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Abstract

Divisibility of a non–zero coefficient of an integer polynomial, by the binomial coefficient
associated with the degree of the polynomial and the corresponding index of the power of
the argument, is established for a Legendre Polynomial, multiplied by the exact power of 2
which divides the factorial of its degree, and a modified Hermite polynomial. These two
coefficients have the same parity and their ratio is always an odd integer. Together the
coefficients of each one of these two integer polynomials produce a perfect palindrome with
respect to their parity. In spite of divisibility, the parity of a coefficient of a Laguerre
polynomial, multiplied by the factorial of its degree, and the parity of a coefficient of a
Hermite polynomial, cannot be predicted perfectly by the associated binomial coefficient.
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1 Introduction

The Legendre polynomials are extremely
useful in Special Functions, Mathematical
Physics, Numerical Methods, Electromag-
netic Theory, Quantum Mechanics, Quantum
Theory of Angular Momentum, and Nuclear
Physics [1, 2, 3, 4]. The power series expan-
sion of the Legendre polynomial of degree n
in x is given by [1, 2, 3]

Pn(x) =

[n/2]∑
s= 0

(−1)s (2n− 2s)! xn−2s

2n s! (n− s)! (n− 2s)!
. (1)

Here [ρ] is the greatest integer ≤ ρ. The
common denominator of all the coefficients
of Pn(x), when reduced to their lowest terms,
is 2B, the greatest power of 2 which divides n!
[5, p. 352] (Pearl # 1). Our Legendre poly-
nomial, from now onwards, is a rational func-
tion (the symbol “,” standing for “is equal
to by definition”),

Pn(x) , Kn(x)/2B, n+ 1 ∈ N,

n!/2B = odd #, (2)

such that all the coefficients of Kn(x), a poly-
nomial of degree n in x, are integers. Thus,
by the numerator of Pn(x) we always mean
Kn(x), and the denominator of Pn(x) is al-
ways 2B. The coefficients of Kn(x) are 2B

times the Legendre coefficients. It is nice to
note that Kn(x) is an integer polynomial, i.e.,
a polynomial whose coefficients are integers
[6]. Let us remember that Kn(x) has a defi-
nite parity (−1)n [1, 2, 3]. It is an even (odd)
polynomial when the degree n is even (odd).
See Eqs. (1) and (2). Focussing on xn−2s in
Eq. (1), let us note that both n − 2s and n
have the same parity: odd (even) when n is
odd (even), since our 2s is an even integer.

The purpose of our paper is to show that
the coefficient of xn−2s, 0 ≤ s ≤ [n/2], n+1 ∈
N, in Kn(x), is always divisible by the asso-
ciated binomial coefficient nn− 2s (Pearl #
2), and that the ratio of these two coefficients
is an odd integer forever (Pearl # 3):

nn− 2s
∣∣∣ coefficient of xn−2s inKn(x), (3)

(−1)s × coefficient of xn−2s inKn(x)

= odd positiveinteger × nn− 2s. (4)

We also establish the parity–palindromic
nature of the coefficients of Kn(x) (Pearl #
4).

Our paper is organized as follows: Section
2 deals with the contributions of Legendre
and Kummer [7, 8, 9] on the p − adic valua-
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tion of certain interesting integers. In Sec-
tion 3, we prove Holt’s result [5, p. 352]
(Pearl # 1) concerning the common denom-
inator of the Legendre coefficients, when re-
duced to their lowest terms. That Pascal (bi-
nomial coefficient) is able to predict perfectly
the parity of Legendre (coefficient multiplied
by 2B), is established. We show that each
coefficient in the numerator of a Legendre
polynomial is divisible by the associated bino-
mial coefficient, DegreePower, always result-
ing in an odd integer upon division. We also
prove that the coefficients in the numerator
of Pn(x) produce a palindrome with respect
to their parity (parity–palindrome) perfectly.
Section 4 contains other lovely and pleasant
results concerning the Legendre coefficients.
In Section 5, we appreciate the beauty of
the Pascal’s Triangle and consider its appli-
cation to the Legendre polynomials. Deal-
ing with the Laguerre, Hermite, and modified
Hermite polynomials [1, 2, 3, 10] in Section
6, we prove that the (non-zero) coefficient of
xs in Φn(x), an integer polynomial [6], is di-
visible by the binomial coefficient ns, when
Φn(x) = n!Ln(x), Hn(x),Hen(x);n + 1, s +
1 ∈ N, 0 ≤ s ≤ n. Here Hen(x), n ≥ 0, are
the modified Hermite Polynomials [1, p. 189],
[10].

2 Remembering and

Honouring Legendre

and Kummer

Let P be the set of prime numbers, p ∈ P, and
µ be an integer ≥ 2. Then νp(µ), the p−adic

valuation of µ, is the exponent of p in the
canonical decomposition in prime factors of
µ. It has been elegantly shown by Legendre
[7, 8, 9] that

νp(n!) = (n− σp(n))/(p− 1),

n ≥ 2, n ∈ N, p ∈ P, (5)

where σp(n) is the sum of the digits in the
base–p expansion of n, with

σp(np) = σp(n), n ∈ N, p ∈ P. (6)

Example # 1: Since 2015 = 5 × 13 × 31
and since 5, 13, and 31 are prime numbers,
ν5(2015) = 1 = ν13(2015) = ν31(2015);
ν3(2015) = 0 = ν11(2015) = ν23(2015).
Xcfc (=Checked and found correct!! ). We
are extremely grateful to our revered Guruji,
Prof. Dr V Devanathan [4], who always in-
sists: “Check, Recheck, Cross-Check, Double-
Check, Multi-Check!!” Let us develop the
culture of checking the correctness of what-
ever we do [11]!! As his faithful students,
we always ask our students to check the cor-
rectness of their own calculations in various
ways.

Let a be a positive integer and let
ak, ak−1, . . . , a0 be the digits of a, when writ-
ten in base p. Hence the base–p expansion of
a is

a , (ak ak−1 . . . a0)p

=
k∑

s= 0

ak−s p
k−s,

0 ≤ ak−s ≤ p− 1, p ∈ P. (7)

Similarly, let b ∈ N with b , (bk bk−1 . . . b0)p
and let εq = 1 if there is a carry–over in the
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qth digit when a and b are added; otherwise
εq = 0. Then (see [8, p. 1113], [9, p. 7])

c = a+b = pk+1εk+pkck+· · ·+pc1+c0, (8)

with

c0 = a0 + b0 − p ε0, (9)

ct = at + bt + εt−1 − p εt,

1 ≤ t ≤ k, (10)

σp(a)+σp(b)−σp(a+b) = (p−1)
k∑
r=0

εr. (11)

When we perform the addition of a and b (in
base p ≥ 3), let us remember that ar, br ≥
(p + 1)/2 leads to εr = 1 (i.e., a carry–over,
irrespective of whether there is a carry–over
in the previous digit or not (see Eqs. (7) −
(10))); ar, br ≤ (p − 3)/2 leads to no carry–
over (i.e., εr = 0), even if there is a carry–over

in the previous digit; ar, br = (p− 1)/2 leads
to εr = 1, only when there is a carry–over in
the previous digit (i.e., εr−1 = 1; a conditional
carry–over).

Kummer (1852) [7, 8, 9] beautifully and
cheerfully unveiled the following result for the
binomial coefficient: νp(nm) is equal to the
number of carry–overs when m and n − m
are added in base p.
Example # 2: We want to establish that
the number 9060 is not divisible by 5. Now
the representation of 60 in base 5 is (220)5;
that of 30 is (110)5. Since no carry–over oc-
curs when we add 220 and 110 (in base 5),
Kummer [7, 8, 9] is pleased to tell us that
the exponent of 5 in 9060, a 24–digit number
ending in 4, is just zero. See also [8, p. 1114]
and Example # 5.

3 Pascal predicts the parity of Legendre perfectly!

It follows from Eqs. (5) and (6) that

ν2 (2n− 2sn× ns) = σ2(n) + ν2 (nn− 2s) . (12)

Since a factor 2σ2(n) is common to all 2n− 2sn× ns, 0 ≤ s ≤ [n/2], n− 1 ∈ N, we have

(2n− 2s)! / {2n s! (n− s)! (n− 2s)!} = 2n− 2sn× ns
/

2n

= 2σ2(n) × Integer/2n = Integer/2n−σ2(n) = An−2s/2
B, (13)

where (see Eqs. (5), (12), and (13))

B , n− σ2(n) ≡ ν2(n!), (14)

An−2s , (2n− 2s)! /{2σ2(n)s! (n− s)! (n− 2s)!}, (15)

ν2(An−2s) = ν2 (nn− 2s) . (16)

Volume 32, Number 1, Article Number : 8 www.physedu.in



Physics Education 5 Jan- Mar 2016

Equations (1), (2), (13), and (14) demand
that the denominator of Pn(x) is 2B = 2ν2(n!).
Thus, we have proved Holt’s result [5, p. 352;
Pearl # 1]. It is clear from Eqs. (1), (2),
and (13)−(15) that (−1)sAn−2s is the coeffi-
cient of xn−2s in Kn(x). Equation (16) shows
that the (non-zero) coefficient of xPower in
KDegree(x) and the corresponding binomial
coefficient DegreePower have the same par-
ity!! These nice results lead to more such nice
results, as shown below. The same exponent
of 2 appears in the canonical decomposition
in prime factors of the coefficient of xn−2s in
Kn(x) and that of the corresponding bino-

mial coefficient nn− 2s. We will not forget
that in the case of this binomial coefficient,
both Degree and Power have the same parity
(∵ n− (n− 2s) = 2s = even # ≥ 0).

It follows from Eqs. (15) and (16) that

L(n, s) , An−2s

/
nn− 2s

=
2n− 2sn− s× 2ss

2σ2(n) × ns
= L(n, n− s), (17)

ν2(L(n, s)) = 0. (18)

Equation (17) exhibits a nice symmetry with
respect to an interchange of s and n− s.

From Eqs. (5) and (17), we have

(p− 1) νp(L(n, s)) = σp(n) + σp(n− s) + σp(s)

− {σp(2n− 2s) + σp(2s)}
− (p− 1) νp(2

σ2(n)), p ∈ P. (19)

Application of Kummer’s Theorem [7, 8, 9] to Eq. (17) leads to the following result (p is an
odd prime; εβ,ηr = 0, 1; see also Eqs. (11) and (19)):

νp(L(n, s)) =
rmax∑
r=0

{(εn−s,n−sr + εs,sr ) − εn−s,sr } ∈ Z, p ≥ 3, p ∈ P. (20)

Equations (19) and (20) reveal a nice symmetry: νp(L(n, s)) = νp(L(n, n−s)). See Eq. (17).

In Eq. (20) εn−s,n−sr , εs,sr , and εn−s,sr are re-
spectively the number of carry–overs (zero
or one, in the rth digit), when n − s and
n − s are added, s and s are added, n − s

and s are added (see [7, pp. 63–65], [8, p.
1113], [9, p. 7]), all additions done in base
p. Using Eqs. (7) − (10) and the discus-
sions following Eq. (11), we can show that
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there can be a carry–over in n − s added to
s, only if there is a carry–over either from
n − s added to itself or from s added to it-
self (or from both). It is now clear that the
right–hand side of Eq. (20), an integer, is
never negative for all values of p ∈ P. Hence
νp(L(n, s)) + 1 ∈ N, p ∈ P, and thus the co-
efficient of xn−2s, 0 ≤ s ≤ [n/2], n + 1 ∈ N,
in Kn(x), is an integer divisible by nn− 2s
(Pearl # 2). As ν2(L(n, s)) = 0 (see Eq.
(18)), L(n, s) is now an odd integer (Pearl
# 3). Both 2B times a Legendre coeffi-
cient and the associated binomial coefficient,
DegreePower, sing joyfully in unison thus:
“You are an integer, so am I! If you are odd,
I am also odd!! (The contrapositive [12] of
this true statement is also true: If I am even,
you are also even!!) When I am odd, you
too are odd! Truly, we are lovingly made for
each other!! Whether we are odd or even, our
ratio (“Legendre / Pascal”) is always odd!
Are we not the Adam and Eve of the Par-
adise of the Legendre Polynomials!?!” Yes,
Pascal (*1623, †1662) predicts the nature of
Legendre (*1752, †1833)!! “Tell me who your
friends are and I’ll tell you who you are.” So
goes a Mexican Proverb. Ask any coefficient
of Pn(x). The reply will be the (correspond-
ing) Binomial Coefficient (Pascal) and the
Largest Power of 2 which divides the factorial
of the degree n (Holt [5, p. 352])!! (LP for
Legendre Polynomial, LP for Largest Power,
P for Pascal.) See Eqs. (2) – (4).

Example # 3: p = 3, n = 10 =
(101)3, s = 4 = (11)3. ∴ n − s = 6 =
(20)3, 2(n− s) = 12 = (110)3, 2s = 8 = (22)3.
Now σ3(n) + σ3(n − s) + σ3(s) = 2 + 2 +
2 = 6, σ3(2n − 2s) + σ3(2s) = 2 + 4 = 6,

∴ ν3(L(10, 4)) = (6− 6)/2 = 0. See Eq. (19).
Moreover,

∑
r ε

n−s,n−s
r ,

∑
r ε

s,s
r ,
∑

r ε
n−s,s
r are

respectively 1, 0, 1. ∴
∑

r(ε
n−s,n−s
r + εs,sr −

εn−s,sr ) = 0. These two numbers must be
equal. Xcfc. Therefore, 3 cannot be a factor
of L(10, 4). Mathematica says (see also Table
2) that the coefficient of x2 in K10(x) is 3465.
∵ 102 = 45, L(10, 4) = 3465/45 = 77, an odd
integer. Lo! Behold! 3| 77. Xcfc. Yes, 3 does
not divide L(10, 4). Since 104 = 210 = even,
the coefficient of x4 must be even and divisi-
ble by this binomial coefficient, the quotient
being an odd integer. Actually (see Table 2),
−30030/210 = −143, an odd integer. Xcfc.

Example # 4: p = 5, n = 13 =
(23)5, s = 3 = (3)5. ∴ n − s = 10 =
(20)5, 2(n − s) = 20 = (40)5, 2s = 6 = (11)5.
Now σ5(n)+σ5(n−s)+σ5(s) = 5+2+3 = 10,
σ5(2n − 2s) + σ5(2s) = 4 + 2 = 6.
∴ ν5(L(13, 3)) = (10 − 6)/4 = 1.
See Eq. (19). Moreover,

∑
r ε

n−s,n−s
r ,∑

r ε
s,s
r ,

∑
r ε

n−s,s
r are respectively 0, 1, 0.

∴
∑

r(ε
n−s,n−s
r + εs,sr − εn−s,sr ) = 1. These two

numbers must be equal. Xcfc. Using Mathe-
matica, we have found that the coefficient of
x7 in the numerator of P13(x) is −2771340.
∵ 137 = 1716, L(13, 3) = 2771340/1716 =
1615 = 5×17×19→ ν5(L(13, 3)) = 1. Xcfc.
Yes, the exponent of 5, in the canonical de-
composition in prime factors of L(13, 3), an
odd integer (Pearl # 3), is unity! One of its
factors is 5.

Example # 5: Consider the binomial
coefficient 2311. Kummer [7, 8, 9] gently
reminds us that there is only one carry–over
when we add 12 and 11 in base 2, since
12 = (1100)2, 11 = (1011)2. Therefore, the
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exponent of 2 in the canonical decomposition
in prime factors of this binomial coefficient is
simply unity. (See also Example # 2.) It is
just even, not even divisible by 4. Hence the
coefficient of x11 in the numerator of P23(x)
must be simply even, not at all divisible by
4. Mathematica tells us that this coefficient,
the above binomial coefficient, and their
ratio are respectively 1 805 044 411 170 (a
13–digit number; even, but not divisible by
4 since the last two digits are 70), 1 352
078 (7–digits; not divisible by 4, though
even, because of the last two digits: 78), and
1 335 015. Hence their structure is: (Even,
Even, Odd)!!. Xcfc.

Using the elementary result,

nr = n!/{r!(n− r)!} = nn− r, (21)

and Eq. (5), we have

ν2 (2n+ 12n+ 1− 2s) = ν2 (2n+ 12s)

= ν2 (2n+ 12s+ 1) .

(22)

Hence, due to the (odd or even) parity of
the binomial coefficients (see [13, p. 156],
[14, pp. 18–19]), the coefficients of x2n+1−2s

and x2s+1 in K2n+1(x) have the same par-
ity (Sum of Powers = Degree + 1; remem-
ber DegreePower). Similarly, since 2n2s =
2n2n− 2s, the coefficient of x2s in K2n(x)
has the same parity as that of the coeffi-
cient of x2n−2s (Sum of Powers = Degree).
This then is the reason for the palindromic
behaviour of the coefficients of Kn(x) with
respect to their (odd or even) parity (Pearl

# 4). The coefficients of Kn(x) nicely pro-
duce a parity–palindrome!! Together the co-
efficients in the numerator of Pn(x) gener-
ate a perfect parity–palindrome (P for Pascal,
Pn(x), p− adic, Parity, Palindrome, Polyno-
mial, Power, Prime, Pearl, Product, Play)!!
When we play with the number of letters in
the words in the title, we get the palindromic
number 628826, pointing at the palindromic
behaviour of the coefficients of Kn(x), with
respect to their parity (odd or even).

4 More Pearls

As nn = 1 = odd, the leading coefficient of
Kn(x) is always odd, irrespective of the degree
n. When n is odd, Kn(x) is an odd polyno-
mial in x [1, 2, 3]. Since the coefficient of x
corresponds to n − 2s = 1 (see Eq. (1)) and
since n1 = n = odd, this coefficient is also
odd. If n is even, Kn(x) has an even parity
[1, 2, 3]. As the constant term comes from
2s = n (see Eq. (1)) and as n0 = 1 = odd,
the constant term of Kn(x) is also odd. Not
only the leading coefficient but also the last
coefficient of Kn(x) are always odd, indepen-
dent of the (odd or even) nature of n (Pearl #
5). Since the denominator of Pn(x) is 2ν2(n!)

(see Eqs. (2) and (14)), you can now prove
that P2k(x) and P2k+1(x), k ∈ N, have the
same denominator (Pearl # 6; see Eq. (2)).
As Pn(1) = 1 [1, 2, 3], the sum of the coeffi-
cients of Kn(x), n ≥ 2, is exactly the denom-
inator of Pn(x) (Pearl # 7; see Eq. (2)). As
this sum is even when n ≥ 2 (see Eq. (5)),
the odd–valued coefficients in the numerator
of Pn(x), n ≥ 2, must occur an even number
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of times (Pearl # 8; see Eq. (2))!

5 Beauty of the Pascal’s

Triangle and Binomial

Coefficients

In 1899 Glaisher [13, p. 156] proved the
following very interesting result (see also [8,
Corollary 2.8, p. 1118], [9, p. 4], [14, p.
24]): Each one of the Binomial Coefficients
n0, n1, n2, . . . , nn is odd iff n has the form
2Q − 1, Q ∈ N. Thus we have four “lovely
lines” from Pascal’s Poem / Triangle (see
Table 1)!! It follows from Table 1 that when
n = 2Q, Q − 1 ∈ N, but for the leading co-
efficient and the constant term of Kn(x), all
the other coefficients (consistent with parity
and degree) must be even only (Pearl # 9).
In the case of KL(x), L = 2Q − 2, 2Q − 1,
Q ≥ 2, Q ∈ N, all the non-zero coefficients of
KL(x) must be odd only (Pearl # 10)!
Table 1. The structure of the beautiful
binomial coefficients nr [8, 9, 13, 14], with

Q ≥ 2, Q ∈ N, belonging to n = 2Q−2 is: (1,
even, odd, . . . , even, 1). Alternately, odd and
even! The form of the pleasing binomial coef-
ficients corresponding to n = 2Q−1 is (thanks
to Glaisher [13, p. 156]): (1, odd odd, . . . ,
odd, 1). Always odd!! The arrangement of
the nice binomial coefficients corresponding
to n = 2Q is: (1, even, even, . . . , even, 1).
They are even when they are greater than
unity. These results follow from the way the
Pascal’s Triangle is constructed (3rd Column
onwards; r ≥ 1), “Down (Bottom Row) =
(Immediate Up + Immediate Left) (Immedi-
ate Top Row)” (n+ 1r = nr + nr − 1) and
the elementary fact that odd # + even
# = odd #. Since the binomial coeffi-
cient nn− 2s = nn− (n− 2s) = n2s, with
2s = even # ≥ 0, divides the coefficient of
xn−2s in Kn(x), yielding an odd integer upon
division, Pascal’s prediction of the parity of
Legendre is perfect!! Note: G for Glaisher’s
result [13, p. 156]; I for Inference from G; C
for Corollary to G; E for Even #; Φ for Odd
#; Q ≥ 2;Q, n− 1, r + 1 ∈ N; 0 ≤ r ≤ n.

n ⇓ \ r ⇒ 0 1 2 . . . . . . . . . . . . . . .
(I) 2Q − 2 1 E Φ . . . E 1
(⇓ G ⇑) 2Q − 1 1 ⇓ Φ ⇑ ⇓ Φ ⇑ . . . ⇓ Φ ⇑ ⇓ Φ ⇓ 1

(C) 2Q 1 E E . . . E E E 1

Example # 6: Let us gladly check [11]
Glaisher’s beautiful result [13, p. 156] by
playing with Q = 3, n = 2Q − 1 = 7. The
eight binomial coefficients in this case are

1, 7, 21, 35, 35, 21, 7, 1, and all of them are
odd, honouring Glaisher! Xcfc. Let us next
check our inference from Glaisher (see Table
1). In the case of n = 2Q − 2 = 6, the seven
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binomial coefficients are 1, 6, 15, 20, 15, 6, 1.
They are alternately odd, even!! Once again
Glaisher is honoured!! Xcfc. As far as our
Corollary is concerned (see Table 1), in the

case of n = 2Q = 8, the nine binomial coef-
ficients are 1, 8, 28, 56, 70, 56, 28, 8, 1. As long
as they are not unity, they are even only.
Xcfc. Hail Glaisher [13, p. 156]!!

6 Divisibility by the Binomial Coefficient extended to

Laguerre, Hermite, and modified Hermite

Polynomials!

In the case of the Laguerre Polynomials [1, 2, 3], we have

Ln(x) =
n∑

r = 0

(−1)n−r n! xn−r

r! (n− r)!(n− r)!
, (23)

n!Ln(x) =
n∑

s= 0

(−1)s nsns(n− s)!xs. (24)

Hence the coefficient of xs, 0 ≤ s ≤ n, n + 1 ∈ N, in n!Ln(x), is an integer divisible by ns.
Let us not forget that our binomial coefficients and factorials are positive integers (see Eqs.
(24), (25), (27), (28)). Remember that n!Ln(x) is an integer polynomial [6].

Since the power series expansion of the Hermite polynomials is given by [1, 2, 3]

Hn(x) =

[n/2]∑
s= 0

(−1)s n! (2x)n−2s

s! (n− 2s)!

=

[n/2]∑
s= 0

(−1)s 2n−2s nn− 2s2ss s!xn−2s, (25)

it is clear that the coefficient of xn−2s, 0 ≤ s ≤ [n/2], n + 1 ∈ N, in Hn(x), is an integer
divisible by the binomial coefficient nn− 2s. All the Hermite coefficients are even when
n ≥ 1.
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However, Pascal cannot predict the parity
of Laguerre (coefficient multiplied by n!) and
Hermite (coefficient) perfectly!

By playing with the modified Hermite
Polynomials [1, p. 189], [10], we have

Hen(x) , 2−n/2Hn(x/
√

2). (26)

Using Eqs. (25) and (26), we find that

Hen(x) =

[n/2]∑
s=0

(−1)s × nn− 2s

× Ψs × xn−2s, (27)

where

Ψs , (2s)!/(2s s!) =

{
1 = odd #, s = 0, 1,
1× 3× 5× · · · × (2s− 1) = odd #, s− 1 ∈ N. (28)

As a simple check on Eq. (28) (for s ≥ 2),
ν2(Ψs) = 0 ⇒ Ψs is odd. See Eqs. (5) and
(6). It follows from Eqs. (27) and (28) that
(a) the modified Hermite polynomials are in-
teger polynomials [6], (b) the coefficient of
xn−2s in Hen(x), an integer, is divisible by
the binomial coefficient nn− 2s, (c) both of
them (modified Hermite and Pascal) have the
same parity, (d) their ratio is always odd; for
s ≥ 2, this ratio is a product of s consec-
utive odd positive integers, starting from 1
(multiplied by a phase factor, ±1), and (e)
the nature of the modified Hermite is pre-
dicted by Pascal as in the case of Legendre!!
Hence Legendre too can predict the nature of
modified Hermite (*1822, †1901)!! Pascal is
equally friendly with Legendre and modified
Hermite!! Let us not fail to note the French
Connection: French by birth, Pascal, Legen-
dre, Hermite, and Laguerre are world citi-
zens / world–class mathematicians!! Know
Pascal (Legendre), know Legendre (modified
Hermite)!! What Pascal can do for Legendre,

Legendre can do for modified Hermite!! Even
though Pa (pascal) is a unit of pressure in
Physics, Pascal is unable to put pressure on
Laguerre and Hermite mathematically!!

7 Completeness can

come with a Table

For the sake of completeness, we present a Ta-
ble of Kn(x), the numerator of the Legendre
Polynomial Pn(x), for 2 ≤ n ≤ 11 (see Eq.
(2); Table 2). Let us note the following: (a)
K0(x) = 1, K1(x) = x, (b) the adjacent coef-
ficients of Pn(x), n ≥ 2, alternate in sign [15]
(Pearl # 11), (c) there are no missing powers
[15], consistent with the degree and definite
parity of Pn(x) [1, 2, 3] (Pearl # 12). Here
is a nice chance for you to enjoy the beauty
of our 12 Pearls and check the correctness of
our results [11]!! Since the nature of Legen-
dre is predicted by Pascal, we can confidently
conclude, from K11(x), that 119 is odd, but
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not divisible by 3, nor by 52, nor by 7; 117
is even, but not divisible by 4. Mnemonic:
Legendre by Pascal is always odd!! The na-
ture (odd or even) of the coefficients ofK10(x)
and K11(x) is palindromic (Pearl # 4): (Odd,
Odd, Even, Even, Odd, Odd). Xcfc. P8(x)
and P9(x) have the same denominator (Pearl
# 1, Pearl # 6; see Eq. (2)). Xcfc. The sum
of the coefficients of K8(x) is exactly the de-
nominator of P8(x) (Pearl # 1, Pearl # 7; see
Eq. (2)). Xcfc. The odd–valued coefficients

of K6(x), K7(x), K10(x), and K11(x) are even
(= 4) in number (Pearl # 8). Xcfc. But
for the last and the leading coefficients, all
the coefficients of K2(x), K4(x), and K8(x)
are even (Pearl # 9), thanks to Glaisher
(1899) [13, p. 156]! Xcfc. All the coeffi-
cients of K2(x), K3(x), K6(x), and K7(x) are
odd (Pearl # 10); thank you Glaisher!! Xcfc.
The adjacent coefficients of P10(x) alternate
in sign (Pearl # 11) [15]. Xcfc. All the odd
powers of x, right from 1 up to 11, are present
in P11(x) (Pearl # 12) [15]. Xcfc.

Table 2. Table of the Polynomials Kn(x) = 2ν2(n!)Pn(x), 2 ≤ n ≤ 11. Kn(x) is the nu-
merator of Pn(x). Column 2 is the ratioKn(x)/Pn(x), the denominator of Pn(x) (see Eq. (2)).

n 2ν2(n!) Integer Polynomial Kn(x), the numerator of Pn(x)
2 2 3 x2 − 1
3 2 5 x3 − 3 x
4 8 35 x4 − 30 x2 + 3
5 8 63 x5 − 70 x3 + 15 x
6 16 231 x6 − 315 x4 + 105 x2 − 5
7 16 429 x7 − 693 x5 + 315 x3 − 35 x
8 128 6435 x8 − 12012 x6 + 6930 x4 − 1260 x2 + 35
9 128 12155 x9 − 25740 x7 + 18018 x5 − 4620 x3 + 315 x
10 256 46189 x10 − 109395 x8 + 90090 x6 − 30030 x4 + 3465 x2 − 63
11 256 88179 x11 − 230945 x9 + 218790 x7 − 90090 x5 + 15015 x3 − 693 x

You can also nicely play similarly with a
Table of the modified Hermite Polynomials
[10]. You can definitely enjoy how modified
Hermite follows Legendre faithfully!! Thus,
the nature (odd or even) of the coefficients
of He10(x) and He11(x) is palindromic (Pearl
# 4): (Odd, Odd, Even, Even, Odd, Odd).
X cfc. The odd–valued coefficients of He6(x),

He7(x), He10(x), and He11(x) are even (= 4)
in number (Pearl # 8). As a simple corollary,
Hen(1), n ≥ 2, is even!! Mathematica says:

He10(x) = x10 − 45x8

+ 630 x6 − 3150x4

+ 4725x2 − 945. (29)

Example # 7: He10(1) = 1216 =
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even. X cfc. With n = 10 and n − 2s =
2, coefficientof x2/102 = 4725/45 = 105 =
1×3×5×7, a product of s (= 4) consecutive
odd integers. X cfc. See Eqs. (28) and (29).
Modified Hermite by Pascal is always odd!!

Using the Differential Recurrence Relation,
DHem(x) = m Hem−1(x), D , d/dx, m ∈ N,
you can generate, from Eq. (29), a Table of
Hen(x), 0 ≤ n ≤ 9, and enjoy the beauty of
our Pearls. Thus, all the even powers of x,
right from 0 up to 8, are present in He8(x)
(Pearl # 12). All the coefficients of He7(x)
are odd (Pearl # 10), thanks to Glaisher [13].

8 Conclusion

The (non-zero) coefficient of xs in Φn(x),
an integer polynomial [6], is divisible by
the associated binomial coefficient, ns, when
Φn(x) = 2ν2(n!)Pn(x), n!Ln(x), Hn(x),Hen(x).
The Chebyshev Polynomials [2, 3], Tn(x), n ≥
4, do not satisfy this divisibility property in
general. If you want to search for more pearls,
you have to dive below the (common) de-
nominator and the divisibility of (common
denominator times) Legendre (coefficient) by
Pascal (binomial coefficient)!! D for Dive, D
for Denominator, D for Divisibility !! We have
checked the correctness of our results [11]
for Pn(x), using Mathematica (for 2 ≤ n ≤
150; 2 ≤ p ≤ 97); in the case of Hen(x), we
have checked [11] the divisibility for 2 ≤ n ≤
150. We can relish Legendre (Polynomials)
with Legendre (Eq. (5)), Pascal, Kummer,
Holt [5], and Glaisher [13]!! Blessed are those
who are friendly with the Legendre Polynomi-
als and the modified Hermite Polynomials!!
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