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Abstract 

In this paper, we would like to illustrate the power of scaling analysis to estimate the order 
of magnitude of the size of Lilliputs, Giants and Normal humans. We further extend this 
scaling approach to estimate the typical life span of human being in terms of natural 
fundamental constants of physics.  

 
 

1. Introduction 
 Scaling laws [1-9] are observed in all over science. 
The simplest is the Kepler’s third law seen in the 
planetary motion governed by Newton’s law of 
gravitation. The square of the time period of 
revolution of the planets is proportional to the cube 
of the distance between the planets and the Sun. In 
fact, there is indeed a deep symmetry between space 
and time for this particular power law.  Considering 
Newton’s inverse square law, we can write down the 
force equation 

22

2

r

GMm

dt

rd
m            (1) 

A quick look between the power of space and time 

ensures that 32 rt  . However, instead of inverse 
square, for inverse cube law (arises when general 
theory of relativity is taken into account) gives 

us 2rt  .  
 
Assuming earth to be homogeneous sphere of radius 
R and density  , it is easy to notice that the 

acceleration due to gravity g varies with the 
variables as 
 

Rg                  (2) 

 
 
 
 
The important point of the above scaling relation 
is that it is free from the universal gravitational 
constant G and can be used in other astrophysical 
object such as moon. In fact, if we assume 
further that both earth and moon have the same 
density, then the ratio of acceleration due to 
earth’s gravity  is 3 times larger that due to 
moon. However, a correct factor of 6 can be 
visualized if one takes into the correct numerical 
value of the densities of moon and earth. 
Simple spring also satisfies a scaling relation 
between the time-period T and the mass of the 
spring m as 

k

m
T               (3) 

 
where k is the stiffness constant, The famous 
Richter scale (1-10) or Marshili scale (1-12) 
used in the earthquake [9] follows the power 
law. The probability p for quake releasing 
energy E due to generation of shock wave is 

seen to proportional to E , where   is the 

relevant exponent. It is evident that the above 
two scales are based on the logarithm of the 
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energy. Even the recession of speed v of the 
galaxy at a distance R away from the observer 

was given by Hubble as 1 Rv . 
 
Mathematically, all these power laws [4,5] can be 
expressed as  

CxxfY  )(          (4) 

If we scale bxx  , we get from the above equation 
that 

)()()( xfbxCbbxfbxY      (5) 

The above equation indicates that if we measure x in 
meters or inches, the form of Y-x relationship 
remains unchanged. This invariance of scale change 
justifies the name of scaling relation. In fact, taking 
the logarithm of both sides of equation (4), we can 
easily obtain the exponent   from the slope the 
straight line with log-log axis. Moreover, if the two 
functions )(xf  and )( yf  satisfy the following 

relation 
)()()( xyfyfxf          (6) 

one can show that the function must be xxf ~)( . It 

is easy to note from equation (6) that 
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Here,   is a constant because the LHS is a function 
of y while the RHS is a function of x only. Naturally, 
the solution of equation (7) can be easily guessed 

as xxf ~)( . In non-equilibrium as well as 

equilibrium statistical mechanics, the scaling relation 
[6-8] can be of the form 















x

w
gxwxY ),(              (8) 

Here, the observables Y depends on two parameters x 
and w. In such a case, one understands the scaling 

regime xY ~  in the range w is sufficiently small so 

that )0(~ g
x

w
g 










, a constant. In critical 

phenomena, the physical quantity at the critical point 
scales with a power law with anomalous rational 
exponent [7]. 
Sometimes, pure dimensional analysis can help 
one to deduce the scaling relation. For example, 
the typical phase velocity v of water waves in 

shallow water depends on the acceleration due to 
gravity g, and water depth h. Here, the surface 
tension and the viscous effects are neglected. A 
quick straightforward calculation reveals that 
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where  is the wavelength of the water wave. In 

the limit, h ,  0f
h

f 









, we find in a 

place that the velocity hv  , the well-known 
scaling relation in fluid dynamics. 
 
Even when x is independent of Y, we can regard 
that as a power law of exponent being zero. In 
fact from biology, it has been seen that the 
maximum height of animals scales with size (L) 

as 0L . This surprising result [10-13] can be 
understood physically as follows. The maximum 
height that an animal can achieve must be 
proportional to the achievable potential energy 
divided by its weight. The maximum applied 
force or the strength of the muscle of animal 
scale with the characteristic length/ size L of an 

animal body as 2L . Therefore, the achievable 
potential energy will scale as 

3L (Forcedistance). However, the weight of the 
animal (assuming the density of body remains 

constant) is proportional to its volume, 3L . 
Hence, the height to which an animal can jump 
turns out to be independent of the size L. 
 
The above scaling behavior can be used in 
another way. A bone’s strength increases as its 
cross-sectional area while an animal’s weight is 
proportional to its volume, so that to support its 
own weight an elephant’s legs need to be 
relatively stouter than a dog’s. The scaling law 
is that wL3/2, where w is the leg width and L 
its length. 

It is known from biological scaling [13] analysis 
that the strength of a muscle is proportional to 

2L while the weight of the muscle varies as 3L . 
Therefore, the ratio of the strength to weight is 
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proportional to
L

1
. This result has a remarkable 

consequence as follows. For example, an 
elephant bears the ratio as 1 m-1 while a tiny flee 
1000 m-1. This indicates the impossibility of 
jumping of an elephant over a flee. Moreover, a 
flee can support almost 100 times of its body 

weight while an elephant can something of 
10

1
 of 

its body weight. This is in accord with the fact 
that the characteristic dimension of an elephant is 
1000 times that of a flee. 

Scaling analysis along with dimensional analysis can 
be used to estimate the maximum height [14] of a 
tree. Each tree is characterized by two different 
length scales namely the radius and its length or 
height. In this case one has to compare the two 
energy scales – namely gravity energy and the elastic 
one.  We know that the typical potential energy of a 
tree of mass m and height h is simply ~gravE mgh = 

22hgr  with r being the radius of the tree. But the 

elastic energy elastE stored in a tree can be written in 

terms of elastic modulus as
h

Yr 4

, where Y is the 

Young’s modulus of the material of the tree. Now, 
for the stability of a tree i.e. no buckling, the 
condition is gravE elastE . Thus, for a given region 

with the same type of tree, we must have scaling 

relation with the radius r and the height h as 32 hr  .  
Thus, for a given radius r, the maximum height of a 
tree can be estimated as  

3

2
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                   (10) 

In case of a typical length L of an animal, the 

relation is modified as 32 Lr  . Moreover, the 
mass of an animal scales 

M 44
2

2 ~~ LL
Y

g
Lr


  . This eventually gives 

an important scaling between the mass and 

length of an animal as 4

1

~ ML , which is known 

as Kleiber’s law [13]. Hence, the radius scales 

simply 8

3

2

3

MLr  . It is interesting to note 
that this scaling is quite different from the 

isometric one where 3

1

~ ML , 3

1

~ Mr .This 
scaling can also be applied to the situation of 
exhausting to animals for climbing a hill. This is 
related to the metabolic rate of a typical animal. 
However, the metabolic rate essentially depends 
on the flow rate of oxygen. Note that the flow 
rate of O2 scales as the surface area of the lungs 

~ 4

3

M . Now the comparison of the two energy 

scales indicates that 4

3

~ MMgh  or 4

1

~


Mh . 

Estimation reveals that it is almost 13 times 
exhausting for a 1 ton horse than for 30 gm 
mouse to climb a hill. 

The paper is organized as follows. With the brief 
introduction, we would like to use the scaling 
analysis for the existence of Lilliput and Giants 
as depicted in Gullivers’ travel book. Finally, in 
section 3, we point out the order of magnitude of 
height and life-span of common man in terms of 
fundamental constants of physics. In section 4, 
we give our conclusions. 
 
 

2. Scaling Analysis of Lilliput 

To introduce the topic of scaling analysis, let us 
look at a classical example of the romantic 
literature, in which Dean Swift, in “The 
Adventures of Gulliver” describes the imaginary 
voyages of Lemuel Gulliver to the kingdoms of 
Lilliput and Brobdingnag. In these two places 
life was identical to that of normal humans; their 
geometric dimensions were, however, different. 
In Liliput, man, houses, dogs, trees were twelve 
times smaller than in the country of Gulliver, 
and in Brobdingnag, everything was twelve 
times taller. The man of Lilliput was a 
geometric model of Gulliver in a scale 1:12, and 
that of Brobdingnag a model in a scale of 12:1. 
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One can come to interesting observations of 
these two kingdoms through dimensional 
analysis. Much time before Dean Swift, Galileus 
already found out that amplified or reduced models of 
man could not be like we are. The human body is 
built of columns, stretchers, bones and muscles. The 
weight of the body that the structure has to support is 
proportional to its volume, that is, L3, and the 
resistance of a bone to compression or of a muscle for 
fraction, is proportional to L2. 

Let’s compare Gulliver with the giant of 
Brobdingnag, which has all of his linear dimensions 
twelve times larger. 

It is known that a person’s food intake capacity is 
related to his mass (volume). Gulliver was 12 times 
taller than Lilliputians. Let us assume that the linear 
dimension of Gulliver be LG with the volume VG. 
Similarly for the Lilliputian, the volume is VL with LL 
be the linear dimension. Then, we can write simply 
VG/VL=(LG/LL)3=123=1728. Therefore, Gulliver 
needs the food of 1728 times the amount of food of 
each as the Lilliputians. This simple problem has a 
quite good impact in modern days in drug dosage in 
humans. 

The resistance of his legs would be 144 times larger 
than that of Gulliver, and his weight 1728 times 
larger. The ratio resistance/weight of the giant would 
be 12 times less than ours. In order to sustain its own 
weight, he would have to make an equivalent effort 
to that we would have to make to carry eleven other 
men. 

Galileus treated this subject very clearly, using 
arguments that deny the possibility of the 
existence [6] of giants of normal aspect. If we 
wanted to have a giant with the same leg/arm 
proportions of a normal human, we would have 
to use a stronger and harder material to make the 
bones, or we would have to admit a lower 
resistance in comparison to a man of normal 
stature. On the other hand, if the size of the body 
would be diminished, the resistance would not 
diminish in the same proportion. The smaller the 
body, the greater is its relative resistance. In this 
way, a very small dog could, probably, carry two 

or three other small dogs of his size on his back; 
on the other hand, an elephant could not carry 
even another elephant of his own size. 

In figure 1, we show the schematic picture from 
Gullivers’ book to compare the typical length 
scales of a normal human being with Lilliput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 1: A picture from Gullivers’ book 

 

Let’s analyze the problem of the Lilliputians 
from the idea of heat loss. The heat that a body 
loses to the environment goes through the skin, 
being proportional to the area covered by the 
skin, that is, L2, maintaining constant the body 
temperature and skin characteristics. The food 
taken in must supply this amount of heat. 
Therefore the minimum food needs should scale 
as L2. 
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If Gulliver would be happy with a broiler, a 
bread and a fruit per day, a Lilliputian would 
need a (1/12)2 smaller food volume. But a 
broiler, a bread, a fruit when reduced to the scale 
of his world, would have volumes (1/12)3 
smaller. He would, therefore, need twelve 
broilers, twelve breads and twelve fruits to be as 
happy as Gulliver. Besides Lilliputians must be 
hungry enough, famine, restless, active and can 
become easily water-logged. It is easy to 
recognize that these properties with many small 
mammals such as mouse for example. It is 
interesting to note that there are not many warm-
blooded animals smaller than mouse, probably in 
light of the scale laws discussed above. Notice 
that in nature, fish, frogs and insects can have 
much smaller size because of the fact that this 

body temperature is not higher than their 
surroundings. As a consequence, large animals 
by the above scaling law require relatively a 
good deal of food in compared to smaller 
creatures to maintain a relatively higher body 
temperature. In fact, it is indeed very difficult for 
small animals to gather such an enormous 
amount of food. Not only that if the foods were 
collected, that could not be 

Therefore, in our 
earth it is thus 
impossible for 
Lilliput to survive 
with giants as 
compared to them. 

digested over a feasible time. Thus, it is clear that 

 the agriculture of the Lilliputians could not have  

supported a kingdom  like described by Gulliver. 

We also illustrate the scale factor from the famous  

book in Fig.2.                                                  

                     Fig 2. A Picture from the famous book 

It is also evident from the above scaling arguments 
that the heat loss/mass is proportional to L-1. In 
other words, small animals will lose more heat 
compared to bigger one and naturally, they will not 
survive in the polar region at that cold atmosphere. 
Let us give some numerical estimation on mouse 
and polar bear. Considering a small mouse of 
length 5 cm, heat loss is of the order of 20 m-1. 

However, polar bear of length 2 m, the heat loss is 
0.5 m-1. Therefore, the ratio of heat loss of mouse 
to polar bear is 20:0.5=40:1. 

From all the above observations, we come to the 
following conclusions that, although being 
geometric models of our world, Brobdingnag and 
Lilliput could never exist in our physical models, 
since they would not have the necessary physical 
similarity which is found in natural phenomena. In 
the case of Brobdingnag, for example, the giant 

would be able to support his own weight having 
the stature of humans, only if he would be living 
on a planet having a gravitational force of (1/12)g. 

 

2.1 Absence of giants of normal size 

To argue this, we know that the human body is 
built of columns, stretchers, bones and muscles. 
Naturally, the weight [1, 10-12] of the body that 
the structure has to support is proportional to its 
volume, L3. However, the resistance of a bone to 
compression or of a muscle for fraction is 
proportional to L2. Therefore, if we wanted to have 
a giant with the same leg/arm proportions of a 
normal human being, we would have two options. 
Either, we must have to use a stronger and harder 
material to make the bones, or we would have to 
admit a lower resistance in comparison to a man of 
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normal stature. If his/her height is proportionally 
increased, naturally he/she will fall and be crushed 
completely under his/her own weight. In fact, 
smaller is the body; greater is its relative strength. 
On the other hand, if the size of the body is 
diminished, then, the resistance will not diminish 
in the same proportion. Therefore, the smaller is 
the body, the greater its relative resistance. In this 
way, a very small dog could, probably, carry [2, 
10-12] two or three other small dogs of his size on 
his back. But, an elephant will never be able to 
carry even another elephant of his own size. 

3. Size and life span of a normal man 
It is known [10-13] that smaller animals have 
quick pulse rate and short lives while larger 
animals have slow pulse rates and long lives. The 
biological scaling analysis suggests that 
 

4/94/3

4/34/1

4/34/1

LmBMR

LmHR

LmLS






                     (11) 

 
where LS, HR  and BMR refer to life span, heart 
rate and Basal metabolic rate respectively. 
 
Below we follow an order of magnitude estimation 
of the size and life span of normal human being in 
accord with the model developed by William H. 
Press [15]. In brief, we attempt here to express the 

characteristic size HL  and life span Ht  in terms of 

natural fundamental constants such as Gce ,,,  etc. 

 

It is important to note that this simple estimation 

however, cannot distinguish between male and 

female; moreover, since it is based on the scaling 

arguments, the accuracy level is unable to 

distinguish between the size of elephant and 

human being. More, sophisticated model 

calculations are welcome to match with the 

experimental data. The model computation 

however, is based on three fundamental 

assumptions [15]. 

(i) Human being is composed of very complicated 

molecules. 

(ii) For the survival of human race, it is desirable 

that the atmosphere should not be primordial or 

cosmological in nature. This excludes eventually 

the presence of hydrogen and helium in the 

atmosphere. 

(iii) Lastly, it is supposed that the height will be 

sufficiently large to carry its huge (heavy) brain. 

The person, however, can stumble or fall, but 

should not break at all by doing so. 

 

With these three assumptions, let us look into the 
characteristic sizes of atoms, density and the 
binding energy. We choose the characteristic size 

of the atom as Bohr’s length  A
em

a
e

52.0
2

2

0


. 

This can be justified from simple dimensional 
analysis and uncertainty principle [14, 16]. If we 
assume that one proton in a cube of 1 Bohr 
diameter, the relevant density scale turns out to 

be
 

ccg
a

mp
/44.1

2
3

0

0  . Now, the scale of all 

molecular binding energy can be measured in 
terms of the hydrogen binding energy fixed at 

6.13
2 0

2


a

e
EB  eV. 

 

Now, according to the first assumption, since the 

involved chemistry of the molecules in human 

being is complex in nature, we can take the binding 

energy of these molecules to be a small fraction 

( 003.0 ) of BE . This eventually gives an order 

of magnitude of the environment around the 

human being as 

eV
k

T
B

env

6.13003.0 
            (12) 

This temperature will naturally provide the perfect 

environment for continuing the internal chemical 

processes and hence the survival.  
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Considering the second assumption, we know that 

the atmosphere of the human race is neither 

hydrogen or helium nor vacuum. This is possible if 

the escape velocity from the surface of the earth is 

greater than the thermal velocity of hydrogen 

at envT . Therefore, we must have 

pE

E

mR

GM 6.13003.0 
     (13) 

 

and again from density consideration, 

 

 30

3
2a

m

R

M p

E

E           (14) 

These two simple equations (13) and (14) can be 
used to estimate the radius ER and mass EM  of the 

earth as 
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                 (15) 

The equation (15) also points out the emergence of 

a dimensionless constant 













2

2

pGm

e
 formed from the 

natural fundamental constants. 
 

Now, if the characteristic size of human being 
is HL , then we can estimate its order of magnitude 

from the mass HM  as 
3

0 HH LM                (16) 

The characteristic energy scale of the potential 
energy of the fall of human being is fixed as 






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2
E

E
HHHH

R

GM
LMgLM .The typical number of 

atoms HN  in a human being is of the order 
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H

m

M
.The breaking energy can be fixed at the 

scale 
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e
 ,  the last factor originates 

from the two dimensional surface. Now, 
considering the third and final assumption, we can 
write an equation 
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which after simplification, we obtain the size of the 
human being as 
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

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


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




p

oH
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e
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The estimated height ( 6.2  cm) of the human being 
turns out to be 102 smaller than the actual data 
(180-212 cm) because of the assumption (iii). If 
one equates the excess breaking energy (which is 
104-105 times that used above) to the number of 
atoms in a protein, one gets a reasonable 
estimation of the length of the human being. 
 

The life span Ht of a human being can be estimated 

[15] from the solar radiation in an environment 
temperature envT  in terms of Stefan-Boltzmann 

constant
32

22

60 c

kB




  . The life-span or shelter-

seeking time can be set if one equates the total 
energy of chemical bond in human being to the 

solar flux radiation on human’s surface area 2
HL  

multiplied by Ht . Thus, we get the desired equation 

as 

3

0

2

0
4

2

4

0

2

0

2

2

22







































 










a

e

L

m

k
t

tL
ka

e

a

e

H

p

B
H

HH

B










        (19) 
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The estimated value ( 4105  sec) however does 

not match with the observed data ( 9102.2   sec). 
 

4. Conclusions 
Even within the cutting edge support from the 
technology, the scaling arguments presented above 
are quite important. Sometimes, we design a new 
large object on the basis of knowledge gathered 
from the small one, we are warned that the new 
effects may become a serious issue to consider. 
One cannot just scale up and down blindly, 
geometrically; but by scaling in the light of 
physical reasoning, one can predict some new 
things about the unknown system. Like any other 
order of magnitude estimation, they are extremely 
important and helpful to study any physical 
system. This can in fact serve as a best guide to a 
detailed analysis of the physical system. 
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