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Abstract 
An object in frictionless contact with and moving along a rotating spherical surface will experience Coriolis and 

centrifugal accelerations in the rotating frame.  Although these are the only accelerations that appear explicitly in the 

equations of motion, assuming no other tangential physical forces are present, velocity changes of the object over a 

finite time interval cannot be correctly computed by integrating the sum of only these two accelerations over that 

time interval. This was proven in a recent publication [J.C. Piquette, “Velocity Change Calculation for an Object 

Moving on a Rotating Spherical Surface,” Phys. Educ. 31(1) (2015), art. num. 3, pp. 1-12]. It was found there that an 

unexpected additional acceleration, therein termed the “kinematic” acceleration, was also required to be integrated 

over the finite time interval in order to deduce the correct velocity change.  Interestingly, a satellite in circular orbit 

about a spherical rotating planet satisfies everything required for the results of this previous work to apply. Hence, 

for example, the change in velocity of such a satellite, as seen in the rotating frame, cannot be determined by 

integrating over only the sum of the Coriolis and centrifugal accelerations. It was also found in the earlier work that 

the influence of the kinematic acceleration is dominant for high initial object speeds. The kinematic acceleration 

dramatically dominates both the Coriolis and centrifugal accelerations in the case of a satellite in circular near-Earth 

orbit, since such a satellite has a speed of about 18000 miles/hour. These conclusions also apply to the calculation of 

velocity changes along the ground track. To permit detailed understanding of the satellite’s motion along the ground 

track, the notion of a “shadow satellite” is introduced. The results and examples given here can be used in an 

undergraduate- or graduate-level classical mechanics course as modern space-age applications of classical mechanics 

that may be of high interest to students. 

 

1. Introduction 

The problem of computing the velocity change 
over a finite time interval of an object moving on 
the surface of a rotating sphere was considered in 
a recent publication [1]. In the problem considered 
there, the object was taken to be free of any 
applied tangential physical forces, and was 
constrained to remain on the sphere’s surface. 
Naturally, from the perspective of the rotating 
frame, the object experiences both Coriolis and 

centrifugal accelerations. Indeed, these two 
accelerations are the only accelerations that appear 
explicitly in the equations of motion. But despite 
that fact, if one attempts to compute the change of 
velocity of the object over a finite time interval by 
integrating over only the sum of these two 
accelerations, an incorrect result is obtained. By 
integrating the two equations of motion over the 
finite time interval of interest, it was found that a 
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third acceleration component appears. That third 
component was termed the “kinematic” 
acceleration. 

Interestingly, a satellite in circular orbit obeys all 
the requirements considered in the previous work, 
and hence the same conclusions apply to a satellite 
in such an orbit. An example of such a satellite 
that is especially interesting is one that orbits the 
Earth and passes over the two poles [2]. The 
ground track of such a satellite carries it over a 
very large percentage of the Earth’s surface. 

The influence of the kinematic acceleration was 
found to become increasingly dominant over the 
Coriolis and centrifugal accelerations as the initial 
velocity of the object increases. For an object in 
near-Earth orbit, which travels at a speed of about 
18000 miles/hour, the kinematic acceleration is by 
far the largest of the three acceleration terms that 
contribute to changes in velocity. 

Here, applications of the results of Ref. 1 to 
satellites in circular orbit are considered. For 
simplicity, in example calculations involving the 
Earth, it is assumed the Earth is a perfect sphere of 
radius 4000 miles, and completes one rotation in 

exactly 24 hours. It is also assumed that the orbital 
velocity of a satellite at the approximate POES [2] 
altitude of 700 miles above the surface is exactly 
18000 miles/hour.  

It is hoped that the results and examples given 
here may be useful in either an undergraduate- or 
graduate-level classical mechanics course. As 
space-age applications of classical physics, these 
examples may be of high interest to students. 
Those who would like to see additional references 
related to non-inertial frames and relating the 
material to classroom teaching are directed to the 
larger list of references given in Ref. 1. 

In Sec. 2, the two coordinate systems of interest 
are described, and the equations of motion are 
presented. A brief summary of the velocity-change 
calculation developed in Ref. 1 is given in Sec. 3. 
It is shown in Sec. 4 that the solution of an object 
given an initial velocity at the equator can actually 
be applied to cases with more generality than 
initially considered. The concept of the shadow 
satellite, which is useful for studying the satellite’s 
ground track, is developed in Sec. 5.  Numerical 
examples are given in Sec. 6. A summary and 
conclusion are given in Sec. 7. 

2. Coordinate Systems and 
Equations of Motion 

The approach used here applies the results of Ref. 
1 to a satellite in a circular orbit about a spherical 
rotating planet. The results of that reference apply 
directly to the satellite problem if the sphere radius 
is simply replaced by the radius of the circular 
orbit. Of course, when applied in that way the 
rotating sphere is actually an imaginary 
mathematical surface, rotating with the same 
angular speed as the planet, over which the 
satellite is assumed to be moving. Also of interest 
is the ground track of the satellite, and the notion 
of a “shadow satellite” is introduced for studying 
the ground track. The shadow satellite is taken to 
be a physical object located on the rotating  

 

 

 

planet’s surface, with the planet assumed airless 
and frictionless. The shadow satellite moves along 
the surface of the rotating planet, and always 
remains directly underneath the orbiting satellite. 

Two coordinate systems are used in the analysis. 
These are termed the “unprimed” and “primed” 
coordinate systems. The systems are depicted in 
Fig. 1.The unprimed coordinate system is an 
inertial frame at rest with respect to the fixed stars. 
The Cartesian coordinates of this system are 
denoted  zyx ,, . Not shown is a related 

unprimed spherical coordinate system   ,,r . 

However, the angle   of this system is depicted, 
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and expresses the angle between the x  and  

xaxes, and between the y  and y axes. The 

primed system also consists of Cartesian and 
spherical coordinates as shown. However, the 
primed system rotates about the common 

zz , axes at constant angular speed   . 

 
Fig 1 Primed and unprimed coordinate systems 

 

In the primed coordinate system, the well-known equations of motion of an object moving on the surface with no 
physical tangential forces can be expressed as [3] 

   






CENTCOR

aarr cossin2
         (1)  

and, 

 






COR

arr cos2sin  .               (2) 

Here r is assumed constant, and for the cases of interest either Rr  , where R is the radius of the rotating 

spherical planet, or hRr  , where h is the height of the satellite above the planet’s surface. But 

when hRr  , the spherical surface in question is an imaginary, mathematical surface having this radius and 

rotating at the same rate   as the planet. The notations  
COR

a  and  
CENT

a  denote the Coriolis and 

centrifugal accelerations, respectively. These are considered in more detail in the next section.

3. Summary of the Velocity-Change Calculation 

The Coriolis acceleration is   v2 



COR

a  and the centrifugal acceleration 

is   ra
CENT


  , with v


denoting velocity of the object of interest in the primed frame. 

These are expressed in component forms in Eq. (3) through Eq. (5) 
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  


 cossin2 ra COR ,               ( 3) 

  





cos2 ra
COR ,               (4) 

and, 

  





cossin2ra
CENT .               (5) 

It should be noted that  0
CENTa , always. 

The components of the kinematic acceleration, as introduced in Ref. 1, are 

  


 cossin2raKIN ,                              (6) 

and 

  





cosraKIN .                 (7) 

(The need to consider more than just the Coriolis and centrifugal accelerations was also discussed in Ref. 4.) In the 

primed frame, the tangential velocity     ,v


 is expressed as  

  
ˆsinˆv ,
 


rr ,       (8) 

where  ˆ  and ̂are the usual spherical unit vectors, and the components of the velocity changes over the finite time 

interval  t,0  are expressed as 

      t

rr 0v 

   ,   (9)     

and, 

      trr 0sinsinv 
 


.               (10) 

Notice from Eq. (9) and Eq. (10) that the velocity changes of interest here are the velocity changes in a given compass 
direction. That is, it is the changes in the coefficients of the unit vectors of Eq. (8) that are of interest, not the changes 

in the unit vectors themselves. The symbol   has the usual meaning of “change.” 
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As shown in Ref. 1, the components of the velocity change over a finite time interval  t,0 in the primed frame are 

computed from the components of the acceleration as 

         
t

KIN

t

CENT

t

COR
dtadtadta

000

v



,               (11)      

and, 

       
t

KIN

t

COR dtadta
00

v



.                (12) 

There is no loss in generality by taking the time interval to start at 0t .

4. Generalized Solution 

The problem of an object initially located at the equator and 
given an initial tangential velocity was also considered in Ref. 
1. The problem is depicted in Fig. 2.  

 

Fig 2   A sphere of radius R rotates uniformly at angular speed .  

Here, 
0

v is the initial tangential velocity in the northern direction and V is the initial tangential velocity in the 

eastern direction as specified in the unprimed, or inertial, frame. 
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The solutions of Eq. (1) and Eq. (2) for this problem are [1] 

 






























r

Vt

V
t

22

0

22

0

0
v

sin
v

v
arccos

,         (13) 

 

and 

  t
r

Vt

V

V
t  































22

0

22

0

v
tan

v
arctan

.        (14)           

 

(This problem has also been solved numerically[ 5].) In 
Ref. 1, the case of interest was the object having the 
same initial tangential speed in the eastern direction as 
the tangential speed of the sphere at the equator. 
However, Eq. (13) and Eq. (14) remain valid for 

arbitrary speeds  
0

v  and V . Hence the restriction to 

a specific value V can be removed, and these 
solutions are valid for this more general case. It should 
be understood that Eq. (13) and Eq. (14) are the 
solutions to Eq. (1) and Eq. (2) subject to the initial 

conditions       0,
2

0,0    and 

     








rr

V 0
v-

,0,0   . 

Here, 
0

v , V ,  and  again have the same meaning 

as in Fig. 2, and Rr  for an object on the surface 

of the rotating planet, and hRr   for the 

orbiting satellite, with R  being the sphere radius and 

h  being the height of the orbiting satellite above the 
sphere’s surface.

5. The Shadow Satellite 

Although Eq. (13) and Eq. (14) are valid for an orbiting 

satellite, where hRr   , the equations 
assume the satellite would be viewed from an 
imaginary spherical surface located at the same height 
as the satellite, and rotating at the angular speed of the 
planet.  Since such a surface is a purely mathematical 
construction, it is more helpful to transform the solution 
to the planet’s surface.  

The path directly under the satellite along the planet’s 
surface is the satellite’s ground track. To find the 
ground track, the idea of the “shadow” satellite is now 
introduced. The shadow satellite is taken to be an object 
located on the planet’s surface directly underneath the 
orbiting satellite. The planet is assumed airless and the 
shadow satellite is assumed to be in frictionless contact 
with the surface. It is first assumed, and then proven, 
that it is possible to impart an initial velocity to the 

shadow satellite such that the shadow satellite remains 
directly underneath the orbiting satellite at all times.  

We now consider the calculation of the initial velocity 
of the shadow satellite that in fact produces the 
behavior of always remaining directly underneath the 
orbiting satellite. For definiteness, we will also assume 
the planet of interest is the Earth, having the idealized 
physical properties previously mentioned, although the 
analysis applies to any spherical planet. To find the 
required initial velocity of the shadow satellite, we 
consider first a special case: The geosynchronous 
satellite. A satellite in geosynchronous orbit appears to 
an observer on the Earth’s surface to remain stationary 
above a given point on the equator. Clearly, any object 
located on the equator directly underneath the 
geosynchronous satellite will serve as its shadow 
satellite, as defined here. For both the geosynchronous 
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satellite and for the shadow satellite, the tangential 
velocities obey the equation 

rv   .                                                         (15) 

For the shadow satellite, Rr  , the Earth’s radius, 

and for the orbiting satellite hRr  , where 

h is the height of the geosynchronous satellite above 
the surface. Writing out Eq. (15) for both the shadow 
and the orbiting satellite, and forming the ratio of these 
two equations, gives 

hR

R

ORBIT

SHADOW




v

v
.                                   (16) 

Solving Eq.(16) for 
SHADOW

v gives 

ORBITSHADOW
hR

R
vv


 .                 (17) 

Although there is no a priori reason to believe it will 
work, at this point we use Eq. (17) as a guide, and 
assume that  each of the components of the tangential 
velocity of the shadow and orbiting satellite will obey 
an equation of the same form as Eq. (17), or 

   
ORBITSHADOW hR

R
00

vv


 , (18) 

and, 

   ORBITSHADOW
hR

R
VV


 ,    (19) 

where 
0

v  and V again are the northward and 

eastward tangential velocity components, respectively, 
as viewed in the inertial, or unprimed, frame. In this 
case, it is the shadow satellite that is depicted in Fig. 2, 
and the orbiting satellite, which is directly above it, is 
not shown. 

In order to prove that Eq. (18) and Eq. (19) are valid for 
the general case, one starts by writing out Eq. (13) and 
Eq. (14) for both the shadow satellite and for the 
orbiting satellite. Naturally, the initial tangential 
velocities appearing in these equations should be 
replaced in each case with the appropriate subscript 
depending upon which of the two satellites the 
equations are being written for. Also, in the case of the 

shadow satellite, r is replaced by R , and in the case 

of the orbiting satellite r is replaced by hR  .  

Next, the tangential velocities  
SHADOW0

v  and 

 SHADOWV are replaced in the two equations for 

the shadow satellite by the expressions for these 
quantities as given by Eq. (18) and Eq. (19), 
respectively. If the resulting equations are then 
simplified algebraically, the resulting pair of equations 
will be found to be identical to the two equations for the 
orbiting satellite.  

This exercise proves that the solutions  t   and 

 t  are identical for both the shadow and the 

orbiting satellite. This therefore proves that if the 
shadow satellite is given the initial tangential velocity 
components as specified by Eq. (18) and Eq. (19), the 
shadow satellite will remain perpetually directly 
underneath the orbiting satellite. It thus also proves that 
the transformations given by these two equations are 
correct. And since the shadow satellite always remains 
directly underneath the orbiting satellite, it follows that 
the shadow satellite will trace out the ground track of 
the orbiting satellite, as desired. 
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6. Examples  

Two numerical examples will now be considered. In 
the first example, the satellite is considered to have 
been launched from the equator and no attempt has 
been made to counter the effect of the Earth’s rotation. 
We also assume the satellite orbits at a height of about 
700 miles. These conditions approximate those of the 
POES program  [2]. However, rather than considering 
the orbiting satellite in the example, we will consider 
instead the shadow satellite, in order to see the 
properties of the ground track. 

The initial eastward and northward speeds of the 
shadow satellite are calculated by first computing these 
quantities for the orbiting satellite, and then 
transforming the results down to the shadow using Eq. 
(18) and Eq. (19). The initial eastward speed of the 
orbiting satellite is taken to 

be  hRV
ORBIT

 , where R 4000 

miles and h 700 miles. The quantity  is 
calculated assuming the Earth rotates in exactly 24 

hours, giving 
ORBIT

V  1230.46 miles/hour. This 

result is then projected to the surface using Eq.(19). 

Carrying out these calculations gives 
SHADOW

V  

1047.2 miles/hour. Not surprisingly, this is exactly the 
speed of the (idealized) Earth’s rotation at the equator 
as seen from the unprimed, or inertial, frame.  

The initial northward speed 
0

v of the orbiting satellite 

is computed from the assumption that the orbital speed 
at the height of 700 miles is exactly 18000 miles/hour. 

Thus,  22

0 18000v ORBITORBIT
V  ,  or 

  
ORBIT0

v  17957.9 miles/hour. Projecting this 

result to the surface using Eq. (18) then gives 

  
SHADOW0

v  15283.3 miles/hour. Using these 

speeds together with  Rr  4000 miles in Eq. 

(13) and Eq. (14) produces the     tt   ,  

values of the ground track. Taking the complement of 

 t   to be the latitude, and  t  to be the 

effective longitude, the ground track produced by these 
calculations is as shown in Fig. 3. The result is clearly 
similar to the ground track of a POES-type satellite [2].

 

Fig. 3 -  Ground track latitude vs. longitude for a POES-type satellite. 
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Examining Fig. 3, it is evident that that path is not a 
closed path. This is why a satellite in polar orbit can be 
used to observe the majority of the Earth’s surface, 
since such a satellite passes over the equator at a 
different longitude on each orbit. 

It is also interesting to consider specific velocity 
changes that occur for this satellite along the ground 
track, and to identify how much of the velocity change 
is attributable to each of the three accelerations 
involved in the problem. 

Again examining Fig.3, it is clear that after starting at 

the equator deg0latitude  , the shadow satellite 

closely approaches the northern 

pole deg90latitude  , then rapidly reverses its 

northern motion and heads south. The distance of 
closest approach to the northern pole is about 273.6 
miles. At the moment that the northern velocity 
reverses direction, it is clear that the initial northern 
velocity of 15283.3 miles/hour has been reduced to 
zero.  The individual contributions to the change in 
northern velocity of the shadow satellite contributed by 
each of the three accelerations are:    

   CORv - 410.647 miles/hour, 

   CENTv - 36.273 miles/hour, 

and   KINv - 14836.4 miles/hour. It is evident 

that the overwhelming contributor to the northern 
velocity change is the kinematic acceleration. These 
results were computed by separately evaluating each of 
the corresponding integrals in Eq. (11). 

It is also interesting to consider the velocity change in 
the eastern direction and the contributions of the 
individual accelerations to it. The shadow satellite 
initially has zero velocity in the eastern direction as 
seen in the rotating frame. At the moment the velocity 
in the northern direction reduces to zero, that is, at the 
moment of closest approach to the northern pole, the 
velocity in the eastern direction reaches its maximum 
value. (This was proven in Ref. 1.) At that moment, the 
eastern velocity of the shadow is about 15247.56 
miles/hour. The contributions of the individual 

accelerations to producing this velocity are: 

   CORv 1951.22miles/hour,

   CENTv  0, and   KINv 13296.3 

miles/hour. 

These results were computed by evaluating the 
corresponding integrals in Eq. (12). Again we note that 
the null centrifugal contribution results from the fact 

that the centrifugal acceleration in the  direction is 

always identically zero. Again, it is apparent that the 
kinematic contribution strongly dominates the easterly 
velocity change, although not as significantly as in the 
northern direction.  

We next consider a second example, but in this case it 
is assumed that the satellite has been launched in a way 
that almost cancels the velocity component due to the 
Earth’s rotation at the equator as seen in the inertial 
frame. For the case of interest, it is assumed that the 
satellite that is in orbit at a height of 700 miles above 
the surface has been launched so that the initial 
velocity component that is directed toward the east has 
been reduced to just 10 miles/hour as seen from the 
unprimed, or inertial, frame. 

Again, we are interested in the shadow satellite for the 
current example. Applying the same procedures as 
were described for the first example gives for the initial 
velocity components of the shadow satellite as seen in 

the unprimed, or inertial, frame  
SHADOW

V 8.51 

miles/hour  and  
SHADOW0

v 15319.15 

miles/hour. The initial eastward velocity seen in 
primed, or rotating, frame is -1038.69 miles/hour. The 
minus sign signifies that the shadow satellite is actually 
moving westward as seen in the rotating frame. The 
initial northward velocity in the rotating frame is the 
same as that seen in the inertial frame. 

Again using the initial shadow speeds for this case 

together with  Rr  4000 miles in Eq. (13) 

and Eq. (14) produces the     tt   ,  values 

of the ground track. Plotting these in the same way 
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as was done to produce Fig. 3 results in the ground 
track as shown in Fig. 4. The fact that the ground 
satellite has an initially westward velocity can be seen 
by noting the negative slope of the initial ground-path 
curve as seen in Fig. 4. Again it is clear that when the 
shadow satellite reaches the northern pole it reverses 

its direction of travel and then heads southward. Hence 
the satellite again reaches a point where its northward 
velocity becomes zero as seen in the rotating frame. 
This happens at the point of closest approach to the 
northern pole, which happens when the shadow 
satellite is just 2.22 miles distant from the pole. 

 
Fig. 4 - Ground track latitude vs. longitude for a satellite launched to almost cancel the Earth’s rotational velocity. 

As can be seen in Fig 4, as the shadow gets close to the 
northern pole (latitude 90 degrees), it undergoes an 
extremely rapid change in longitude. This is a 
consequence of the very close approach of the shadow 
satellite to the northern pole, where there is a 

discontinuity in the value of  . That is, if the 

satellite were approaching the northern pole along the 
zero-degree longitude line, there would be a 
discontinuous change in longitude as it passed the pole, 
because that line abruptly changes in longitude from 0 

degrees to 180 degrees at the location of the pole. The 
longitude values will vary in a similar way for the 
shadow satellite in this example, owing to its very 
close approach to the northern pole. 

Again it is of interest how much each of the 
acceleration terms contributes to reducing the 
shadow’s initial northward velocity from 

  
SHADOW0

v 15319.15 miles/hour to zero. The 

results are: 
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   CORv  +62.06 miles/hour,   CENTv - 35.79 miles/hour, and    KINv - 15345.40 

miles/hour.

It is again evident that the overwhelming contributor to 
the northern velocity change is the kinematic 
acceleration. It is also interesting to notice that the 
Coriolis contribution is positive, which occurs due to 
the westward-directed initial velocity component, and 
hence the Coriolis force actually acts to increase the 
northward velocity during the trip from the equator to 
the northern pole. As before, these results were 
computed by separately evaluating each of the 
corresponding integrals in Eq. (11).  

Again considering the motion in the easterly direction, 
it is evident from Fig. 4 that the shadow suffers a huge 
apparent eastern acceleration as it approaches the 
northern pole. It then just as rapidly decreases its 
eastward velocity, and shortly past the northern pole 
the satellite again has a westward-directed velocity 
component, as can be seen from the fact that the 
longitude values begin to decrease as the shadow 
begins to move southward. The maximum eastward 
velocity of the shadow in the rotating frame, which 
again occurs at the point of closest approach to the 
northern pole, is 15318.57 miles/hour. Keeping in 
mind that the “eastern” velocity was initially -1038.69 
miles/hour in the rotating frame (actually westward), 
the overall change in eastern velocity is 16357.3 
miles/hour ( 15318.57 miles/hour+1038.69 
miles/hour, to within rounding error).  Breaking down 
the overall eastward velocity change by acceleration 
term gives: 

   CORv 2093.23 miles/hour, 

   CENTv  0,   

 

and    KINv 14264.00  miles/hour. 

These results were again computed by evaluating the 
corresponding integrals in Eq. (12), and once again the 

 component of the centrifugal acceleration is 

identically zero. 

It may be of concern as to why the shadow acquires 
such a high easterly directed velocity at the moment of 
closest approach to the northern pole. This again 
happens due to the fact that the shadow approaches so 
closely to the pole. If one considers the latitude circle 
at the point of closest approach to the pole, that circle 
has a radius of just over 2.2 miles. As with all latitude 
circles, motion along their length is either purely 
eastward or purely westward. At the point of closest 
approach to the northern pole, the shadow is moving 
tangent to this latitude circle, and thus is moving 
purely eastward as seen from the surface. Since the 
northward movement is null at this point, it is clear that 
the entire surface velocity of the satellite must appear 
in the eastward direction. To do this, the eastward 
velocity must suffer a sharp increase in the vicinity of 
this latitude circle. This very high eastward velocity, 
however, is only present while the satellite is in close 
proximity to this latitude circle, an event which is of 
extremely short duration, and this occurs while the 
shadow moves over a very small area of the surface.

7. Summary and Conclusion 

A satellite in a circular orbit obeys all the requirements 
for the methods of Ref. 1 to be applicable. Thus 
velocity changes for such satellites over a finite time 
interval cannot be computed correctly by integrating 
only the sum of the Coriolis and centrifugal 
accelerations over that time interval. It is also 
necessary to include the contributions from the 
kinematic acceleration. Interestingly, in the case of a 
satellite in circular orbit, the kinematic contribution is 
dramatically dominant over the Coriolis and 

centrifugal accelerations, despite the fact that those are 
the only two accelerations that appear in the equations 
of motion in the rotating frame. 

The notion of a shadow satellite was introduced to 
allow detailed study of the ground track of the orbiting 
satellite. With suitable transformations applied, all the 
results that apply to the orbiting satellite also apply to 
the shadow satellite. 
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The results and examples presented here should be 
useful to those who teach graduate- or undergraduate-
level classical mechanics courses. These space-age 

applications of classical mechanics are potentially of 
high interest to students.
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