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Abstract

An alternative method is presented for introducing the physical quantities that are
represented by vector products, namely, torque and angular momentum. The basis of the
definitions of these quantities becomes evident through this approach. The reason that the
position vector of a particle appears in these definitions is also clarified. The present
approach can be smoothly integrated into the concepts of generalized forces and
coordinates in analytical mechanics.

1 Introduction

Torque is an important physical quantity that
arises in regard to the circular motion of a
particle and the motion of rigid bodies. Even
today, the derivation of the rotational form of
Newton’s second law from the translational
form is discussed in the field of physics edu-

cation [1]. In standard textbooks on classical
mechanics [2, 3], however, a convenient vec-
tor expression for torque is introduced with-
out explaining the basis of the definition, al-
though the idea of torque is familiar at the
undergraduate level. There are two questions
that should be addressed from a pedagogical
standpoint. Why is the torque vector defined
using a position vector that has its origin at
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the fulcrum and that points towards the lo-
cation where the force is applied? How do
we understand the circumstances that result
in the torque vector being defined as a vector
that is orthogonal to both the position and
force vectors?

An example [4] of the way in which the
concepts of torque and angular momentum
are commonly introduced is as follows. First,
the torque and angular momentum vectors
are defined as the vector products of the po-
sition, force, and linear momentum vectors.
Suppose a force F acts on a particle whose
position with respect to the origin is the po-
sition vector r. Then, the torque acting on
the particle with respect to the origin located
at the fulcrum is defined as

T = r × F . (1)

Suppose the particle has a linear momentum
p relative to the origin. Then, the angular
momentum of the particle is defined as

L = r × p. (2)

Using the definitions of torque and angular
momentum, the relationship between them
can be derived. Starting from the equation
of motion

dp

dt
= F , (3)

the torque is

T = r × dp

dt
. (4)

By slightly rearranging this expression, the
torque can be expressed as

T =
dL

dt
. (5)

This method of explaining the relationship
between the torque and angular momentum
is clear, but no basis is given for why we
consider the vector products of the position,
force, and linear momentum.

In the present article, we propose an alter-
native method for introducing torque by let-
ting it develop smoothly from the relation-
ship between the work done by a force and
the kinetic energy; this is done by clarify-
ing the basis of the definition of the angu-
lar velocity vector. The rate of change of the
kinetic energy is familiar to beginning stu-
dents, although the mathematical treatment
of the transformation of the equations is not
necessarily simple. The mathematical notes
necessary to derive the expressions for torque
and angular momentum are good examples
for introducing students in advanced classes
to vector analysis. Misconceptions about the
dynamics of rigid bodies are also discussed
using the definition of torque expressed with
the position vector.

2 Introducing torque and

angular momentum

using the relationship

between work and

kinetic energy

2.1. Basis of vector representation of
angular velocity

Suppose the time rate of change of the posi-
tion vector of a particle is restricted to pure
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rotation. The position of the particle is

r = ix + jy + kz

in the frame in which the particle is at rest,
where x, y, and z are the coordinates of the
particle and i, j, and k are the three corre-
sponding orthogonal unit vectors that define
the Cartesian coordinate system. These co-
ordinates do not change with time; that is,
dx/dt = 0, dy/dt = 0, and dz/dt = 0, and
thus

v ≡ dr

dt
=

di

dt
x +

dj

dt
y +

dk

dt
z.

Following a textbook on mechanics [5], di/dt,
dj/dt, and dk/dt are expressed with the
given Cartesian unit vectors. We recall that
i · i = 1, j · j = 1, and k · k = 1, and thus

i · di

dt
= 0,

j · dj

dt
= 0,

k · dk

dt
= 0. (6)

These inner products imply

i⊥di

dt
, j⊥dj

dt
, k⊥dk

dt
.

Thus, di/dt, dj/dt, and dk/dt are in the yz,
zx, and xy planes, respectively. We also re-
call that i · j = 0, j · k = 0, and k · i = 0,
and thus

di

dt
· j + i · dj

dt
= 0,

dj

dt
· k + j · dk

dt
= 0,

dk

dt
· i + k · di

dt
= 0. (7)

Let di/dt, dj/dt, and dk/dt be expressed as
jc1+kc2, kc3+ic4, and ic5+jc6, respectively,
where ci (i = 1, 2, . . . , 6) are undetermined
coefficients. Note that these six coefficients
are not independent. From

di

dt
· j = c1

and

i · dj

dt
= c4,

we obtain
c4 = −c1,

because we have

di

dt
· j = −i · dj

dt

from Eqs. (7). Similarly,

c5 = −c2, c6 = −c3.

We represent c1, c2, and c3 as ωz, −ωy, and
ωx, respectively, giving

di

dt
= jωz − kωy,

dj

dt
= kωx − iωz,

dk

dt
= iωy − jωx, (8)

and thus we can represent the velocity vector
in the form of the vector product

v = i(ωyz − ωzy) + j(ωzx − ωxz)

+ k(ωxy − ωyx). (9)

Here, we define a vector ω whose three com-
ponents are ωx, ωy, and ωz and call it the an-
gular velocity vector from the standpoint of
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its physical meaning. This idea is the basis
of the vector product v = ω × r, as follows.
The magnitude of the velocity vector |v| is
the product of |ω| and |r| sin θ, where θ is the
angle between ω and r. The direction of the
vector ω is along the instantaneous axis of ro-
tation, and |r| sin θ is the radius of a circle in
the plane perpendicular to ω (see Appendix).

2.2. Basis of definitions of torque and
angular momentum

Based on the above preliminaries, we can con-
sider the rate of change of the kinetic energy
for a particle. Differentiating the kinetic en-
ergy gives

d

dt

(
1

2
m|v|2

)
=

d

dt

(
1

2
mv · v

)
= v · mdv

dt
,

where m is the mass of the particle. Suppose
a net external force F acts on the particle.
From Newton’s second law, the equation of
motion is

m
dv

dt
= F ,

where F = iFx + jFy + kFz. From Eqs. (8),
we have

di

dt
· j = ωz,

dj

dt
· k = ωx,

dk

dt
· i = ωy,

and thus we can write

v · mdv

dt

=

(
di

dt
x +

dj

dt
y +

dk

dt
z

)
· (iFx + jFy + kFz)

=
di

dt
· i xFx +

di

dt
· j xFy +

di

dt
· k xFz

+
dj

dt
· i yFx +

dj

dt
· j yFy +

dj

dt
· k yFz

+
dk

dt
· i zFx +

dk

dt
· j zFy +

dk

dt
· k zFz

=
di

dt
· j (xFy − yFx) +

dj

dt
· k (yFz − zFy)

+
dk

dt
· i (zFx − xFz)

= (yFz − zFy) ωx + (zFx − xFz) ωy

+ (xFy − yFx) ωz

= (r × F ) · ω. (10)

This result means that the change in kinetic

energy,
d

dt

(
1

2
m|v|2

)
, is caused by (r×F )·ω,

and thus this inner product indicates the
work done on the particle. The vector prod-
uct r × F is a measure of how much a net
external force acting on a particle causes that
particle to rotate, so we call this vector prod-
uct the torque.

The same result can also be confirmed in
the following way. For simplicity, we assume
that ω is constant. Differentiating the kinetic
energy yields

d

dt

(
1

2
m|v|2

)
=

d

dt

(
1

2
mv · v

)
=

d

dt

[
1

2
m(ω × r) · v

]
=

d

dt

1

2
m [(ωyz − ωzy) vx + (ωzx − ωxz) vy

+ (ωxy − ωyx) vz]

= (ωyvz − ωzvy) mvx + (ωzvx − ωxvz) mvy
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+ (ωxvy − ωyvx) mvz

+(ωyz − ωzy) m
dvx

dt

+(ωzx − ωxz) m
dvy

dt

+ (ωxy − ωyx) m
dvz

dt
= (ωyz − ωzy) Fx + (ωzx − ωxz) Fy

+ (ωxy − ωyx) Fz,

= (ω × r) · F
= v · F , (11)

which indicates the rate at which work is
done. To express a measure of the amount of
rotation and the tendency of a force to rotate
a particle about an axis, the power expressed
by Eq. (11) can be transformed into

(yFz − zFy) ωx + (zFx − xFz) ωy

+ (xFy − yFx) ωz

= (r × F ) · ω.

We recall that px = mvx, py = mvy, and
pz = mvz, so the rate of change of kinetic
energy can be expressed as

(ωyz − ωzy) m
dvx

dt

+ (ωzx − ωxz) m
dvy

dt

+ (ωxy − ωyx) m
dvz

dt

=

(
y

dpz

dt
− z

dpy

dt

)
ωx

+

(
z

dpx

dt
− x

dpz

dt

)
ωy

+

(
x

dpy

dt
− y

dpx

dt

)
ωz

=

[
d

dt
(ypz − zpy)

]
ωx

+

[
d

dt
(zpx − xpz)

]
ωy

+

[
d

dt
(xpy − ypx)

]
ωz

=

[
d

dt
(r × p)

]
· ω. (12)

By comparing [d(r × p)/dt] · ω in Eq. (12)
with (r × F ) · ω transformed from Eq. (11),
we obtain

d

dt
(r × p) = r × F ,

which is the same as Eq. (5). The physical
quantity r × p is a measure of the amount
of rotation, so we call this vector product the
angular momentum. This relationship indi-
cates that the rate of change of the angular
momentum is equal to the torque.

If students are familiar with the scalar
triple product, the above results can be de-
rived from (r × F ) · ω = (ω × r) · F and
(r × p) · ω = (ω × r) · p, which means that
the dot and cross products in the scalar triple
product may be interchanged without alter-
ing the value of the product. Pedagogically,
it is important for beginning students to re-
arrange the equation without relying on the
formulae.

From the point of view of analytical me-
chanics, we can understand the introductory
remarks by Feynman [7], which are based on
an analogy between linear and angular quan-
tities. The definition of work as the force
times the displacement is thus readily con-
verted to the torque times the rotational an-
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gle. Suppose that a force is applied to a
particle at a certain point (x, y) in the xy
plane, and the particle rotates by a very small
angle ∆θ in this plane. Slightly rearrang-
ing the expression of the work Fx∆x + Fy∆y
yields (xFy − yFx)∆θ, where ∆x and ∆y are
the change in x and y, respectively, because
∆x = −y∆θ and ∆y = +x∆θ [7] by refer-
ence to the kinematics of two-dimensional ro-
tation. The generalized force is the coefficient
of the variation of a generalized coordinate in
the formulation of virtual work. By replacing
the changes ∆x, ∆y, and ∆θ by the virtual
displacements, δx, δy, and δθ, xFy −yFx and
θ can be regarded as the generalized force and
the generalized coordinate, respectively. The
generalized force in this motion is a kind of
rotational force called torque.

The main results of the process described
above are summarized as follows. A peda-
gogical framework of elementary mechanics
can be developed from temporal and spatial
viewpoints [6].

1. From a spatial viewpoint, the change
in the kinetic energy of a rotating particle is
caused by the total work done on that par-
ticle by all the torques that act on it during
the process of rotation. In the simple case of
rotation in the xy plane, this theorem can be
expressed as

d

(
1

2
m|v|2

)
= T · kdθ,

where ω is along the z-axis and can be rep-
resented as (dθ/dt)k.

2. From a temporal viewpoint, the change
in the angular momentum of a rotating par-
ticle is caused by the total impulse of all the

torques that act on it during the process of
rotation:

d(r × p) = T dt,

where T dt is the vector product of r and F dt.
We can develop a framework of elemen-

tary mechanics from these temporal and spa-
tial viewpoints [6]. There are three alterna-
tives to the equation of motion that can act
as starting points for elucidating mechanical
phenomena: (1) The change in the linear mo-
mentum of a particle is caused by an impulse.
(2) The change in the kinetic energy of a par-
ticle is caused by the work done on that par-
ticle by an applied force. (3) The change in
the angular momentum of a particle is caused
by torque. Of these three propositions, (2)
is a theorem common to both translational
and rotational motion. We can consider that
these three propositions result in the equation
of motion. From this standpoint, we have in-
troduced the concept of torque to describe ro-
tational motion by (2) in the present article.
Temporal and spatial viewpoints are two per-
spectives on the same physical phenomenon.
Thus, we can translate between (1) and (3)
for translational motion and between (2) and
(3) for rotational motion. In this sense, we
can say that (3) has been translated from (2)
in the present article.

3 Misconceptions about

the dynamics of rigid

bodies

Unexpectedly, in the field of mechanical engi-
neering, there are misconceptions about the
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definitions of torque and angular momentum.
From this fact, we expect similar misconcep-
tions are found in college physics, and thus
we consider the following example. By gain-
ing an understanding of this issue, beginning
students can improve their ability to find mis-
conceptions and to correct them.

According to commentary [8] on the free
rotation of rigid bodies, the definitions of
torque and angular momentum as the vector
products of the position vector of the particle
relative to the origin, the net external force
on that particle, and the linear momentum
vector of the particle are not correct, because
the origin is considered, but the axis of ro-
tation is not. This commentary claims that
the definitions of torque and angular momen-
tum are the distance from the axis of rotation
times the transverse components of force and
linear momentum, respectively.

The above interpretation contains a mis-
understanding. The commentary [8] confuses
the definitions of torque and moment of iner-
tia. Beginning students may also share this
misunderstanding. We can explain the cir-
cumstances through a simple example. Sup-
pose that a thin slab lies in the xy plane and
rotates about the z-axis with an angular ve-
locity vector ω in the z-direction (Figure 1).
For the present purpose, it is convenient to
use a cylindrical coordinate system (Figure
2). The position vector ri for the mass ele-
ment mi can be expressed as

ri = ρ̂iρi + kzi, (13)

where ρ̂i is a unit vector perpendicular to the
z-axis and defined by coordinates ρi and ϕi,

and the relationships between the cylindrical
coordinates ρi, ϕi, and zi, and the Cartesian
coordinates are given by xi = ρi cos ϕi, yi =
ρi sin ϕi, and zi = zi.

O

x

y

z

.m i

ri

Figure 1. Mass element of a slab.

O

x

y

z

z

r

j

j

Figure 2. Cylindrical coordinate system.
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For the relationships between the Carte-
sian and cylindrical unit vectors, we have

ρ̂i = i cos ϕi + j sin ϕi, (14)

ϕ̂i = i cos
(
ϕi +

π

2

)
+ j sin

(
ϕi +

π

2

)
= −i sin ϕi + j cos ϕi, (15)

and thus

dρ̂i

dt
= (−i sin ϕi + j cos ϕi)

dϕi

dt

= ϕ̂i

dϕi

dt
. (16)

The height of the slab is constant, be-
cause the slab lies in the xy plane, and thus
dzi/dt = 0 for mass element mi. The radius
of rotation ρi is also constant, because the
slab is a rigid body in which deformation is
neglected, and thus the distance between any
two points on the slab remains constant in
time regardless of the external forces exerted
on the slab. The angular velocity is common
for all mass elements, so dϕi/dt = ω, where
ω is the magnitude of ω. From Eq. (16), the
velocity vector of mass element mi is

vi ≡ dri

dt

= ρi
dρ̂i

dt

= ϕ̂i ρi
dϕi

dt
= ϕ̂i ρiω, (17)

where ϕ̂i is a unit vector perpendicular to ρ̂i.
By reference to ρ̂i×ϕ̂i = k and k×ϕ̂i = −ρ̂i

obtained from Eqs. (14) and (15), we can
calculate the angular momentum Li for mass

element mi. Thus, from Eqs. (13) and (17),
we have

Li ≡ ri × mivi

= (ρ̂iρi + kzi) × ϕ̂imiρiω

= kmiρi
2ω − ϕ̂imiρiziω.

We sum over all elements, and the angular
momentum for the slab is then

L =
∑

i

Li

= k

(∑
i

miρi
2

)
ω

−

(∑
i

ϕ̂imiρizi

)
ω

= kIzω,

where, in the first term, we have defined the
physical quantity Iz, called the moment of
inertia, for the slab with respect to the z-
axis as Iz ≡

∑
i miρi

2. The physical quantity
of the second term is zero, because the slab
is symmetric with respect to the xy plane,
as shown in Figure 1. This result indicates
that the angular momentum is expressed as
a vector in the direction of the rotational axis.
The moment of inertia is determined by ρi

2,
the square of the distance from the z-axis to
the mass element mi, instead of by |ri|2, the
square of the distance from the origin to that
element.

Therefore, the angular momentum is prop-
erly defined as the vector product of the posi-
tion vector of a particle relative to the origin
and the linear momentum vector of that par-
ticle. As a result, we can say that a net exter-
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nal torque is needed for the angular accelera-
tion of the particle about the axis of rotation.
The angular momentum with respect to the
rotational axis described in the commentary
[8] is exactly the z-component of L expressed
as L ·k, which is Izω. The moment of inertia
Iz is determined by the distance from the axis
of rotation. Similarly, the net external torque
giving rise to the changing angular momen-
tum vector is exactly the z-component of T
expressed as T ·k, where T includes the sum
of the interactions between particles [9].

4 Concluding remarks

A physical law is extended by defining new
physical quantities such that the elementary
principles can be maintained. An extension
of a physical law to include a fundamental
law is similar to the mathematical principle
of the permanence of form and its transition
[10].

For the present subject, two approaches
can be used to introduce the concept of
torque through the kinetic energy and work
theorem. One is to maintain the analogy be-
tween linear and angular quantities through
the corresponding arrangement of the expres-
sion of work [7]. The amount of work is ex-
pressed as the rotational angle multiplied by
a combination of the force and the distance.
The other is to arrange the expression of the
kinetic energy of a rotating particle as shown
in Section 2.2.

Understanding the relationships between
physical quantities is essential to learning the
meaning of physical laws. It is pedagogically

important to explore the basis of the defini-
tions of physical quantities.

Appendix: Direction of
vector obtained by vector
product

For each direction, a line segment has two
senses, a positive and a negative sense. Sim-
ilarly, a plane has two sides. A directed area
element corresponds to the length of the di-
rected line segment. Given two vectors a and
b, the area of the plane determined by these
vectors is expressed as the exterior product
a∧b. When the vector a in the first position
in the expression is rotated by the smallest
angle that will cause it to coincide with the
direction of b, the area of the plane is defined
as positive.

The vector product a × b is defined by a
vector perpendicular to a and b and has a
magnitude of |a ∧ b|. The sense of the plane
determined by a and b is that of the motion of
a right-handed screw. Thus, a×b = (a∧b) n,
where n is a unit vector with a positive sense.

Following this rule, the senses of T , L, and
v are defined, and thus T is perpendicular to
r and F , and so on. When a particle rotates
in a plane, the direction of n is that of the
axis of rotation. The direction of ω is defined
as that of the axis of rotation, and thus the
velocity of a particle v is perpendicular to the
plane determined by ω and r.
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