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Abstract

Gnuplot provides an excellent tool for plotting electromagnetic fields from various sources
of electric charges and currents, stationary as well as time-varying. Its extraordinary power
can be particularly exploited in plotting the propagating electromagnetic field from a
localized source, e.g., an oscillating electric or magnetic dipole. In this article we have
written the explicit commands in Gnuplot which will draw the E field lines of the
electromagnetic field due to a harmonically oscillating electric dipole aligned with the Z
axis. We have plotted the E field lines on the XZ plane over a limited region of radius 2.2
wavelengths around the source. We have shown, side by side, the B field lines from the
same source. However, the B lines are coaxial circles around the Z-axis, and hence do not
warrant plotting. The plotting of the E field involves plotting a 3D “relief map” with
contours embedded on it, for a certain function ψ(x, y, t), with t held constant. The
contour levels are selected by applying certain criteria. The plotted contours are converted
to directed contours, by drawing arrowheads on them, indicating the direction of the E
field, so that they qualify as field lines. We have demonstrated two alternative methods of
adding this qualification, namely (a) planting the E field vectors at selected points on the
XZ plane, and extrapolating them to the contour lines; (b) plotting the Eθ component
along the X axis, its positive value implying E pointing in the negative Z direction and
vice versa, and then following this direction around the entire contour. We have worked
out method (a) only for t = 0; and method (b) for one full cycle of oscillation
corresponding to eight values of t spaced at equal intervals. Looking at these eight plots
sequentially one sees how the electromagnetic field is propagating across space. We have
plotted Eθ along the X axis for the same eight values of t, all of them on the same graph,
to get a clear view of how the field is oscillating and moving, and its amplitude is falling as
the inverse of the distance. At the end we have used Gnuplot to plot the E and B fields for
a linearly polarized plane electromagnetic wave.
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1 Introduction

Distributions of stationary charges and
steady currents create time-independent

fields E (electric field) andB (magnetic field),
respectively. On the other hand, moving
charges, or localized distributions of time-

varying electric charges and electric currents
create both E and B. We shall represent
these fields as E (r, t) and B (r, t), where t
stands for time, and r for (x, y, z) in the
Cartesian coordinate system, (r, θ, φ) in the
spherical coordinate system, and represents
the coordinates of an arbitrary field point

(rather, the radius vector to the field point.)
We usually call these combined fields (E,B)
the electromagnetic field.

There are standard formulas for the elec-
tromagnetic field for simple cases: (i) A
plane wave (E,B) propagating through a lim-
ited region of space located far away from
the source, and (ii) the Electromagnetic field
(E,B) originating from a localized source,
namely, a harmonically oscillating electric

dipole, or magnetic dipole, the mathematical
expressions for (E,B) valid for all space, with
the origin of the coordinate system located
at the source point (i.e., where the point-like
dipole is located.) In this article our interest
is limited to these two examples.

The mathematical formulas for these two
fields are simple, in fact deceptively simple
for the case (ii). We have seen them umpteen
number of times in text books, but failed to
visualize how the field looks like, how exactly
it is spread over space, how its angular distri-
bution changes as we go from the near region

to the far region. One has to see plots of
these fields, to comprehend them, and get a
picture. There are articles, and some mod-
ern books where one can find plots in which
the field lines have been displayed beautifully.
Even then, the examples seen by us are defi-
cient in one respect, absence of ‘arrowheads’
indicating whether the field is pointing ‘up or
down’ along the field lines.
Partly to remove this deficiency, partly to

equip the reader with his own tool for draw-
ing the fields, and partly to continue our ef-
forts to clarify concepts in Classical Electro-
dynamics with illustrated examples, graphics
and plots[1, 2, 3], that we are writing this
article.
All our plotting work is based on freely

available software: (i) Gnuplot (Version 4.6),
and (ii) Xfig (version 3.2.5c). One can get
them and their Manuals[4] from the inter-
net for licence free use. The operating sys-
tem is Linux. We have used Debian distribu-
tion (version 5.0 Lenny) on our desktop com-
puter, and Mint distribution on our laptop
computer.
The author had used Gnuplot extensively

in his latest book[5] Mechanics, in which he
had also written an Appendix to introduce
the reader to Gnuplot and its applications,
namely drawing orbits of planets and space
vehicles, trajectories of various objects, plot-
ting coordinate vs time of particles in mo-
tion. The reader can benefit from these ex-
amples, can use them as a starting point for
learning and practising Gnuplot. However,
these experiences proved to be inadequate for
drawing the field lines of the (E,B) fields dis-
cussed in this article. It required two months
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of self training, working through a large va-
riety of exercises using two resource books,
namely the Gnuplot Manual[4] and Gnuplot
Cookbook[6], before the author gained confi-
dence in writing the commands to create the
field lines and ‘plant’ the E vectors along the
field lines.
The objective of this article is twofold: (1)

To present a graphical illustration of how
electromagnetic field propagates in space (i)
from a central localized source, viz., an oscil-
lating dipole, and (ii) as a linearly polarized
plane wave; (2) How to use Gnuplot for repli-
cating the same graphs on the reader’s own
computer.
We have placed greater emphasis on ob-

jective (2). For this purpose we have copied
the actual commands from the Console, pre-
sented them in 14 Exercises, starting each one
with a heading preceded by a serial number in
bold italics, e.g., Ex.1, Ex.2, etc. These ex-
ercises can be used to replicate all the graphs
shown in this article. We have provided ex-
planation of some of the commands, up to
Ex.8, in two ways: (a) its meaning at the
end of the command line, separated by the
symbol #, (b) general explanations/instruc-
tions at the end of the Exercise, emphasizing
them with the “bullet” symbol “. ”. For un-
derstanding the unexplained commands, the
reader should look them up in the references
just cited, in particular the Gnuplot Manual.
It is hoped that experience gained by do-

ing the exercises shown in this article will be
found useful by students and teachers for ap-
plication in a variety of other problems and
assignments in physics.
We shall begin with the Electromagnetic

field (E,B) originating from an oscillating
Electric dipole, which is more interesting.
This work will cover most of this article, and
is spread over Sections 2-10 (Pages 4 - 33).

2 The (E,B) Field of an

Oscillating Electric

Dipole

Fig.1(a) gives a schematic picture of an os-
cillating electric dipole. This figure also ex-
plains the spherical coordinates used, and the
unit vectors associated with them. The ob-
servation point P (we shall call it field point)
is located at the radius vector r, has po-
lar coordinates (r, θ, φ). It should be re-
membered that, unlike Cartesian unit vec-
tors i, j,k, the spherical unit vectors er, eθ, eφ
should be drawn at P (its components in the
directions of the XY Z axes are functions of
the angular coordinates θ, φ of P.) They are
pointing in the directions in which the respec-
tive coordinates are increasing. In particular
the unit vector eφ lies in a plane parallel to
the XY plane and is tangent to a circle with
centre on the Z axis. We have brought it
down from P to its projection N on the XY
plane, and shown it separately in Fig (c), in
a reduced scale.
The dipole consists of two metallic domes

A and B, each spherical in shape, mounted on
a metallic pole of length ℓ. The system is neu-
tral as a whole, but has equal and opposite
charges on the opposite domes. If at some in-
stant of time t the sphere A has charge qa(t),
then at the same instant of time the other
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sphere has charge qb(t) = −qa(t). A current
I(t) flowing through the pole, driven by an
oscillating voltage source (Fig.(b)), will make
the charge move back and forth between the
domes. It is assumed that this oscillation
is taking place harmonically at the angular
frequency ω. As a consequence the system
will develop a harmonically oscillating elec-

tric dipole moment p(t) = p(t)ez = qa(t)ℓ ez.
Here we have used the symbol ez to mean
a unit vector in the Z-direction. The wave

vector k is defined as

k = ker; where k =
ω

c
=

2π

λ
(1)

to be called the wave number, and λ is the
wavelength of the ensuing radiation.
We shall write the “source quantities” in

a proper form. We shall assume that the

current through the metallic pole is uniform1

(but time varying). Let q0 be the maximum
charge collecting on each dome. Then

qa(t) = q0 cosωt;
qb(t) = −qa(t) = −q0 cosωt;
p(t) = q0ℓ cosωt ez = po cosωt ez;
where po = q0 ℓ

(2)

is the scalar amplitude of this electric dipole
moment. The (E,B) field from this oscillat-
ing dipole, at some point P far away from
the dipole, and located at spherical coordi-
nates (r, θ, φ) is given by the following for-
mulas [7, 8, 9], assuming that r ≫ ℓ.

E(r, t) =
po

4πǫ0r3
[{cos(kr − ωt) + kr sin(kr − ωt)} 2 cos θ er

+
{
(1− k2r2) cos(kr − ωt) + kr sin(kr − ωt)

}
sin θ eθ

]
. (a)

cB(r, t) =
po

4πǫ0r3
[{
kr sin(kr − ωt)− k2r2 cos(kr − ωt)

}
sin θ eφ

]
. (b)

(3)

Here (er, eθ, eφ) are unit vectors associ-
ated with the polar coordinates (r, θ, φ), i.e.,
pointing in the directions of the increments
of the respective coordinates.

Note that we have multiplied the magnetic

1 This assumption will be valid for the special
case of our investigation in which the wavelength λ
of the resulting em wave is much much larger than
the length of the rod, i.e., λ≫ ℓ.

fieldB with c, the speed of light in vacuum, to
get the modified field cB, which has the same
unit as E in the SI units (volt/m) (and which
becomes necessary to express the EM field in
a relativistically covariant manner.) More-
over E = cB in the radiation zone, i.e., far
away from the source, i.e., regions for which

kr ≫ 1, or, r ≫ λ. (4)

In this radiation zone approximation, or far
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Figure 1: (a) Oscillating Electric Dipole at the origin, and the field point P at spherical coordinates
(r, θ, φ); (b) The oscillator driving the dipole; (c) Explaining the unit vector eφ, by projecting it
on the XY plane.

zone approximation (4), the EM field takes
the simple form[?]

E(r, t) = −
k2po
4πǫ0

cos(kr − ωt)

r
sin θ eθ.

cB(r, t) = −
k2po
4πǫ0

cos(kr − ωt)

r
sin θ eφ.

(5)

This is the radiation field repesenting an
electromagnetic wave emanating from a point
like dipole source located at the origin and
propagating along the direction of the radius
vector r drawn from the origin. We prefer
to use the symbol n to indicate the direction

of propagation. Which means that n = k

r
=

er. The radiation field is marked by three
important characteristics:

(I) cB = n× E;
(II) cB = E;
(III) E, cB ∝ 1

r
.

(6)

The opposite of the approximation (4) is
the near zone approximation:

kr ≪ 1; or, r ≪ λ. (7)

In this approximation we consider only the
zeroth power of kr. Ignoring the first and
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second power of kr in Eqs.(3) we get

E (r, t) ≈

(
po

4πǫ0

2 cos θ er + sin θ eθ
r3

)
cosωt.

cB (r, t) ≈ 0.
(8)

3 Angular Distribution of

the Power Radiated by

the Oscillating Dipole

The Poynting’s vector, defined as

S = ǫ0c [E(r, t)× cB(r, t)] (9)

gives the flux density of the radiated electro-
magnetic energy. Consider a point P located
far away from the origin, at the spherical co-
ordinates (r, θ, φ). The EM field at this point
is given by Eq. (5). Therefore, the instanta-
neous electromagnetic energy flux density at
this point is given as

S(r, t) = ǫ0c

{
k2po
4πǫ0

cos(kr − ωt)

r
sin θ

}2

(eθ × eφ)

=
ck4p2o
16π2ǫ0

cos2(kr − ωt)

r2
sin2 θ er.

(10)

The above equation gives the instantaneous
value of S. Since the dipole will be oscil-
lating very fast, at frequencies of the or-
der of kHz, what is more relevant is the
time-averaged value of S, to be written as
< S >. This is easily obtained by noting
that < cos2(kr − ωt) >= 1

2
. Then,

< S(r, θ, φ) >=
ck4p2o
32π2ǫ0

(
sin2 θ

r2

)
er. (11)

The power radiated per unit solid angle is

dP

dΩ
= r2 < S(r, θ, φ) >=

ck4p2o
32π2ǫ0

sin2 θ.

(12)
Plotting the sin2 θ-angular distribution of

the radiated power, as given in Fig. 2, is a
trivial application of Gnuplot. The dipole is
oriented along the Z axis and is labelled p̃ (to
indicate that it is alternating harmonically).
The polar angle θ is measured from the pos-
itive Z axis.
We have indicated the strength of the

Poynting’s vector S over a sphere of radius r,
by the length of the arrow representing this
vector. The shaded double-lobe about the Z
axis is the XZ plane cross section of an axi-
ally symmetrical doughnut like 3-dimensional
plot of the radiated power, varying as sin2 θ,
which is characteristic not only of dipole ra-
diations (from both electric and magnetic
dipoles), but also of radiation from an ac-
celerating charge (in non-relativistic motion.)
In the latter case, the angle θ is measured
from the direction of the instantaneous ac-
celeration vector.
It is especially notable that there is no ra-

diation along the axis of the dipole, and maxi-

mum radiation along the plane perpendicular

to it.

4 Plotting with Gnuplot

The commands of Gnuplot are to be written
on Console. We shall show a few examples
of how to use Gnuplot. Let us observe a few
conventions. Every command in Gnuplot is
preceded by the following prompt
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Figure 2: Energy flow from an oscillating Electric Dipole

gnuplot>
by which Gnuplot asks us to write a com-
mand line. On the other hand when Gnuplot
executes a command and gives its answer or
response, there is no such prompt. For econ-
omy of space we shall write
>
instead of the full prompt “gnuplot>”. We
shall also use the “comment” symbol ‘#’
for explaining a particular command to the
reader. This symbol ‘#’ is analogous to the
“comment” symbol ‘%’ used in LaTeX. Gno-
plot ignores anything written after # on the
same line.
To illustrate these points we shall ask Gnu-

plot to give the value of a certain function
f(x) which is either already there in its own

“library”, or which we have just defined, for
a few specific values of the argument.
We have copied below the “script” from the

Console in “footnote size typewriter font”, to
mark them out from the main text, and to
adjust them within the limited space of a col-
umn.

Ex.0

UrComputer:~ UrDir$ gnuplot # First line

G N U P L O T

Version 4.6 patchlevel 4 ....

Build System: Linux i686

Copyright (C) ....

Terminal type set to ’wxt’

> f(x)=3*x**2*cos(x)

# The function f(x) = 3x2 cos(x) is defined

> print f(1), sin(pi/2), cos(pi/2)

# f(x) at x = 1, others at x = π/2.
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1.62090691760442 1.0 6.12323399573677e-17

# values are 1.62090691760442, 1.0,
6.12323399573677× 10−17 = 0

• The first line is the same for all exam-
ples to follow. It shows the name of your
computer, working directory, and what
you have typed just after the $ sign to
start Gnuplot.

We shall begin with our first real example.

Ex.1. To plot the angular distribution of the
radiated power as given in Eq. (12). Here
let us note that in the 3-dimensional spheri-
cal coordinate system the the polar angle θ is
measured from the Z axis, as shown in Fig. 1.
In the plane polar coordinate system, on the
other hand, the polar angle is measured from
the X axis. Since we are going to plot a 2-
dimensional curve, the latter coordinate sys-
tem has to be used and the same function
sin2 θ written in Eq. (12) has to be written
as sin2(π/2 − θ) = cos2 θ. We now write the
commands.

> set polar # polar coordinates

dummy variable is t for curves

> set grid polar # draw grid lines

> set trange [0:2*pi] # range of θ
> set rrange [0:1.2] # range of r
> set size square # shape of the plot area

> set xrange [-1.2:1.2]; set yrange [-1.2:1.2]

# range of x,y coordinates

> plot ((cos(t))**2) # the plot is drawn instantly

> set term fig color portrait size 15, 15

metric pointsmax 1000 solid font "Times-Roman,12"

# Terminal specification

Terminal type set to ’fig’

Options are ’color small pointsmax 1000 portrait

metric solid textnormal font "Times Roman,12"

linewidth 1 depth 10 version 3.2 size 15 15’

> set title "S4dpol-150623.fig"

# a label to appear on the plot

> set out "S4dpol-150623.fig"

# to save as, file name

> replot # replots and saves

• The default coordinate system is Carte-
sian. To plot in the polar system, the
command “set polar” is necessary. The
function has to be written in the form
r = f(θ). The letter t stands for θ, when
plotting “polar”.

• Immediately after the command “plot
((cos(t))**2)” the plot appears on the
screen, but we are unable to save it
in the computer. For this purpose we
have to specify a “terminal”. The saved
plot will look identical with the one now
on screen, if we choose “set term png”.
However, we are more comfortable with
the terminal “fig” for editing using Xfig.
The command “set term fig ...” not only
sets the terminal, but also makes further
specifications, e.g, solid and coloured
lines for plots as well as grids, font name
and size for labelling, size of the screen
15 cm × 15 cm, etc. The plot is now
stored in the working directory with ex-
tension “.fig”.

• It has been our practice to add today’s
date (yymmdd) as part of the file name
(which the reader need not follow.) We
now start Xfig, look for the file name,
bring the plot on the screen, for which
we shall use the term “canvas”. We
work on this canvas and do some editing.
For example, we give extra labels, draw
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X,Z coordinate axes, change the grid
lines from “solid” to “dashed”, change
the colours of the curve, as we feel nec-
essary. See Ex.2 for a better example.

• Note that the “first line” pointed out in
Ex.0, and “the terminal specification” in
Ex.1 will be common for all Exercises to
follow, so that we shall not repeat them
any more.

We shall refer to the entire set of com-
mands given in Ex.1 as “script” (term bor-
rowed from Gnuplot Cookbook.) The script
written in Ex.1 results in the plot shown in
Fig. 3.

5 Plotting the Electric

Field from the

Oscillating Dipole in

the Near Zone

The term “plotting the field” here means
plotting the field lines, i.e., imaginary curves
in space such that the E field at any point
in space is tangential to such a curve passing
through that point. But why are we restrict-
ing ourselves to the E field only, ignoring the
B field? The answer comes from Eqs. (3).
The B field has only φ-component, i.e., it is
pointing in the direction of the eφ vector, so
that the field lines are coaxial circles around
the Z axis (see Figs. 1 (c), 15(b).) In contrast
the E field has both r and θ components (i.e.,
having components along er as well as eθ vec-
tors.) They create interesting and beautiful

patters in space, which we need to see, appre-
ciate and admire. Also, B accompanies E ev-
erywhere, being comparatively weaker in the
near zone, but equallly strong in the radia-
tion zone. Hence the “graph” of the strength
of E field is also a graph of the strength of
B field, especially in the radiation zone. See
Fig. 13.
We shall first set up the general differential

equation in the spherical polar co-ordinate

system for field lines of E andB that are sym-
metrical about the Z-axis (azimuthal symme-
try) so that one complete field line, from be-
ginning to end, is confined to an azimuthal
plane (φ = constant). For convenience of
drawing we have taken this plane to be the
XZ plane in Fig. 4(a), which shows a part
such a field line. The points P and Q are
infinitesimally close points on this curve at
radius vectors r and r + dr respectively, so
that dr = dr er + r dθ eθ. The lines of E
or B being tangential to the field line at ev-
ery point, Er/Eθ = dr/r dθ for electric field
lines; Br/Bθ = dr/r dθ for magnetic field
lines. Confining ourselves to electric field, let
the field lines be represented by the family of
curves C : r = f(θ, k) where k is a constant.
It follows that

dr

r dθ
=
f ′(θ) dθ

f(θ)dθ
=
Er

Eθ

; or,
f ′(θ)

f(θ)
=
Er

Eθ

.

(13)
Eq. (13) gives the differential equation[8]

for azimuthally symmetrical field lines at any
point in space where Eθ 6= 0. We shall now
use this equation to plot the E field from the
oscillating dipole for the near zone. We shall
plot the field at t = 0, so that cosωt = 1
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Figure 3: Angular distribution of the energy flow from an oscillating Electric Dipole

in Eq. (8a). The oscillating dipole is at its
peak value and is pointing up i.e., towards
the positive Z axis. Also, Er/Eθ = 2 cos θ

sin θ
=

2 cot θ. Hence,

df

dθ
= 2 cot θ f. Or,

df

f
= 2 cot θ dθ. (a)

By integration r = f(θ, k) = k sin2θ. (b)
(14)

Eq. (14b) gives the family of dipole field

lines, different members of this family corre-
sponding to different, positive values of the
constant k. In Fig.4(b) we have shown three
such curves on each side of the Z-axis. We
created them with Gnuplot, added subse-
quently “arrowheads” manually to indicate
the direction of the field at some selected
points.

Note that for each value of k there is one
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Figure 4: (a) Plotting field lines; (b) Quasistatic E lines from an oscillating electric dipole

pair of symmetrical lobes about the Z axis
on the XZ plane (looking somewhat like the
wings of a butterfly), representing a dipole
field. These contour curves exist symmetri-
cally around the Z axis, covering the vicinity
of the oscillating dipole. To evaluate k for
a particular field line Γ we have to find the
distance D of a point P on the XY plane
through which Γ passes. Since θ = π/2 for
such a point, it follows that k = D. We shall
now demonstrate the actual plotting of the
field lines.

Ex.2. To plot the field lines from the os-
cillating dipole at t = 0. This example also
illustrates the use of “do” command and “line
type”.

> set title "Ed-150623.fig"

> set out "Ed-150623.fig"

> Ed(n,t)=0.2*(1+n)*((cos(t))**2)

> do for [n=0:4] {plot Ed(n,t) lt n}

• The script written above has been con-
tinued from Ex.1.

• The defined function Ed(n,t) has 2 ar-
guments, t for θ and n for the “iter-
ation” number = 0,1,2,3,4 as specified
in the next “do” command. It creates
five plots, intersecting the X axis at
±(0.2, 0.4, 0.6, 0.8, 1.0)

• The sub-command“lt n” specifies “line
type” for each value of n. In term fig,
lt 0= black, 1= red, 2= light green, 3=
dark blue, 4= magenta. However, we
changed the colour of lt 2 from light
green to dark green for better visibility,
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the grid lines from solid to dashed, their
colours from black to blue.

The actual plot is shown in Fig.5.

6 Fieldlines from

Oscillating Dipole

Plotting the E field as given by Eq. (3) is
much more difficult, because in this case the

differential equation (13) is not so easy to in-
tegrate. However we shall follow the path
given by Orfanidis[7] and achieve a wonder-
ful result.
Let us set P = k3po

4πǫ0
; ρ = kr, τ = ωt.

The EM field (E,B) has only three non-zero
components, as seen from Eq. (3):

Er =
P

ρ2

[
cos(ρ− τ)

ρ
+ sin(ρ− τ)

]
2 cos θ. (a)

Eθ =
P

ρ3
[
(1− ρ2) cos(ρ− τ) + ρ sin(ρ− τ)

]
sin θ. (b)

cBφ =
P

ρ3
[
−ρ2 cos(ρ− τ) + ρ sin(ρ− τ)

]
sin θ. (c)

(15)

We shall plot only the E field, ignoring the
B field, for the reason cited at the begin-
ning of Sec. 5. The B field lines on the XY
plane are coaxial circles around the Z-axis,
as shown later, in Fig.15.

Plotting implies a “picture” of the field
with time frozen, i.e., with t held constant.
We shall set

Ψ(ρ) ≡
cos(ρ− τ)

ρ
+ sin(ρ− τ).

so that dΨ
dρ

=

− 1
ρ2
[(1− ρ2) cos(ρ− τ) + ρ sin(ρ− τ)] ,

(16)
with τ held constant. It follows that

Er =
P
ρ2
Ψ(ρ) 2 cos θ;

Eθ = −P
ρ
dΨ
dρ

sin θ.
(17)

Then from (13)

dr
dθ

= rEr

Eθ
,⇒ dρ

dθ
= ρEr

Eθ
= − Ψ

dΨ
dρ

2 cot θ.

⇒ dΨ
dθ

= −2Ψ cot θ.
(18)

This differential equation is similar to the
one in Eq. (14a), except for a negative sign
on the right side. Solving it we get

Ψ(ρ) sin2 θ = C

⇒
[
cos(ρ−τ)

ρ
+ sin(ρ− τ)

]
sin2 θ = C ′

(19)

where C ′ is a constant.
We now return to the original variables and

write the above equations of the field lines as
[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ = C

(20)
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Figure 5: E field lines intersecting the X-axis at x = ±(.2, .4, .6, .8, 1.0)

Before we start plotting let us be careful
about what this plotting operation will in-
volve. We are going to plot the E field lines
on a predecided fixed plane Σ which passes
through the line of the oscillating dipole, the
same as the Z axis. This plane is to be iden-
tified as the XZ plane. The field lines will be
shown as contour plots of the function that
appears on the left side of Eq. (20), for a fixed

value of t. The above function will now be
considered to be a function of the Cartesian

coordinates (x, z), with y set to zero. This is
because Gnuplot can make contour plots of
functions only of Cartesian coordinates.

When Gnuplot plots either a surface, or a
series of contours on that susrface, it expects
the equation of the surface to be written in
Cartesian coordinates as z = f(x, y). For this
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purpose we shall change the variable z → y,
denote the left side of Eq. (20) as ψ(x, y, t),
and prepare to plot contours on the surface

defined as:

z = ψ(x, y, t)
def
=

[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ.

(21)

In this change of variables the surface is
raised above the XY plane (instead of the
XZ plane). The Z axis now represents the
function ψ(x, y, t). Plotting the field lines for
a given value of t is the same as plotting
contours on this surface for selected levels,
i.e., for selected values of z, with t held con-
stant. The constant C appearing on the right
side of Eq. (20) represents one of those “se-
lected evels”. After the plotting operation is
done, at some convenient point we shall re-
store the y-coordinate to the status of the
z-coordinate.

The contours on this surface are now given
by the equation

z = ψ(x, y, t) =[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ = C.

(22)

For every time t > 0 and every real value
of and C lying within zmax and zmin there is
a contour .

Now suppose we take the unit of distance
as the wavelength λ, and the unit of time as
the time period the harmonic oscillation T ,

i.e.,

ρ = kr = 2πr
λ

→ 2πr; τ = ωt = 2πt
T

→ 2πt,
Hence,[
cos 2π(r − t)

2πr
+ sin 2π(r − t)

]
sin2 θ = C

(23)
becomes the equation of the field lines in the
polar coordinate sytem.

We shall illustrate this contour plot for the
field at t = 0, so that

z = ψ(x, y) ≡ ψ(x, y, t = 0)
=

[
cos 2πr
2πr

+ sin 2πr
]
sin2 θ = C.

Alternatively,[
cos ρ
ρ

+ sin ρ
]
sin2 θ = C.

(24)

Gnuplot will not only plot the surface z =
ψ(x, y), but show selected contours on this
surface, and project them on the XY plane,
as we shall demonstrate in the next section.

7 Plotting the E Field at

t = 0

We shall first draw the field lines at t = 0.
Note that this instant t = 0 is not the begn-
ning of time. The dipole has been oscillating
forever, from t = −∞ to t = +∞. How-
ever the zero time is taken to be one of those
instants when the dipole achieves its peak
value, pointing upwards (i.e., in the +Z di-
rection).

For a better view of the details of the field
lines limit ourselves to a small region around
the origin, within a radius of 2 wavelengths.
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It should be remembered that we have cho-
sen the length scale in the unit of the wave-
length λ (just before Eq. 23). Therefore our
viewing region has a radius of r = 2 arond
the Z-axis. Before plotting the field lines it
will be necessary to decide the values of ψ
at which the contours will be drawn. For
example we may like the contours to pass
through some selected points on the X axis,
say, x = 0.8, 0.9, 1.0, 1.1. However the con-
tour lines need to be more dense. Hence we
shall add more lines. The selection process
and the subsequent plot is done in three steps.
Step 1: Selection of the contour levels.

To make the selection we have plotted the
ψ(x, y) function along the x-axis, i.e., we have
plotted the function

ψ(x) ≡ ψ(x, 0) (25)

in the range [0.1,2.0], avoiding the origin
where the function goes to infinity.

Ex.3. To plot the function ψ(x) along the
X-axis.

> ro(x)=2*pi*x # defines ρ(x) as in Eq.(23).

> psi(x) = cos(ro(x))/ro(x) + sin(ro(x))

# defines ψ(x) as in Eq.(24)

> set grid # sets grid lines

> set xtics 0.1; set ytics 0.5; set mytics 5

# sets tic marks on the X and Y axes

> set xrange [0.1:2]; set yrange [-1.1:2]

# sets the ranges of x,y values

> set title ‘‘psi(x)-150609.fig"

> set out ‘‘psi(x)-150609.fig"

> plot psi (x) # 2-D plot

The plotted function is shown in Fig.6. It
comes with the title “psi(x)-150609.fig”, as
per the command given in the 3rd line from
the bottom of the command chain. On that
plot we have indicated

(1) the values ψ = −0.89,−0.44, 0.16, 0.70
corresponding to the following intercepts of
the ψ(x, y) function on the x-axis: x =
0.8, 0.9, 1.0, 1.1. The exact values of ψ can
be obtained by writing the command:

> print psi(0.8),psi(0.9),psi(1.0),psi(1.1)

-0.889579538602437 -0.444719637070117

0.159154943091895 0.704838937474402

(2) zeros of ψ at x ≈ 0.44, 0.98, 1.49, 1.99, ...
(3) maxima of ψ at x ≈ 1.22, ...
(4) minima of ψ at x ≈ 0.7, 1.73, ...
We have shown the above points on the
plot“psi(x)-150609.fig”, below the x axis..
We selected the preliminary contour lev-

els at z = −0.89,−0.44, 0.16, 0.70 from con-
sideration of (1), and extra levels at z =
1, 1.3,−0.6, 0.5, 0.85 from consideration of
(2),(3),(4). We have indicated the above val-
ues on the left side and on the right side of
the plot.

Step 2: Plotting z = ψ(x, y), as a 3D surface,

and show the contours. We have achieved the
objective through the following commands:

Ex.4. To plot the surface ψ(x, y) and con-
tours on it.

> r(x,y) = sqrt(x*x+y*y) # defines r =
√
x2 + y2

> st(x,y)=x/r(x,y)

# defines sin θ
> sr(x,y) = sin(2*pi*r(x,y))

# defines sin ρ = sin 2πr
> cr(x,y) = cos(2*pi*r(x,y))

# defines cos ρ = cos 2πr
> psi(x,y) =( cr(x,y)/(2*pi*r(x,y))

+ sr(x,y) )*(st(x,y))**2

# defines ψ(x, y) as in Eq.(24)

> set size square

# shape of the plot area

> set surface # surface plot

> set contour both

# contour on the surface as well as
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Figure 6: The function ψ(x, y) drawn along the X-axis, for selection of contour levels

on the base

> set hidden3d # treat surface as opaque

> set cntrparam levels discrete - 0.89,

-0.44, 0.16, 0.7, 1, 1.3, -0.6, 0.5, 0.85

# contour parameters, discrete levels

> set xrange [-2:2]; set yrange [-2:2]

# domains of x and y

> set xlabel "x-axis"; set ylabel "y-axis"

# labels on the x and y axes

> set zlabel "psi(x,y)"

# label on the z axis

> set isosamples 50,50; set samples 10,10

> splot psi(x,y)

# 3-D surface plot. It is interactive

> set term fig color portrait size 15, 15,

metric pointsmax 1000 solid font

"Times-Roman,12"

# Terminal specification

> set title "psi(x,y)-150610.fig"

# label the plot

> set out "psi(x,y)-150610.fig"

# save as, the file name

> replot

• The “splot” command, before specifica-
tion of the terminal, results in a 3-D plot
which is interactive. You can change the
view angle, choose the best perspective,
then specify the terminal. Finally when
you give the “replot” command, the plot
will be saved and seen as you last saw it,
before setting the terminal.

The resulting plot is shown in Fig.7

Step 3: Plotting the Field lines of E. This
is achieved through the following commands,
starting with “unset surface” to make sure
that the surface will not be drawn again.

Ex.5 Plotting field lines on the XZ plane.
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Figure 7: The isometric plot of the surface function ψ(x, y), the z axis representing the height of
the surface above the XY plane. The contours at the selected levels are shown on the surface as
well as on the XY plane.

> unset sur

> set view map

> set key bmargin

> set title "psi(x,y)cont-150610.fig"

> set out "psi(x,y)cont-150610.fig"

> splot psi(x,y)

• The script written above has been con-
tinued from Ex.4.

The resulting plot is shown in Fig.8

8 Planting the E vectors

The E field lines drawn in the last section
may look impressive, but is deficient on one
count. There is no indication of the direction
of the field along the lines. One can remedy
this defect in one of following two ways.
(a) Actual planting of the E vector at selected
points of the region under scrutiny and, by
superimposing the plot of Fig.8 on the same
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Figure 8: The field lines of E on the XZ plane at time t = 0, due to an oscillating electric dipole
p̃ oriented along the Z axis, and placed at the origin. We have added a small circular blob, with
an arrow piercing through it (not part of the plot), to indicate the location and the direction of
the dipole at t = 0.
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canvas, get a clear indication of the direction
of the field along the field lines;
(b) Make a plot of the value of the transverse
component of the field, namely Eθ(x), along
the x axis, which gives the exact value of the
field along this axis, since there is no Er com-
ponent on the XY -plane. Since eθ = −k on
the XY plane, positive value of Eθ(x) implies

direction of the −Z axis and vice versa. Fol-
low these directions along entire field lines.
Each option has its advantage and disad-

vantage. In option (a) the plotter gets a clear
indication of the E planted all over the space,
with its both magnitude and direction in dis-
play. However, the procedure is laborious,
because it involves creating a “data table” of
(x, y, Ex, Ey) for selected points. In compari-
son, option (b) is relatively quicker and easier
to implement.
In this section we shall take up the first

option, i.e., option (a).
Gnuplot can “plot vectors”. We are using

the term “planting vectors” for the same op-
eration. Page 56 of Gnuplot Manual tells us
how to do this.

The 2D vectors style draws a
vector from (x,y) to (x+xdelta,
y+ydelta). The 3D vector style is
similar, but requires 6 columns of
basic data. A small arrowhead is
drawn at the end of each vector.
4 columns: x y xdelta ydelta
6 columns: x y z xdelta ydelta
zdelta
The keyword “with vectors” may
be followed by an in-line arrow style
specification.

.... plot ... with vectors filled heads

Therefore the operation “planting vectors”
begins with preparation of a 4 column data
table, in which each row will have four entries,
namely the (x,y) componets of the field point,
followed by the (Ex, Ey) components of the E
field at that point.
At this point let us note that the formulas

given in Eqs. (15) give the (r, θ) components
of the E field. They are to be converted to the
(x, y) components of the field by the following
formulas.

Ex = Er sin θ + Eθ cos θ
Ey = Er cos θ − Eθ sin θ

(26)

We shall now carry out this operation
through the following steps.

Step 1: Calculating the values of

(x, y, Ex, Ey) for selected distances d mea-

sured from the origin, as a prelude to the

creation of the Data Table.

We have selected d in the range of 0.1
to 1.6, at a fixed interval of 0.1, and their
locations at six values of the polar angle,
measured from the Z axis, equal to θ =
nπ/12; n = 1, ..., 6. The region under obser-
vation is the first quadrant of the XZ plane,
i.e, 0 ≤ θ ≤ π/2; φ = 0. In other words
z > 0; x > 0; y = 0; d = fλ = f , since
λ = 1, and f = 0.1, 0.2, 0.3, · · · , 1.6.
We shall illustrate the procedure here only

for d = 1 and d = 0.5.
The reader should interpret all y coordi-

nates written in the commands below as the z
coordinate, following the comments made on
page 15.
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Step 1A

Ex.6. Calculating the coordinates (x, y) of
the selected points.

> x(n)=d*sin(n*pi/12); y(n)=d* cos(n*pi/12)

# x(n), y(n) defined

> d=1 # d=1

> do for [n=1:6] {print x(n)}

# values of x(n) for d = 1;n = 1, ..., 6
0.258819045102521

0.5

0.707106781186547

0.866025403784439

0.965925826289068

1.0

> do for [n=1:6] {print y(n)}

# values of y(n) for d = 1;n = 1, ..., 6
0.965925826289068

0.866025403784439

0.707106781186548

0.5

0.258819045102521

6.12323399573677e-17

> d=.5 # d=.5

> do for [n=1:6] {print x(n)}

0.12940952255126

0.25

0.353553390593274

0.433012701892219

0.482962913144534

0.5

> do for [n=1:6] {print y(n)}

0.482962913144534

0.433012701892219

0.353553390593274

0.25

0.12940952255126

3.06161699786838e-17

Step 1B

Ex.7. Calculating Ex, Ey at the selected
points at t = 0.

> r(x,y)=sqrt(x*x + y*y)

> ro(x,y) = 2*pi*r(x,y);

ro2(x,y)= (ro(x,y))**2

> ro3(x,y) =(ro(x,y))**3

# ρ, ρ2, ρ3 defined

> sr(x,y)=sin(ro(x,y)); cr(x,y)=cos(ro(x,y))

# sin ρ, cos ρ defined

> st(x,y)=x/r(x,y); ct(x,y)=y/r(x,y)

# sin θ, cos θ defined

> Er(x,y) = (cr(x,y)/ro3(x,y)

+ sr(x,y)/ro2(x,y)) * 2 * ct(x,y)

> Et(x,y)=(cr(x,y)/ro3(x,y)

# (Er , Eθ) as defined in Eqs.(15)

+ sr(x,y)/ro2(x,y)-cr(x,y)/ro(x,y))*st(x,y)

> Ex(x,y)=Er(x,y)*st(x,y)+Et(x,y)*ct(x,y)

> Ey(x,y)=Er(x,y)*ct(x,y)- Et(x,y)*st(x,y)

# (Ex, Ey) from Eqs.(26)

> d=1.0 \# d=1

> do for [n=1:6] {print Ex(d*sin(n*pi/12),

d*cos(n*pi/12))}

# values of Ex(x, y) for d = 1;n = 1, ..., 6
-0.0367651544198614

-0.0636791154033154

-0.0735303088397228

-0.0636791154033154

-0.0367651544198614

-9.00486573608828e-18

> do for [n=1:6] {print Ey(d*sin(n*pi/12),

d*cos(n*pi/12))}

# values of Ey(x, y) for d = 1;n = 1, ..., 6
0.0179140770447072

0.0448280380281612

0.0815931924480226

0.118358346867884

0.145272307851338

0.155123501287745

> d=0.5 # d=.5

> do for [n=1:6] {print Ex(d*sin(n*pi/12),

d*cos(n*pi/12))}

0.0553888207210481

0.095936251660179

0.110777641442096

0.0959362516601791

0.055388820721048

1.35663484009156e-17

Step 2; Constructing the Data Table
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This was done in the following way (1)
Start a new text document by invoking Libre
Office Writer. (2) Save it as a text document
with extension .txt. In this case the name
of this file is ’E1vecdataC-150423.txt’. (3)
Choose any one of the selected points. Copy-
paste the values of x,y from Step 1A, and the
values of Ex,Ey from Step 1B (after round-
ing them off to 2 or 3 decimal places.). The 4
numbers are now displayed not in a row, but
in a column, as in

a

b

c

d

(4) take cursor just after the top number
in this row (i.e., a), go further by one space,
and click del. The next lower number (i.e.,
b) now comes next to the first number with
one blank space in between. In this way bring
all the numbers in one row. As a result the
copied numbers are now rearranged as
a b c d
Continue this procedure to bring the
(x,y,Ex,Ey) values of all selected points in as
many rows. The composition of this file is
now complete.
The (partial) Data Table below shows the

data for the 12 selected points corresponding
to d = 1.0, 0.5.

# x y Ex Ey

.26 .97 -.037 .018 # d=1

.5 .87 -.064 .045

.71 .71 -.074 .082

.87 .5 -.064 .118

.97 .26 -.037 .145

1.00 0 0 .155

.13 .48 .06 -0.08 # d=0.5

.25 .43 .1 -.12

.35 .35 .11 -.18

.43 .25 .1 -.23

.48 .13 .06 -.27

.5 0 0 -.29

The full data table, saved as ’E1vecdataC-
150423.txt’ in the working directory, is
shown in the Appendix.

Step 3: Planting the E vectors on the first

quadrant of the ZX Plane.
Ex.8.

> set size square

> set pointsize 0.5

> set xrange [-0.1:1.7];

set yrange [-0.1:1.7]

# sets x-range and z-range

> set xtics 0.5; set mxtics 5

# sets tic marks along the x-axis

> set ytics 0.5; set mytics 5

# sets tic marks along the z-axis

> set title ‘‘E1vecB-150505.fig"

# title that appears at the top

of the plot

> set out ‘‘E1vecA-150505.fig"

# filename of the plot, stored in UrDir

> set key bmargin

> plot ’E1vecdataC-150423.txt’ using

1:2 with points pt 7,

’E1vecdataC-150423.txt’ using

1:2:3:4 with vectors size .02, 15

filled lt 3

• The last command plants (a) the
field points from col 1,2 of the data
file ’E1vecdataC-150423.txt’ with ‘point
type’ 7 (circular blob), (b) the vectors
from col 1, 2, 3, 4 of the same data
file, as straight lines, starting at these
field points, and terminating at an ar-
rowhead. The size of the arrowhead is
indicated in the subcommand ‘with vec-
tors size .02, 15 filled lt 3’ (length = .02,

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                       21                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 23 dateline(to be added by Editor)

Z
−

a
xi

s

X−axis

θ=

π/6

π/4

π/3

5π/12

π/12

π/2
p
~

 0

 0.5

 1

 1.5

 0  0.5  1  1.5

’E1vecdataC−150423.txt’ using 1:2

’E1vecdataC−150423.txt’ using 1:2: ($3): ($4)

E1vecB−150505.fig

Figure 9: The E vectors on the XZ plane at time t = 0, shown on the first quadrant. They are
planted at selected points marked with red dots. These points are distributed along radial lines at
equal length intervals of 0.1 from d = 0.4 to d = 1.6, and at equal angular intervals of π/12 from
θ = π/12 to θ = π/2. The oscillating dipole is shown at the origin as p̃
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sloping angle of the arrows = 150, line
type 3.)

• If we want to make the vectors look
longer, by increasing their size by, say
50%, the second part of the last com-
mand should be modified to:

... ’E1vecdataC-150423.txt’ using

1:2:(1.5*$3):(1.5*$4) with vectors

size .02, 15 filled lt 3.

See pp.72,169 of Gnuplot Manual, Ex-
ample on p.28 of Gnuplot Cookbook.

We have shown the planted E vectors in
Fig. 9.

Step 4: Plotting the Field lines
Ex.9

> r(x,y) = sqrt(x*x+y*y)

> st(x,y)=x/r(x,y)

> sr(x,y) = sin(2*pi*r(x,y));

cr(x,y) = cos(2*pi*r(x,y))

> psi(x,y)=( cr(x,y)/(2*pi*r(x,y))

+sr(x,y) )*(st(x,y))**2

> set contour base

> unset surface

> set view map

> set cntrparam levels discrete -0.89,-0.44,

0.16,0.70,1,1.3,-0.6,0.5,0.85

> set isosamples 80,80

> set title "E1lineD-150505.fig"

> set out "E1lineD-150505.fig"

> splot psi(x,y)

• The commands are a continuation of
those in Ex.8.

• The contur plots, even though they look
2-dimensional, are to be treated as sur-
face plots (3-dimensional). Hence the
“splot” command.

We have shown the field lines in Fig. 10.

Step 5: Superimposing the Planted Vectors on

the Field lines This operation does not in-
volve Gnuplot. It is mostly a copy-paste op-
eration done in xfig, and shown in Fig. 11.
The canvas is divided into four partitions:
(a), (b), (c), (d). We have copied Figs. 10
and 9, scaled down to about half their di-
mensions, and pasted them in partitions (a)
and (b). These two figures are superimposed
in partition (c), in which we find the field
vectors embedded in the neighbourhood of
the field lines. We extrapolate their direc-
tions into the field lines, in partition (d), by
drawing short tangents along the curve with
arrowheads, and get directed field lines.

9 Plotting the E Field at

equal time intervals of

T/8 for one full period

T .

We shall now take up the option (b) men-
tioned at the beginning of Sec.8, not just for
t = 0, but for eight instants of time, taken
at equal intervals spread over one full period
of oscillation of the dipole, namely, t =
0, T/8, 2T/8, 3T/8, 4T/8, 5T/8, 6T/8, 7T/8.
We shall first make two series of plots
for each one of the above instants,
namely, (i) plot the field lines on
the XZ plane over a square region:
[−2.5 λ ≤ x ≤ 2.5 λ,−2.5 λ ≤ z ≤ 2.5 λ];
(ii) plot E vs x along the X-axis for the
same x-range −2.5 λ ≤ x ≤ 2.5 λ. The

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                        23                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 25 dateline(to be added by Editor)

X−axis

Z
−

a
xi

s

p
~

psi(x,y)
    0.85
     0.5

    −0.6
     1.3

       1
     0.7
    0.16

   −0.44
   −0.89

 0  0.5  1  1.5

 0

 0.5

 1

 1.5

E1lineD−150505.fig

Figure 10: The E field lines on the XZ plane at time t = 0, shown on the first quadrant, drawn
in the x-range [-0.1:1.7] and z-range [-0.1:1.7]. The oscillating dipole placed at the origin is shown
as p̃.
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Figure 11: Drawing directed E field lines (lines of force) on the XZ plane at time t = 0, on the
first quadrant.
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Figure 12: E field lines at t=0.
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directions of the field obtained in (ii) will be
extrapolated in (i) along the field lines.

Step 1: Plotting the field lines over one full

period at 8 equally spaced instants: t =
nT/4; τ = nπ/4; n = 0, 1, ..., 7
Ex.10

> set size square

> set xrange [-2.5:2.5]; set yrange [-2.5:2.5]

> set xtics 0.5; set mxtics 5

> set ytics 0.5; set mytics 5

> set grid xtics ytics back linetype 3

> unset key

> r(x,y) = sqrt(x*x+y*y)

> st(x,y)=x/r(x,y)

> sr(x,y) = sin(2*pi*r(x,y));

cr(x,y)=cos(2*pi*r(x,y)) # n = 0
> psi(x,y)=(cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set contour base

> unset surface

> set view map

> set cntrparam levels discrete -0.89, -0.44,

0.16,0.70,1,1.3,-0.6,0.5,0.85

> set isosamples 100,100

> set out "Evstime0-150518.fig"

> splot psi(x,y)

> sr(x,y)=sin(2*pi*r(x,y)-pi/4);

cr(x,y)=cos(2*pi*r(x,y)-pi/4) # n = 1
> psi(x,y) =( cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set out "Evstime1-150518.fig"

> splot psi(x,y)

..............................................

> sr(x,y) = sin(2*pi*r(x,y)-7*pi/4);

cr(x,y)=cos(2*pi*r(x,y)-7*pi/4) # n = 7
> psi(x,y)=(cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set out "Evstime7-150518.fig"

> splot psi(x,y)

• The field lines corresponding to t = 0 are
shown in Fig.12

• The command lines corresponding to
n=2,...,6 are not shown.

• The field lines corresponding to t =
nT/4; n = 1, ..., 7 are not shown. How-
ever, they have been saved in the work-
ing direcory under seven file names
as specified above, namely, Evstime1-
150518.fig, ... ,Evstime7-150518.fig.
They are to be used in the Step 5 be-
low.

Step 2: Plotting Eθ vs x along the X-axis. We
shall however go further and plot Eθ, Bφ on
the same plot only for t = 0.
Ex.11 To plot Eθ(x) and cBφ(x) at t = 0

along the X-axis.

> set xtics 0.5; set mxtics 5

> set ytics 0.15; set mytics 3

> set grid xtics ytics back linetype 3

> set xrange [0.2:2.5];set yrange [-0.3:0.3]

> ro(x) = 2*pi*x; ro2(x)=(ro(x))**2;

ro3(x) =(ro(x))**3

> sr(x) = sin(ro(x));cr(x) = cos(ro(x))

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)

-cr(x)/ro(x) # n=0

> Bf(x) = sr(x)/ro2(x)-cr(x)/ro(x)

> set xrange [0.2:2.5];

set yrange [-0.3:0.3]

> set title "EBvsx0-150621.fig"

> set out "EBvsx0-150621.fig"

> plot [0.2:2.5] [-0.3:0.3] Et(x),Bf(x)

We have shown this combined plot in Fig. 13.
Note from Eq. (15) that E has only θ com-
ponent on the XY plane, and cB has only φ
component everywhere. Therefore along the
X axis, E = Eθ, B = Bφ. We have shown in
Fig. 13 E and cB vs x on the same graph at
t = 0. It is seen that the two fields are almost
equal for x > 0.6.
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Figure 13: E and B vs x along the X-axis, at t = 0.

Ex.12 To plot Eθ(x) along the X-axis, for
t = nT/8; n = 1, ...7.

> sr(x)=sin(ro(x)-pi/4);

cr(x)=cos(ro(x)-pi/4) # n=1

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)-cr(x)/ro(x)

> set title "Evsxn1-150521.fig"

> set out "Evsxn1-150521.fig"

> plot Et(x)

....................................

> sr(x) = sin(ro(x)-7*pi/4);

cr(x)=cos(ro(x)-7*pi/4) # n=7

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)-cr(x)/ro(x)

> set title "Evsxn7-150521.fig"

> set out "Evsxn7-150521.fig"

> plot Et(x)

• The commands are a continuation of
those in Ex.11.

• The command lines corresponding to
n=2,...,6 are not shown.

• The seven graphs plotted above are
not shown. However, they have been
saved in the working direcory under
seven file names as specified above,
namely, Evsxn1-150521.fig, ... , Evsxn7-
150521.fig. These plots are to be used in
the Step 5 below.

Step 3: Insert arrows alongside E field lines

by finding their directions from the E vs x
plots, at t = 0.
We have illustrated in Fig. 14 how this op-

eration has been carried out. We copied two
figures, namely (a) Fig. 12, and (b) Fig. 13,
on a single canvas in xfig. We removed the
plot of Bφ, so that (b) has only plot of Eθ.
Now we placed (b) beneath (a), scaled down
(b) such that its boundary lines (correspond-
ing to x = 0.2, 2.5) were aligned with the cor-
responding tic marks in (a). This was done
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because the graph (a) has xrange [-2.5:2.5]
and the graph (b) has xrange [0.2:2.5]. Next,
we drew vertical lines from the following
points on the graph in (b) to the X-axis of
(a): (i) the maxima, (ii) the minima, and the
(iii) zeros.
The unit vector eθ coincides with −k on

the XY plane, as mentioned earlier. There-
fore, the maxima correspond to peak values
of E in the negative Z direction, the minima
to the peak values positive Z direction, and
the zeros to the centres of the loops formed by
the contours. We followed the directions ob-
tained from (i) and (ii) through entire loops
of the contours.

Step 4: Obtaining directed field lines of E and

B, at t = 0
Now that we have drawn directed field lines

of E at t = 0, we need to see it side by side
with the B field at the same instant of time.
For this purpose we have copied directed field
lines of Fig. 14 as part (a) of Fig. 15, and
drawn the field lines of B as concentric circles
in part (b) of the same figure, as suggested by
Fig. 1(c), and Eq. (15c).
It is seen from Fig. 13 that the positive and

negative peak values of E and cB occur at the
same set of points on the X axis. Using this
as a guide, we have obtained the directions
of B along the field lines, and have indicated
them with arrowheads.

Motion of Field lines
The field lines as drawn in Fig. 15 look

static. Actually they are moving lines, ex-
panding outward into space with the speed
of light. This dynamic character of the field
lines is clearly seen especially in the radiation

zone, from Eqs. (5). In this zone we can as-
sign a phase, defined as ϕ = (kr − ωt), to
every field line. Any particular phase ϕ asso-
ciated with, say the crest (positive maximum)
or trough (negative maximum), is given as
ϕ = a = constant. Hence, as t changes, the
value of r associated with that phase changes
accordingly, satisfying r = a + ω

k
t = a + ct.

For a better and analytical understanding
of the “motion of the field lines” we need to
go back to Eq. (22), in an attempt to giv-
ing a meaning to the term. Field lines are
contours on the surface z = ψ(x, y, t). Imag-
ine two field lines Γ(t) and its time evolution
Γ(t + dt) in a small time-interval dt. They
correspond to the same value of the constant
C, and are drawn at times t and t + dt re-
spectively. An imaginary point P(t) on Γ(t)
at the coordinates (r, θ, φ) moves radially to
the point P(t + dt) on Γ(t + dt) at the coor-
dinates (r + dr, θ, φ). We may then refer to
ṙ = dr

dt
as the radial velocity of the field line

at P. We can then obtain ṙ by differentiating
r with respect to t in the implicit equation
Eq. (22), and get

[
cos(kr − ωt)− sin(kr−ωt)

kr
− cos(kr−ωt)

(kr)2

]
ṙ

=
[
cos(kr − ωt)− sin(kr−ωt)

kr

]
c.

(27)
A few wavelenghts away from the source the
third term within the square brackets on the
left side vanishes, making ṙ ≈ c.

At this point let us pause for a while, and
introspect whether these field lines are in
conformity with Maxwell’s equations in free
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Figure 14: Extrapolating the direction of the E field on the XZ plane from the E − x graph
plotted along the x-axis. Time t = 0.
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Figure 15: The E field on the XZ (Fig.(a)), and the B field on the XY plane (Fig (b)),
corresponding to the same instant of time: t = 0. The B field lines are concentric circles. The
solid circles correspond to the maximum values of B in anticlockwise (Bφ positive) and clockwise
(Bφ negative) directions, the dashed circles to zero value of the field.
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space, written below.

∇ ·E = 0. (a) ∇×E = − ∂cB
∂(ct)

. (b)

∇ · cB = 0. (c) ∇× cB = ∂E
∂(ct)

. (d)

(28)
The form of the equations is a reminder of
the relativistic form (i.e., covariant form) of
Maxwell’s equations. Eqs. (a),(c) suggest
that the field lines of both E and B should
form closed loops, which is obviously the case
for both of them. Eq. (c) (representing Fra-
day’s law) requires that the line integral of
E around any such closed loop Γ must equal
the negative of the area integral of ∂cB

∂(ct)
over

the area enclosed by Γ, remembering that the
cB field, lying on the XY plane, is penetrat-
ing the XZ plane perpendicularly. This fact
cannot be verified by just by looking at the
plot.

Step 5: Draw directed field lines of E for one

full period T

We have replicated the operation men-
tioned in Step 3 (E field at t = 0) for the
remaining seven values of t, covering one full
perod, namely, t = nT/8; n = 1, ...7. For
each one of these instants, we have taken
the field lines from Step 1 (Ex.10), placed
below it the corresponding plot of Eθ vs x
plot from Step 2 (Ex.12). After completing
this work leading to the composite figure for
each value of t, we scaled down each one of
them to about half of their size (i.e., linear
dimension) so that the figures corresponding
to t = 0, T/8, 2T/8, 3T/8 were arranged in
Fig. 16 in four quadrants, and the figures
corresponding to t = 4T/8, 5T/8, 6T/8, 7T/8
were arranged in Fig. 17 in four quadrants.

Looking at successive pictures, correspond-
ing to successive values of t covering on full
period, the reader should get a reasonably
good idea of how the field is evolving in time,
resulting in a propagating wave in all direc-
tions along the XZ plane. The same pic-
ture holds for all planes passing through the
Z axis.

Step 6. Finally, we have plotted E vx x, along
the X axis, for one full period at eight equal
time intervals on a single graph, as shown in
Fig. 18, using the following commands.

Ex.13

> set xtics 0.5; set mxtics 5

> set ytics 0.05

> set grid xtics ytics back linetype 3

> ro(x) = 2*pi*x;ro2(x)=(ro(x))**2

> ro3(x) =(ro(x))**3

> sr(x) = sin(ro(x)-n*pi/4);

cr(x)=cos(ro(x)-n*pi/4)

> Er0(x)=(cr(x)/ro3(x) + sr(x)/ro2(x))

> Et0(x) = Er0(x) - cr(x)/ro(x)

> set title "EvsxD-150520.fig"

> set out "EvsxD-150520.fig"

> do for [n=0:7]

{plot [0.2:2.5] [-0.3:0.3] Et0(x) lt n}

The plots give a clear picture of the EM wave
along the X axis. It should be remembered
that as we go far away from the orign, the
amplitudes of the E and cB fields fall off as
1/r (compared to 1/r2 for the Coulomb field),
and they become equal in magnitude, but re-
main perpendiculr to each other. The pattern
remains the same in all directions around the
Z axis, except for the fact that their ampli-
tude varies as sin θ, being zero along the Z
axis, and maximum along the XY plane.
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Figure 16: Extrapolating the direction of the E field on the XZ plane from the E−x graph potted
along the x-axis. Times t = 0, T/8, 2T/8, 3T/8.
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Figure 17: Extrapolating the direction of the E field on the XZ plane from the E − x graph
plotted along the x-axis. Times t = 4T/8, 5T/8, 6T/8, 7T/8.
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Figure 18: E vs x at t = 0, T/8, 2T/8, 3T/8, 4T/8, 5T/8, 6T/8, 7T/8, covering one full period T ,
giving an indication of how the EM wave propagates in all directions, its amplitude falling off as
1/r as we go far away from the source.
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10 Plotting a linearly

polarized plane EM

Wave

We now come to the part (i) of our work,
as mentioned at the end of the Introduction,
namely the simplest example of a plane EM
wave, originating from a source which is far
away from the region where it is detected.

For the simplest example we shall take the
direction of propagation to be the Z direc-
tion, and the direction of the E and B fields
to be in the X and Y directions respectively.
Let the wave be a harmonically varying field.
Then[?]

E = E0 cos k(z − ct)ex (a)
cB = E0 cos k(z − ct)ey (b)

(29)

The direction of the E vector is called the
direction of polarization. This can be any
direction perpendicular to the direction of
propagation. Since in the present example,
the propagation direction is the Z direction,
the E and B fields must be on the XY plane.
The example shown in Eq.(29) assumes a

constant direction of polarization. When this
is the situation, the EM wave is said to be lin-
early polarized. There is another special case
in which the magnitude of the E field is con-
stant, but rotates uniformly, perpendicular to
the direction of propagation. Such a propa-
gating field is said to be circularly polarized.
The present example illustrates a linearly po-
larized wave for which the diection of polar-
ization is the X direction. We may even call

it an X-polarized plane EM wave. We have
depicted this wave in Fig. 19(c).

Note that the direction of the Poynting’s
vector S is the same as the Z direction, and
the the waveform shown in the figure is mov-
ing in bulk with the speed c in the Z direc-
tion. Also we have shown the cB field, as
the companion of the E field, so as to convey
to the reader the equality E = cB which is
intended to be portrayed by equal lengths of
the two vectors E and cB.

To create the picture of the propagating
field we first created two primitive plots,
shown in Figs. 19(a) and (b), each having
the same cosine function plotted on the XZ
plane and the YZ plane, and covering time
ranges [−π/2 : π/2], [π/2 : 3π/2] respectively.
Together they covered one full period of the
wave. The final picture of the propagating
wave shown in Fig. 19(c) was created by the
editing operation : copying-pasting, joining,
adding arrows, filling with colors, and then
extending further over two more periods. The
plots in Figs (a) and (b) were created using
Gnuplot through the following command.

Ex.14

> set parametric

> set urange [-pi/2:pi/2]

> splot u,0,cos(u),u,-cos(u),0,u,0,0

> set term fig color size 27 18 metric

pointsmax 1000 solid font "Times-Roman,12"

depth 50

> set title "EMplaneA-150504.fig"

> set output "EMplaneA-150504.fig"

> set key bmargin

> replot

> set urange [pi/2:3*pi/2]

> set title "EMplaneB-150504.fig"

> set key bmargin
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> splot u, 0, cos( u ), u, -cos( u ), 0, u, 0, 0

> set output "EMplaneB-150504.fig"

Appendix

The content of the file E1vecdataC-
150423.txt
The data below lists x,y,Ex,Ey for d= 1, .8,
.6, .4, .5, .7, .9, 1.1, 1.3, 1.5, 1.4, 1.6, 1.3

# x y Ex Ey

.26 .97 -.037 .018

.5 .87 -.064 .045

.71 .71 -.074 .082

.87 .5 -.064 .118

.97 .26 -.037 .145

1.00 0 0 .155 # d=1 on x axis

.21 .77 -.042 -.05

.4 .70 -.072 -.029

.57 .57 -.084 .013

.70 .4 -.072 .055

.77 .21 -.042 .085

.8 0 0 .097 # d=.8 on x axis

.16 .58 .011 -.116

.3 .52 .020 -.124

.42 .42 .023 -.136

.52 .3 .020 -.147

.58 .16 .011 -.155

.6 0 0 -.158 # d=.6 on x axis

.10 .39 .112 .054

.2 .35 .194 -.028

.28 .28 .224 -.140

.35 .2 .194 -.252

.39 .10 .112 -.334

.4 0 0 -.364 # d=.4 on x axis

.13 .48 .06 -0.08

.25 .43 .1 -.12

.35 .35 .11 -.18

.43 .25 .1 -.23

.48 .13 .06 -.27

.5 0 0 -.29 # d=.5 on x axis

.18 .68 -.02 -.1

.35 .6 -.04 -.08

.49 .49 -.04 -.06

.61 .35 -.04 -.04

.68 .18 -.02 -.02

.7 0 0 -.02 # d=.7 on x axis

.23 .87 -.05 -.02

.45 .78 -.08 .02

.64 .64 -.09 .06

.78 .45 -.08 .11

.87 .23 -.05 .14

.9 0 0 .16 # d=.9 on x axis

.28 1.06 -.02 .03

.55 .95 -.03 .05

.78 .78 -.04 .07

.95 .55 -.03 .08

1.06 .28 -.02 .1

1.1 0 0 .1 # d=1.1 on x axis

.34 1.26 .02 .02

.65 1.13 .03 .01

.92 .92 .04 -.01

1.13 .65 .03 -.03

1.26 .34 .02 -.05

1.3 0 0 -.05 # d=1.3 on x axis

.39 1.45 .03 -.01

.75 1.3 .04 -.03

1.06 1.06 .05 -.05

1.3 .75 .04 -.08

1.45 .39 .03 -.1

1.5 0 0 -.1 # d=1.5 on x axis

.36 1.35 .028 .005

.7 1.21 .048 -.015

.99 .99 .056 -.043

1.21 .7 .048 -.071

1.35 .36 .028 -.091

1.4 0 0 -.098 # d=1.4 on x axis

.41 1.55 .015 -.017

.8 1.39 .026 .028

1.13 1.13 .03 -.044

1.39 .8 .026 -.059

1.55 .41 .015 -.07

1.6 0 0 -.074 # d=1.6 on x axis

.31 1.16 .003 .034

.6 1.04 .005 .032

.85 .85 .006 .029

1.04 .6 .005 .026

1.16 .31 .003 .024
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Figure 19: A linearly polarized plane electromagnetic field propagating in the Z direction
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1.2 0 0 .024 # d=1.2 on x axis
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