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Abstract 

Within the harmonic approximation, we estimate the Young’s modulus and tensile strength of 
typical carbon nanotubes at zero temperature following four important potentials used in solid 
state physics. The theoretical results are compared with experimental observations. The results 
thus obtained also find an important link with the applicability of carbon nanotubes as a space 
elevator.  

 
 

1. Introduction 
Scientific discovery along with technological 
revolutions strongly depends on materials. To 
achieve smaller, faster and reliable smart devices 
for the continuing need of present age, it is highly 
essential to understand the properties of the 
materials in depth. Mechanical, optical properties 
of nano-structures [1,2] and nano particles coupled 
with electronic study are indeed one of the 
exciting fields of research from basic science. This 
study also forms the basis for future smart devices. 
 
After Iijima’s pioneering and illustrious work on 
carbon nanotubes [3] and single-walled carbon 
nanotubes (SWCNTs) [4–8] in the early 1990s 
sparked a general growing interest in fundamental 
condensed matter physics as well as nano science 
and nanotechnology. To describe the structures of 
SWCNT, one needs to know graphene, the basic 
building block of carbon allotropes.  
 
Graphene is a one-atom-thick planar sheet of 
carbon atoms that is densely packed in a  

 
 
 
honeycomb crystal lattice. We show schematically 
in Fig. 1 the computer generated graphene and the  
direct image obtained by Meyer et al. [9] side by 
side. It is worthy to mention at this point that the 
graphene [6,10-12], by itself, can be characterized 
as either a zero-gap semiconductor or a metal 
(since the density of states (DOS) is zero at the 
Fermi energy (EF)) and naturally, graphene 
imparts these properties to a nanotube. 
Carbon nanotubes (CNTs) are the allotropes of 
carbon with a cylindrical nanostructure. 
Conceptually, CNTs are cylindrically shells made 
by rolling graphene sheets into a seamless 
cylinder. These sheets are rolled at specific and 
discrete angles. The typical length of a SWCNT 
can be between 1–100  m and diameter around 

1-10 nm. The perfect CNTs have crystalline 
structures formed by the hexagonal rings of 
benzene molecule with double and single C–C 
bonding. In Fig. 2, we schematically show the 
formation of SWCNT from graphene and 
fullerene. Their unique one dimensional structure 
with curvature in the sidewall is one of the 
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paradigms in the low dimensional systems of 
inter-disciplinary research. 
 
 

 
 
                      (a) 

 

                          (b) 

Fig. 1. (a) Computer generated graphene visual 
showing the honeycomb lattice structure. (b) 
Direct image of a single-layer graphene membrane 
(Red dots denote carbon atoms) 
 
The typical molecular structure of SWCNTs can 
be characterized by a chiral circumferential 

vector bmanBA


 , a linear combination of two 

unit lattice vectors a and b with m and n being 
integers. The pair of indices (n,m) for any given 
nanotube structure determines its diameter, 
chirality, and the basic electronic character. 
For example, if n = m, the nanotube is designated 
as armchair and is metallic in nature (with a zero 
bandgap, strictly speaking). While for n ≠ m and 
neither n nor m are zero, the CNT exhibits 
chirality, having important implications in optical 
properties. 
 
 
 

 
 
Fig. 2. Schematic illustration of formation of 
SWCNT from Fullerene and graphene sheet 
 
 
For n = 0 or m = 0, the CNT is termed zigzag. If 

pmn 3 , where p is a non-zero integer, the 

CNT is semimetallic/ quasi-metallic with a band 
gap of the order of meV. For pmn 3 , where p 

is a non-zero integer, the CNT is semi-conducting 
having a band gap of the order of 1 eV. In fig. 3, 
the various flavors of CNTs are illustrated through 
the chiral circumferential vector. From the 
circumferential vector AB, one can easily obtain 
the diameter and chiral angle, the characteristic 
features of a typical CNT.  
 
The diameter of a given nanotube can be 
expressed in terms of (n,m) and the carbon–carbon 
bond length 0.142 nm. The typical geometry of 
simple hexagonal unit used in generating the 
structures of CNT or graphene is shown in Fig. 4. 
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The distance (a) between two carbon atoms as 
shown in Fig. 4 is 0.142 nm while the half 
distance between any two parallel bonds 

( 2/)142.03(2/ b nm=0.123 nm). The 

diameter of a given nanotube can be expressed 
[1,4] in terms of (n,m)  as 

22142.03
mnmndnm 





. 

 

 

Fig. 3. Schematic illustration of various carbon 
nanotubes 

 

Fig. 4 A Typical hexagonal unit for formation of 
graphene  

C-G bonds are one of the strongest bonds in 
nature. It has been illustrated in Fig 3 and 4 that 
the carbon nanotube is composed of perfect 
arrangement of these bonds. Because of these 
bonds, carbon nanotubes are the strongest material 
[1,4] known ever having Young’s modulus (Y) 

1250 GPa and tensile strength ( ) 11-63 GPa 
quite comparable to diamond. In comparison, the 
values of Y and   in steel are 200 GPa and 2 GPa 
respectively. In this paper, we would like to 
present a simple model calculation to estimate the 
high values of Y and . In table 1 and 2, we show 
the comparison of various related physical 
parameters with two different forms carbon 
allotropes, diamond and graphite. 

Name of 
Elements 

Li Be B C(Dia) C(Graph 

Atomic 
Number 

3 4 5 6 6 

Y(GPa) 11.5 289 440 1140 8.3 

Melting 
Point 
(0C) 

181 1277 2030 3550 3550 

Density 

(103 
Kg/m3) 

0.531 1.85 2.34 2.25 2.25 

Table 1: Comparison of Various physical 
parameters with diamond and graphite 

Intuitively speaking, the materials with strong 
covalent bonds have a deep potential energy with 
a sharp curvature. Therefore, strong bonding 
naturally results in large values for Young’s 
modulus. Similarly, the shallow potential well of 
the weakly bonded materials is responsible for 
small values of Y as evident above from table 1. 
Elements beyond carbon do not form solids with a 
three dimensional network of covalent bonds. For 
example, graphite having two dimensional sheet 
held together by van der Waals bonds possess a 
very small value of Y (about 8 GPa). Again, the 
interatomic distance varies with crystal direction 
in a solid along with corresponding variation of 
bond strength. This results an elastic anisotropy as 
a function of crystal direction. More importantly, 
this effect is prominent for those materials having 
two types of bonds. As an illustration, Y for 
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graphite in a direction parallel to the sheets is 950 
GPa which is sensibly larger than that averaged 
over all direction (about 8 GPa). This picture is 
valid at absolute zero temperature. 

Name of 
Elements 

Na Mg Al Si 

Atomic 
Number 

11 12 13 14 

Y(GPa) 8.9 44 71 103 

Melting 
Point 
(0C) 

98 650 660 1410 

Density 

(103 
Kg/m3) 

0.97 1.74 2.70 2.33 

 

Table 2: Comparison of Various physical 
parameters of Alkali metals and Si 

2. Computation of Young’s Modulus  

We begin the section with the definition of 
Young’s modulus. It is defined as the ratio of 
longitudinal stress to longitudinal strain within 
elastic limit. Within elastic limit, the elongation 
(x) is proportional to the applied force (F) 
according to Hooke’s law. This gives us the force 
constant (k) as the ratio of F to x. We would like 
to compute the Young’s modulus of the material 
within this elastic limit of the chemical bond so 
called as harmonic approximation. If 0l  is the 

stress free length, A is the cross sectional area, we 
can write the Young’s modulus as 

A

kl
Y 0            (1) 

It is to be noted that the force constant k is related 
to the force between pair of atoms as 

0

2

2

Rr
dr

Ud
k











  with 

dr

dU
F  . Now, in the 

macroscopic specimen of length l0 and cross-
sectional area A, the specimen has roughly l0/r0 
number of bonds where R0 is the typical 
equilibrium distance of the interaction potential 
U(r). If one stretches this specimen by an 
infinitesimal distance dx, then the typical length of 

these bonds will increase by 
0

0

l

dxR
. Naturally, the 

tension in the each chain of atoms will be 
0

0

l

dxkR
. 

But the specimen contains 
2
0R

A
 of these chain of 

atoms, hence, the total force needed to produce an 

extension dx will be
00 Rl

kAdx
. Thus, the stress 

developed in the specimen is simply
00 Rl

kdx
. 

Therefore, the Young’s modulus can be written in 
terms of force constant k as 

0

2

2

0

1

rr
dr

Ud

R
Y











        (2) 

We model the potential of the chemical bonds by 
four different functions often taken in solid state 
physics. The first one in this category is the 
famous (6-12) Lennard-Jones potential given by 































6

0

12

0
01 2)(

r

R

r

R
UrU     (3) 

This potential is also used in statistical mechanics 
and liquid state theory. The power 6 is due to the 
fluctuating dipolar interaction energy [13] while 
the power 12 is not fixed in the sense that it could 
be any power greater than 6 for the stability 
reason. In the fluctuating dipolar theory [13], it is 
assumed that the two atoms are separated by a 
distance r. If the instantaneous dipole moment of 
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the first atom is 1p


, then within the dipole 

approximation, the electric field at a distance r 

will scale as 
3

1

r

p


. As a result this field will 

eventually induce a dipole moment 2p


 in the 

second atom of the order of 
3

1

r

p


. Therefore, the 

typical fluctuating dipolar energy will be of the 

order
6

2
1

3

21

r

p

r

pp





. Interestingly, although the 

time average value of 1p


 and 2p


 is zero but the 

time average of interaction energy is non-zero 
because of the quadratic dependence on 1p


. It is 

interesting to note that the potential goes to zero in 
the asymptotic limit of the distance. Moreover, the 
force generated from the above interaction is 
restoring one because above the equilibrium 
distance 0R , the force is attractive and below 0R , 

repulsive in nature. We expand the force around 
the equilibrium distance ( 00 xRr  ) and 

restricting to linear elastic limit, we find  

002
0

072
kxx

R

U
F            (4) 

This helps to identify the relevant force constant 

(k). Hence, the Young’s modulus can be written as 

2

0288

ad

U
Y


              (5) 

Here, we have used aR 0  and the cross-

sectional area 
4

2d
A


  with d  being the relevant 

diameter. One can also give a simple justification 
to the above formula from simple dimensional 
analysis [14]. Given the parameters used in the 
potential i.e. 0U  and 0R , it is easy to note that 

3
0

0

R

U
Y  . 

The expression obtained in equation (4) can now 
be used to estimate the typical magnitude of 
Young’s modulus of CNT. Assuming 

93.40 U eV as noted in case of Morse potential 

[15], we find the typical magnitude of force 
constant as 2790 N/m. For (9,0) SWCNT ( the 
circumference turns out to be 2.2 nm), the 
equation (4) should be multiplied by 9  for the 
computation of  Y . The estimated value thus turns 
out as 9363 GPa. This value is around 7.5 times 
larger than the experimentally observed value. The 
large value of 0U  taken in the above calculation is 

the reason for this discrepancy. However, 0.5 eV 
value of 0U  gives us a reasonable value of 948 

GPa. If we take typical value ( 211068.1  J) used 
for Ar atoms [15], we get back a very low value of 
Y  (20 GPa) for (9,0) SWCNT. 

As a generalization of the above potential, we 
consider the following one: 


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

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
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


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


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






nm

r

R

nr

R

mmn

mn
UrU 00

0

11
)(   (6) 

with nm . . The equation (3) follows from the 
above equation in the limit 12m and 6n . 
With this generalized potential, the expression for 
Y turns out as 

2

04

ad

mnU
Y


                    (7) 

Another potential energy often used in molecular 
physics [16] is defined as 











rr

R
BrU

1

8
)(

8

7
0

2               (8) 

with 281031.2 B Jm. The second term in the 
above equation is the Coulomb term. In this case, 
the value of Y in terms of B becomes 
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22

28

da

B
Y


              (9) 

When three positive charge particles are 
maintained in a straight line with the end particles 
being identical and are held fixed at a distance 0R , 

a new type potential [16] emerges 













0

3
2

11
)(

Rrr
BrU          (10) 

The above elastic limit calculation yields the 
Young’s modulus as 

22

16

da

B
Y


               (11) 

Another variant of anharmonic potential  











9

00
4 )(

r

B

r

A
rU      (12) 

in material science [17] can also be used for rough 

estimation of Y .  With 29
0 1068.7 A Jm , it is 

easy to notice that the expression of  
2

4
2

dr

Ud
 at the 

equilibrium distance ( 0r ) becomes 

11
0

0

3
0

0

2

04
2 902)(

r

B

r

A

dr

rUd
      (13) 

with 
9

8
00

0

rA
B  . Therefore, the numerical value 

of Y  for (9,0) becomes 825 GPa comparable to  
experimental observation. 

The above picture is valid for absolute zero 
temperature. A suitable generalization to finite 
temperature can be done in the following way. At 
finite higher temperature, with the help of thermal 
energy, the atoms vibrate about their mean 
equilibrium positions. As a result, the amplitude of 

the vibration increases with increase of 
temperature. With further increase of temperature 
(still quite far away from their respective melting 
points), the bonds between the atoms loosened up. 
As a consequence, there is a decrease of Young’s 
modulus with temperature. With the help of linear 
expansion coefficient , the expression (6) can be 
written at finite non-zero temperature as 

)31(

4

)1()1(

4
)(

2
00

0

22
00

0

Tda

mnU

TdTa

mnU
TY

 





                                                               (14) 

In other words, the zero temperature and finite 
temperature Young’s modulus are related roughly 
by 

T

Y
TY

31

)0(
)(


              (15) 

2. Computation of Tensile Strength 

It is clear that for the computation of tensile 
strength, one has to take the single C-C bond in 
the hexagonal network. However, in all the above 
potentials, there is no information about the 
rupturing of the bond itself. However, we use the 
harmonic approximation to estimate the 
magnitude of the ultimate tensile strength in the 
following way. In Fig. 5, we show the variation of 
the scaled van der Waal interaction with scaled 
distance and the harmonic approximation adopted 
in it. The maximal elongation ( maxx ) is computed 

by equating the maximum potential energy at this 
distance to the bond energy. This gives us 

k

U
x 0

max

2
            (16) 

for the first potential in equation (3).  

Therefore, the final maximum tensile strength in 
terms of Y can be written as 
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6
max

max

Y

a

Yx
               (17) 

0 2
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0

1

2

U
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(x
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U

0

x=r/R
0

 

Fig. 5. Sketch of the scaled typical van der Waal 
interaction (black) and its harmonic approximation 
(red) with dimensionless distance 

For (9,0) SWCNT, this value is simply 1560.5 
GPa quite large compared to experimental 
observed value. Similar analysis for generalized 
Lennard –Jones potential in equation (6) yields the 
maximal value of tensile strength as 

mn
Y

2
max                     (18) 

The equation (14) can also be used to estimate Y  
if max of the material composing the system is 

known. 

Fig. 6 represents the schematic variation of the 
interaction used in equation (8) with scaled 
distance. Please note the long tail of the 
interaction due to Coulomb interaction in contrast 
to Fig. 5. For the potential in equation (8), the 
ultimate tensile strength reduces to 

2
max

Y
                 (19) 

0 2 4 6 8 10

-2

0

2

4

(R
0
U

2
(r

))
/B

x=r/R
0

 

Fig. 6. Sketch of the scaled second interaction 
potential (black) used in equation (8) and its 
harmonic approximation (red) with dimensionless 
distance 

Similarly, the expression for the potential given in 
equation (10) is recast as 

2
max

Y
            (20) 

It should be remembered that the discrepancy 
arises in the large estimated values lies with the 
validity of harmonic approximation in such a 
situation. In fact, the harmonic approximation 
breaks down for rupturing the bonds in SWCNT. 

In Table 3, we compare the different values of 

Y and max  obtained from all the above interaction 

potential with other observed values. The large 
difference between the theoretical predicted values 
and real experimental values may be due to 
structural defects inherent in SWCNT [15]. 
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Table 3: Comparison of values of Young’s 
modulus and tensile strength of (9,0) SWCNT 

 

Before we conclude we would like to point the 
possibility or prospect of carbon nanotubes as a 
space elevator [15, 18]. Till date CNT has not 
been produced at the macroscopic scale to produce 
a very long cable/rope connecting earth and space 
station/satellite. There might be occurrence of 
damage from atmosphere by storms and lightning. 
One has also to be careful to take appropriate 
precautions from collisions rendered by heavenly 
bodies moving around earth. Therefore, we still 
believe that its status as a space elevator remains 
in the arena of science fiction.  

 

3. Conclusions 
 

Within the limit of harmonic approximation, we 

have made a rough estimation of the Young’s 

modulus and tensile strength of typical carbon 

nanotubes at zero temperature following four 

important potentials used in solid state physics. 

The theoretical results are compared with 

experimental observations. We have also 

generalized the zero temperature result to finite 

non-zero temperature with the help of linear 

expansion parameter. The results thus obtained 

also find an important connection with the 

applicability of carbon nanotubes as a space 

elevator. 
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