:

L(q, q̇, t) =

n∑
i=1

q̇ipi −H(q,p, t) (3)

In this case we need to eliminate pi’s on the right hand
side, and we can do by using one set of Hamiltonian equa-
tions of motion

q̇i =
∂H

∂pi
(4)

This also we shall demonstrate in the examples.
Problem 1: Let us begin with a simple case. The La-

grangian of a simple pendulum is given by L = 1
2ml2θ̇2+

mgl cos θ, where m is the mass of the bob, l the length
of the string and θ the angle made by the string with the
downward vertical. Find the Hamiltonian, and from the
Hamiltonian recover the Lagrangian.

Solution: Here we have only one generalized coordi-
nate, θ, and therefore the sum in eq. 1 will consist of
only one term. Also the Lagrangian has no explicit time
dependence, and therefore Hamiltonian will have no ex-
plicit time dependence either. Thus

H(θ, pθ) = θ̇pθ − L

= θ̇pθ −
1

2
ml2θ̇2 −mgl cos θ (5)

where pθ is the conjugate momentum for θ, given by eq. 2. That gives us

pθ =
∂L

∂θ̇

= ml2θ̇
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which can be readily inverted to get θ̇ in terms of pθ:

θ̇ =
pθ
ml2

which we use in eq. 5 to eliminate θ̇, and finally get
Hamiltonian expressed as the function of θ and pθ:

H(θ, pθ) =
1

2

p2θ
ml2

−mgl cos θ (6)

This is a good point to discuss one important issue.
You might know that usually Hamiltonian is taken as
the total energy function H = T + V . And we have La-
grangian defined as L = T−V , T and V being the kinetic
and potential energy functions . So to obtain H from L
why not just reverse the sign (plus or minus) of V (when

it can be identified), and then eliminate θ̇ for pθ, instead
of going to the trouble of performing Legendre transfor-
mation? The reason is that the Legendre transformation
definition of H given in eq. 1 is general and always ap-
plies, where as the relation H = T +V applies only when
(1) the system is conservative, that is L is not an explicit
function of time t, (2) The forces acting on the particles
of the system can be obtained from a scalar potential
V . These conditions are met in many important appli-
cations (examples are harmonic oscillator, central force
driven motion), and therefore we very often use the rela-
tion H = T +V . You can easily check that we can follow
this procedure to obtain the above Hamiltonian.
But there is one all important case where these condi-

tions are not met - the motion of a charged particle in a
magnetic field (even if the field is constant in time). We
know that the magnetic force acting on a charged parti-
cle cannot be obtained as a spatial gradient of a scalar
function (i.e. cannot be written as −∇ϕ where ϕ is some
scalar function of coordinates), and it is a function of
velocity of the particle. We shall not discuss this topic
any further here, because it is a standard topic discussed
in detail in every classical mechanics textbook. In the
following problem we consider magnetic field to see the
necessity of going through a Legendre transformation to
obtain the correct Hamiltonian. But before that let us
verify that we can get back the Lagrangian for the simple
pendulum starting with the Hamiltonian in eq. 6. From
eq. 3

L(θ, θ̇) = θ̇pθ −H(θ, pθ)

= θ̇pθ −
1

2

p2θ
ml2

+mgl cos θ

Now we need to eliminate pθ for θ̇, which we do using
eq. 4. That is, θ̇ = ∂H/∂pθ = pθ/ml2, which gives us

pθ = ml2θ̇. Using this in the above

L = θ̇ ·ml2θ̇ − 1

2

(ml2θ̇)2

ml2
+mgl cos θ

=
1

2
ml2θ̇2 +mgl cos θ

as expected. Now we move on to the next problem.
Problem 2: The Lagrangian for a charged parti-

cle with charge q, mass m moving in a uniform, time-
independent magnetic field B in z-direction is given by

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+

qB

2
(xẏ − yẋ) (7)

Find the Hamiltonian

Solution: Now if we try using the relation H = T+V ,
identifying as “kinetic energy” T = 1

2m
(
ẋ2 + ẏ2 + ż2

)
,

and “potential energy” V = − qB
2 (xẏ − yẋ) we come up

with the Hamiltonian

H =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− qB

2
(xẏ − yẋ)

This is wrong! The right answer is

H =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
Its only the “kinetic energy”!

You might worry that there is no magnetic field in this
expression, which cannot be quite right, because we do
know that the motion of the charged particle is affected
by the magnet is field. But we will see that the field does
appear as soon as we put the Hamiltonian in the stan-
dard form, that is, by eliminating velocities for respective
conjugate momenta. So us work this out. From eq. 1 we
get

H = ẋpx + ẏpy + żpz − L

= ẋpx + ẏpy + żpz −
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− qB

2
(xẏ − yẋ)

At this point we normally eliminate the velocities ẋ, ẏ, ż
for respective conjugate momenta px, py, pz. But we can
save some algebra by persisting with the velocities for a
while. Using px = ∂L/∂ẋ = mẋ− qBy/2, py = ∂L/∂ẏ =
mẋ − qBy/2, and pz = ∂L/∂ż = mż, the expression
readily simplifies to, as promised

H =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
(8)

Inverting the expressions for px, py, pz above we have

ẋ =
1

m

(
px +

qB

2
y

)
(9)

ẏ =
1

m

(
py −

qB

2
x

)
(10)

ż =
1

m
pz (11)

using eqs. 9, 10 and 11 in eq. 8 and we have
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H =
1

2m

[(
px +

qB

2
y

)2

+

(
py −

qB

2
x

)2

+ p2z

]

Thus the magnetic field does appear in the Hamiltonian.

Our final problem is one involving Lagrangian with
explicit time dependence.
Problem 3: Consider a Lagrangian whose length is l

at time t = 0 and is gradually shortening, so that at
time t the length is given by l − y(t), and y(0) = 0. Its
Lagrangian is given by

L(θ, θ̇, t) =
1

2
m
[
(l − y(t))

2
θ̇2 + ẏ(t)2

]
+mg [l − y(t)] cos θ (12)

Find the Hamiltonian.

Solution: Note that y is not a coordinate of the pen-
dulum, but some known function of time. A coordinate
of the a system is determined by the equation of motion,
and the initial conditions for that coordinate. Here that
is not the case with y, whose time dependence does not

depend on the forces acting on the mass. Also, the La-
grangian is explicitly time dependent, so this is not, in
general, a conservative system (though it could be so for
some specific function y(t)). Thus once again the Hamil-
tonian is not given by H = T + V , and we have to use
the Legendre Transformation of eq. 1.

H(θ, pθ, t) = θ̇pθ − L(θ, θ̇, t)

= θ̇pθ −
1

2
m
[
(l − y(t))

2
θ̇2 + ẏ(t)2

]
−mg [l − y(t)] cos θ (13)

The conjugate momentum pθ = ∂L/∂θ̇ = m(l − y)2θ̇, which gives θ̇ = pθ/m(l − y)2. Using this eq. 13 above

H(θ, pθ, t) =
pθ

m (l − y(t))
2 · pθ −

1

2
m

(l − y(t))
2

(
pθ

m (l − y(t))
2

)2

+ ẏ(t)2

−mg [l − y(t)] cos θ

=
p2θ

2m (l − y(t))
2 − 1

2
mẏ(t)2 −mg [l − y(t)] cos θ

You can easily check in this case also the relation H = T + V (identifying T = 1
2m
[
(l − y(t))

2
θ̇2 + ẏ(t)2

]
, and

V = −mg [l − y(t)] cos θ) yields the wrong answer:

H(θ, pθ, t) =
p2θ

2m (l − y(t))
2 +

1

2
mẏ(t)2 −mg [l − y(t)] cos θ

But this reduces to correct Hamiltonian if ẏ = 0, as it should, because in that case the length of pendulum is fixed
and the system is conservative.
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