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Abstract

Reformulating classical physics using functional differential equations (FDEs) is of significant
value in itself. But does it lead to quantum mechanics? Formally, the use of mixed-type
FDEs leads to a structure of time, and thence to a quantum logic, and the postulates of
quantum mechanics. Here, we give a simple and intuitive account of the structured time
interpretation of quantum mechanics (STIQM), that quantum mechanics may be due to
advanced interactions. We solve the modified Maxwell’s equations in a linear approximation,
for both retarded and advanced cases. The solutions show that a free electron oscillates
under its own self-action. The oscillations are sustained because both damping and
anti-damping are present even in the fully retarded case. Quantitative agreement with the
de Broglie wavelength is possible with a simple extra hypothesis, though we do not examine
it further here. A structure of time corresponds to many logical worlds, which we explain
using the close analogy to parallel computing. With STIQM wave-particle duality does not
present any conceptual difficulty. If quantum mechanics is indeed due to advanced
interactions then a scalable quantum computer must necessarily be an android.

1 Recap

We have seen that if we do the math cor-
rectly, functional differential equations arise
in the formulation of the two-body problem

of classical electrodynamics. It is invalid to
approximate these by ODEs and PDEs as is
commonly done, since FDEs lead to funda-
mental departures from expectations based on
ODEs and PDEs.[1] Briefly, FDEs correspond
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to a coupled systems of ODEs and PDEs. It
is hazardous to neglect that coupling, even
though it is commonly neglected in everyday
physics.[2]

Next we saw that to do the classical hy-
drogen atom correctly we need to include the
radiation reaction. But if we include radiation
reaction, even the one body problem of elec-
trodynamics cannot be solved since runaway
solutions arise. This state of affairs too needs
to be corrected. There is a way to fix those
infinities by modifying Maxwell’s equations at
a microphysical level. (This is similar to the
technique used to fix the infinities of quantum
electrodynamics.) But this turns even the
1-body equations of motion, with radiation
reaction, into FDEs.[3]

Further, FDEs are not restricted to electro-
dynamics. Compatibility with special relativ-
ity requires that Newton’s “laws” of motion
must be reformulated. But Newton’s laws
of motion and law of gravitation come as a
package deal, so that even gravitation has to
be reformulated in a Lorentz covariant way.
This leads to the FDEs of retarded gravita-
tion theory (RGT). RGT is theoretically bet-
ter than Newtonian gravitation (since Lorentz
covariant), and practically better than gen-
eral relativity (since using it makes the many
body problem for the galaxy tractable). Even
if we accept dark matter as the reason for the
failure of Newtonian physics for the galaxy,
we must use RGT to calculate its extent, not
Newtonian gravitation.[4]

Finally, the existing formulation of physics
is not consistent with our everyday experience
that we create a bit of the future. The easiest
way to reformulate physics to allow for the

observed ability of living organisms to create
some of the future is to allow advanced inter-
actions, or a tilt in the arrow of time. This
is not a new hypothesis, but just drops the
usual hypothesis of causality. That leads to
mixed-type FDEs.[5]

Thus, we have used FDEs for a series of cor-
rections and “tweaks” which leads to a better
mathematical formulation of classical electro-
dynamics, and gravitation, and to a physics
more in accord with the mundane experience
of both time asymmetry and creativity. That
is of substantial value in itself. But will any
of this lead to quantum mechanics?

Now the relation of mixed-type FDEs
(MFDEs) to quantum mechanics was pointed
out long ago[6] in what is called the structured-
time interpretation of quantum mechanics
(STIQM). However, that connection was es-
tablished at a very abstract level, which is
hard for most physicists. The present article
aims to provide a simpler and more intuitive
account of STIQM.

2 The base MFDEs

With the modified Maxwellian electrodynam-
ics, retarded and advanced propagators are
defined as before.[7] That is,

Ga(x,y) = δ((x− y)2 + d2)θ(y0 − x0), (1)

is the advanced Green function, while to ob-
tain the field strength we now need to use
the derivatives at advanced time instead of
retarded time.
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Mixed-type propagators are defined as a
convex combination of retarded and advanced
propagators

Gm = aGa + (1− a)Gr 0 < a < 1, (2)

so that for the fields we have

Fm = aFadv + (1− a)Fret 0 < a < 1. (3)

With this expression for the field, the equa-
tions of motion of even a single classical
charged particle are MFDEs.

2.1 The locally linear
approximation

There are no general methods of solving this
type of nonlinear MFDE. However, a sim-
ple way to obtain an approximate solution,
called the locally linear approximation, was
suggested long ago.1 The idea is to approxi-
mate the nonlinear MFDE locally by an equa-
tion of the same type, a linear MFDE with
constant coefficients and constant deviation
of the argument.

To obtain this linear MFDE the coefficients
are frozen in the neighbourhood of a particular
point of time, as are the delay and advance.
We know how to solve such linear MFDEs
with constant coefficients and constant devi-
ation of arguments. We then continue the
solution by using this locally linear approx-
imation in neighbourhoods around different

1C. K. Raju, “Simulating a tilt in the arrow of
time”, paper presented at the seminar on “Some As-
pects of Theoretical Physics”, Indian Statistical Insti-
tute, Calcutta, 14–15 May 1996 (unpublished).

points of time, and patching together solu-
tions at different times. This may not result
in a globally continuous or unique solution,
but that is not a requirement.

2.2 A linear approximation:
retarded case

Let us start by explicitly working out this
linear approximation in the retarded case. It
is helpful to convert from proper time to co-
ordinate time, and to use 3 vectors and a 3+1
decomposition.

A straightforward but tedious calculation
gives for the electromagnetic field strength E

E =
qcτ

4πε0
(
c2τ − (v · χ)

)3(
− a

(
c2τ − (v · χ)

)
+ u(c2 − v2 + χ · a)

)
(4)

where v, a are the 3 vectors corresponding to
velocity and acceleration respectively (both at
retarded time), (τ, χ) = ζ is the 3+1 decom-
position of the retardation vector ζ. Further,
u = 1

τ
χ−v, is analogous to the vector defined

in elementary texts [Griffiths]. However, recall
that, unlike the Maxwellian case, ζ is no longer
a null vector, since interaction takes place
along a hyperboloid. Consequently, 1

τ
χ 6= χ̂.

Instead, we now have

χ2 + d2 = c2τ 2. (5)

For the case of self-action, let us approxi-
mate the retardation 3-vector χ as

χ ≈ vτ. (6)
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This gives from (5) that

τ = γ
d

c
. (7)

Since χ ≈ vτ we actually have u ≈ 0 for
the case of self action, and we can also use
(6) to simplify the expression due to the dot
product ζ · α̇

c2τ − v · χ = (c2 − v2)τ (8)

To derive our approximate linear equation,
let us further neglect the force due to the
magnetic field. The self-force on the charge
due to the electric field is F = qE, and the
equation of motion is

ẍ =
q

m
E (9)

Recalling that u = 0 for the case of self-
action, and recalling that we are neglecting
the magnetic field in this approximation, the
equation (9) reduces to the simple equation

ẍ = −kra (10)

where

kr =
q2cτ

4πε0m(c2τ − v · χ)2
. (11)

Using (8), this simplifies to

kr =
q2c

4πε0mτ(c2 − v2)2

=
q2

4πε0mc3τ(1− v2

c2
)2

(12)

If the charged particle is an electron so that
m = me, the last equation can be rewritten

kr =
q2

4πε0mec3τ(1− v2

c2
)2

=
re
c
· 1

τ
· γ4

=
τrelax
τ

γ4

=
re
d
γ3, (13)

where re = q2

4πε0mec2
is the classical radius

of the electron, τrelax = re
c

is the so-called
relaxation time of the electron (time taken
by light to travel across the classical electron
radius), and d is the separation parameter in
the modified Maxwell equations. If d ≈ re,
we have kr ≈ 1.

3 Oscillatory solutions

For our immediate purpose, we can, without
loss of generality, further simplify the above
equation to an equation in a single dimension
(so that x is a scalar, not a vector). (There
is no loss of generality because in the vector
case we simply apply the following reasoning
to each component of the vector.)

To begin with, since kr ≈ 1, we set kr = 1,
in (10) and solve the simple equation

ẍ = −ẍ(t− τ) (14)

We look for pure imaginary roots of the
characteristic quasi-polynomial. That is, we
substitute x = eıωt in (14), to obtain

− ω2x = ω2xe−ıωτ . (15)
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Cancelling ω2x from both sides, we see that
we are seeking a solution of

e−ıωτ = −1. (16)

Such a solution is easily found. Taking real
and imaginary parts we see that we need the
simultaneous solution of

cosωτ = −1,

sinωτ = 0. (17)

The solution is evidently given by

ωτ = π + 2nπ, n = 0,±1,±2, . . .

= (2n+ 1)π, n = 0,±1,±2, . . . (18)

In general, this equation has an infinity of
roots. Each pure imaginary root corresponds
to an undamped oscillatory motion of the
particle. Thus, the solution of (14) is

x(t) = eıωt

ω = (2n+ 1)
π

τ
, n = 0,±1,±2, . . . (19)

Thus, we see that a single free charged par-
ticle will, under its own self-action, oscillate.
While there is no rest frame for such a par-
ticle, we may consider as a “zero” frame a
frame where the particle does not drift off,
and has zero average velocity. As seen from a
frame which it is moving with respect to the
zero frame, so that the particle has an average
velocity V, the particle will correspond to a
travelling wave, say,

x = V t+ A sin(ωt). (20)

However, for the wavelength λ of such a
travelling wave we will have

λ = V T, (21)

where T = 2π
ω

is the time period of the si-

nusoidal oscillation. Since T ∝ τ = γd
c

, we
see that quantitative agreement with the de
Broglie formula requires an additional hypoth-
esis

d ∝ 1

E
, (22)

where E is the average energy, and we neglect
the γ factor, for simplicity. For a free particle
E = 1

2
mV 2, so, with this hypothesis, from

(21) we get

λ ∝ 1

mV
. (23)

Now the parameter d is not specified by
the theory. Roughly speaking, it relates to
the “interior” of the electron, where anything
at all might happen. The above hypothesis
about it looks simple enough. Nevertheless,
any attempt to justify it would bring in rami-
fications far beyond the scope of this article,
which aims to give a simple an intuitive ac-
count of the structured-time interpretation
of quantum mechanics (STIQM). Therefore,
for the purposes of this article let us proceed
with qualitative agreement alone: some sort
of oscillatory or wave motion is naturally as-
sociated with a free charged particle.

Note that we have an infinite (discrete)
spectrum of possible frequencies in classical
physics. That is obviously not possible in clas-
sical mechanics or with ODEs. If we were to
do the same for a system of ODEs, no matter
how many particles are involved, we would
end up with a polynomial with a finite num-
ber of roots, never a quasi polynomial with
an infinity of roots. On the theory of Fourier
series, this means that we are not restricted
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to sinusoidal oscillations, and can have any
general period function.

4 Damping and

anti-damping

The significance of pure imaginary roots of the
characteristic quasi-polynomial is that pure
imaginary roots correspond to stable or un-
damped oscillations. However, in arriving
at the simplified equation (14) above we as-
sumed that kr = 1, although from the last
of the equations (13) it is clear that that can
never exactly be the case.

So, let us go to the next level of complexity,
and solve the equation after putting back the
value of kr but supposing it to be a constant,
possibly different from 1. That is, we solve
the equation

ẍ = −krẍ(t− τ), (24)

obtained by neglecting just the magnetic field,
and treating kr as a constant.

We now take as a trial solution

x = ezt, where

z = u+ ıω. (25)

Substituting in (24), and cancelling z2ezt as
before, we are led to the characteristic quasi-
polynomial equation

e−zτ = − 1

kr
, (26)

in place of (16). Equating real and imaginary
parts as before, we arrive at

e−uτ cosωτ = − 1

kr
, (27)

sinωτ = 0. (28)

in place of (17). This can be solved by choos-
ing ω as before as a solution of (17) and choos-
ing u as the solution of

e−uτ =
1

kr
. (29)

That is,

u =
1

τ
log kr (30)

Thus, the solution of (24) is given by

x(t) = eut.eıωt (31)

with ω as before given by (18) and u given by
(30).

Thus, we now have oscillations which are
damped or anti-damped by a factor of eut

where u = 1
τ

log kr. Damping holds if u < 0,
or kr < 1, that is, for large values of d or
τ (d > γ3re or τ > γ4τrelax). If the reverse
inequality holds ( kr > 1), that is for small
values of d or τ (d < γ3re or τ < γ4τrelax) we
will have anti-damping. This should be noted,
because on intuition built on classical mechan-
ics there is no possibility of anti-damping with
purely retarded radiation.

In particular as d → 0, it is anti-damping
which prevails, and we recover the runaway
solutions as in the theory with point masses.
That is, the method of deriving radiation re-
action by a limiting procedure is not valid, be-
cause in the process of taking the limit there
is an unexpected switch from damping to anti-
damping.

Volume xx, Number xx, Article Number : x www.physedu.in

Jan - Mar 2016

 32                    1                                   11



Physics Education 7 xx-xx-2016

4.1 Self-excited oscillations

The existence of both damping and anti-
damping raises the possibility of self-excited
oscillations. Indeed, kr = re

d
γ3, is velocity

dependent. For constant re
d

, as v → c we have
γ →∞, so kr will increase, and anti-damping
will set in. In an oscillatory motion, v will de-
crease and become zero. During this time, we
have γ → 1, so if re

d
< 1, damping will set in.

Thus, both damping and anti-damping may be
present in the course of a single oscillation.

What will be the effect of this? We can-
not write down a formula for this case, where
the damping factor is velocity dependent, but
the numerical solution is given below. The
solution is stable, or at least semi-stable, cor-
roborating the possibility of self-excited oscil-
lations, though the frequency of the oscillation
is no longer given exactly by (17).

Thirdly, even τ = γd
c

is γ dependent. So
long as the values of v are small relative to
c this does not seem to make much of a dif-
ference, and the numerical solution remains
almost the same.

Thus, on classical physics (with FDEs) an
electron is not just a mass point which sits idly
waiting for an external force to move it as in
Newtonian mechanics. Under its own retarded
self-action it undergoes a rapid self-excited
oscillation, during which its momentum and
energy also vary, though there is no net loss
or gain of energy due to radiation.
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Figure 1: Solution of the retarded equation (24) with
the velocity dependence of kr and τ taken into ac-
count. The x-axis is time in units of τrelax (deci-yocto
seconds). The y-axis does double duty. For velocity it
is in units of c

30 (or c
300 ) dfm/dys, for position it is in

corresponding units of distance (deci-femto meters).

4.2 The equations of motion
for self-action: mixed case

We now take up the mixed-type case, where
the propagator is a convex combination of
advanced and retarded propagators. Working
exactly as above, we arrive at the approximate
equations of motion for a charged particle as,

ẍ = akrẍ(t+ τ)− bkrẍ(t− τ), a+ b = 1,
(32)

where the weight of the advanced component
a � 1, so that the weight of the retarded
component b ≈ 1. To solve this equation, as-
suming kr constant, we proceed as before and
take as a trial solution x = ezt, with z = u+ıω.
Substituting in (32), and cancelling z2ezt as
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before, we are now led to the characteristic
quasi-polynomial equation

1 = akre
zτ − bkre−zτ . (33)

Taking real and imaginary parts as before, we
now obtain

akre
uτ cosωτ − bkre−uτ cosωτ = 1 (34)

akre
uτ sinωτ + bkre

uτ sinωτ = 0. (35)

If ω is a solution of (17), then sinωτ = 0
so the equation (35) is satisfied, and, since
cosωτ = −1, (34) reduces to

aeuτ − be−uτ = − 1

kr
. (36)

This can be solved by setting y = e−uτ so
that u = − 1

τ
log y. This leads to the quadratic

equation
−1

kr
=
a

y
− by (37)

Explicitly the quadratic is by2 − 1
kr
y − a = 0

and this has the solution

y =
1±

√
1 + 4abk2r
2bkr

. (38)

We need a positive root since we need the log
of y. Approximately, this is given by

y ≈ 2

2bkr
+

2abk2r
2bkr

, (39)

so that

y ≈ 1

bkr
+ akr (40)

Since b ≈ 1 we have as before y ≷ 1 almost
according as kr ≷ 1. Thus, the solution in the
mixed-type case is

x(t) = eut.eıωt (41)

with ω as before given by (18) and u =
− 1
τ

log y with y given by (40).
However, in this case there is one more

solution. We can choose cos(ωτ) = 1 in (34),
so that ω = 2nπ

τ
. In this case, instead of (36)

we have the equation

aeuτ − be−uτ =
1

kr
. (42)

With y defined as before by y = e−uτ we now
get the quadratic by2 + 1

kr
y − a = 0, which

has the solution

y =
−1±

√
1 + 4abk2r

2bkr
. (43)

Further analysis shows that this solution is
unstable since permanently anti-damped (un-
less some assumptions fail), hence we discard
it.

5 STIQM

That brings us to a very fundamental issue,
at the core of STIQM.[6] The difference be-
tween MFDEs and retarded FDEs is not just
a matter of slightly differing rates of damping.
With MFDEs past does not determine future.
Indeed, the existence of advanced interactions
allows the future to communicate with the
past, so that even the past is not fully deter-
minate. However, since advanced interactions
are rare, the indeterminacy of the past is very
small compared to that of the future.

The question now is this: how does one
model such indeterminacy? A structure of
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time helps us to model indeterminacy. In
Newtonian mechanics a dynamical variable
has a definite value at one instant of time.
A structure of time means that it may have
more than one value at one instant of time.

Because the structure of time in STIQM
arises from the use of MFDEs with only a
tiny advanced component, a retarded FDE
model still remains a good first approximation.
The world is still approximately deterministic,
and the indeterminacy relates typically to a
microphysical level. That is, STIQM involves
a microphysical structure of time. We can
expect advanced effects to be most readily
manifest at the level of single particles.

It may seem illogical to say of a dynamical
variable that q = 3 is true, and also that
q = 4 is true, but logic itself depends on the
nature and structure of time.[8] A change in
logic is a key required feature in modeling the
indeterminacy of qm; it is well-known that
the logic obeyed by quantum mechanics is not
Boolean like 2-valued logic.

In terms of probabilities, quantum probabil-
ities are different from classical probabilities,
just because quantum probabilities are defined
on a different logic, and hence do not admit
a joint probability distribution of canonically
conjugate variables. In the von-Neumann for-
mulation of qm, the representation of dynami-
cal variables by operators may be understood
as relating to random variables as measurable
functions defined on the non-Boolean lattice
or logic of subspaces of a Hilbert space, also
called a quantum logic.

The temporal logic corresponding to a struc-
tured time is neither 2-valued, nor 3-valued;
it is quasi truth-functional. That is we cannot

always assign a truth value to the statement
q = 3. A subtle but important point here is
that this is NOT the same thing as saying that
q = 3 has the truth value “indeterminate”, as
in, say Lukasiewicz’s 3-valued logic.[6, chp. 1]
In that 3-valued logic, the logical connectives
remain functions of the 3 truth values; that is
no longer the case with quasi truth-functional
logic.

Roughly speaking, in 3-valued logic we as-
sign neither truth value (true, false) to a
proposition; in quasi truth-functional logic we
may assign both truth values (at one “instant”
of time). It is not the case that Schrödinger’s
cat is either alive or dead, and we don’t know
which is the case; rather it is the case that
Schrödinger’s cat is both alive and dead (at
one “instant” of time). The 3-valued logic
used by Reichenbach[9] or Kothari[10] does
not lead to a valid interpretation of qm. A
key result of STIQM, however, is this: a
quasi truth-functional logic is a quantum logic.
Though this result is formally proved only in
the book[6], and not in the related series of ar-
ticles in this journal, let us try to understand
it here in simple intuitive terms.

As already noted, the key aspect of quan-
tum probabilities is that joint probability dis-
tributions do not exist for canonically conju-
gate variables. This is mathematically linked
to the non-commutativity of operators, with
dynamical variable defined as random vari-
ables, with probability defined on the lattice
of subspaces of a separable Hilbert space in-
stead of a usual Boolean algebra. The key
requisite feature of the lattice of projections
on a Hilbert space is that the distributive law
of “and” over “or” fails.
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Let us try to understand this in simple and
intuitive terms. Consider a two slit experi-
ment with two slits A and B. Consider the
two propositions:

1. The electron reached the screen AND
passed through slit A OR the electron
reached the screen AND passed through
slit B.

2. The electron reached the screen AND
passed through slit A OR slit B

The two statements are equivalent on a
Boolean logic. However, they are physically
different, since in the first case one observes
a mixture of two gaussians, and in the sec-
ond case one observes an interference pattern.
Hence, the distributive law fails, and a quan-
tum logic must be non-Boolean.

The lattice of projections on a Hilbert space
is such a non-distributive lattice. If P1 and
P2 are two projection on subspaces S1 and S2

respectively, we define P1∧P2 as the projection
on the intersection S1 ∩ S2, and P1 ∨ P2 as
the projection on the span of S1 ∪ S2. If
Px and Py and Pxy are projections on the x-
axis, y-axis and the line x = y respectively,
then (Pxy ∧ Px) ∨ (Pxy ∧ Py) = 0, whereas
Pxy ∧ (Px ∨ Py) = Pxy, so that “and” (∧) is
not distributive over “or” (∨).

The explanation of non-distributivity with
quasi truth-functional logic is much easier to
understand. The two statements above are
not equivalent because the OR in proposition
1 is exclusive, while the OR in proposition 2 is
inclusive. That is, we allow for the possibility
that the electron passed through both slits.
The electron is a particle, it did not divide

into two halves like a wave; but it is time
which split into two threads to allow for both
possibilities simultaneously.

The formal mathematical way to make
a quasi truth-functional logic meaningful is
to interpret it in terms of logical (2-valued)
“worlds”. A logical world, in the sense of
Wittgenstein, is “all that is the case”. That
is, a logical world corresponds to an assign-
ment of binary truth values “true” or “false”
to any proposition. This understanding of the
word “world” must be clearly distinguished
from the loose way in which the word “world”
is used in, say, the many-worlds interpreta-
tion of quantum mechanics. In STIQM, there
is only one physical world. Multiple logical
worlds are just a semantic device we use to
make its description easily comprehensible in
natural languages. In particular, these logical
worlds may interact with one another.

Parallel computers provide a concrete
model of the use of quasi truth-functional
logic. The parallel computer is analogous to
the single physical world we have. It, however,
consists of multiple processing units, each of
which runs a sequential execution “thread” or
sequential process,[11] and thus each proces-
sor constitutes a logical world. These worlds
interact with one another. Each execution
thread itself is a thread or branch of struc-
tured time. Now suppose we want to debug
a parallel program, and break its execution.
This would give us the “state” of the physical
world at one “instant”. However, it is per-
fectly possible that we find Schrödinger’s cat
is alive in one processor, and dead in another,
there is no paradox in that. A quasi truth-
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functional logic is needed to understand such
debugging.[12]

When the STIQM was developed, almost a
quarter century ago, parallel computing was
in its infancy, and OCCAM was being used as
the language of parallel computing, since there
was nothing much then by way of parallel
Fortran or parallel C. An example computer
program in OCCAM illustrating the above
considerations (and using the indeterministic
ALT construct of OCCAM) is given in [6].

5.1 Two sources of uncertainty

Thus, the use of FDEs brings in two novel
sources of uncertainty. First, unlike the case
in Newtonian mechanics, a particle such as
an electron does not stay at rest. Even with
purely retarded FDEs, and under its own self-
action the particle oscillates. As such its po-
sition and momentum are not fixed, but are
constantly varying.

Secondly, with MFDEs the future, and even
the present and past really are uncertain at
the microphysical level. This corresponds to
a microphysical structure of time. While this
situation can be described as multiple parallel
“worlds”, in STIQM, unlike the many-worlds
interpretation, these are only parallel logical
worlds. There is only one physical world, as
in one computer performing concurrent com-
putation.

Note that the existence of these parallel
worlds follows from classical physics done cor-
rectly, by addressing problems neglected over
the last century.

5.2 Wave particle duality

An interesting feature emerges when we com-
bine both sources of uncertainty, or both the
features of (a) an oscillating particle which
(b) exists in multiple sub-threads of time.

Consider again the classical two-slit experi-
ment with an electron. If the electron behaves
as a free particle before the slits, then there
are two sub-threads of time, one in which
the electron comes from slit A and another
in which it comes from slit B. These multi-
ple past possibilities will reflect in multiple
future solutions between the slits and screen.
It is clear that the two solutions will, in gen-
eral, travel different distances to reach a given
point on the screen. Accordingly, there will
be a phase difference between the two oscilla-
tions. Since there is only one physical world,
what we will observe is a superposition of the
two oscillations corresponding to the two sub-
threads. Since both solutions concern one and
the same electron, this is a coherent superposi-
tion. Accordingly, we will see an interference
pattern.

If, however, we observe which slit an elec-
tron goes through (delayed choice is irrelevant)
then we destroy the possibility that the elec-
tron goes through both slits. That is, we
change the past data. Consequently, the so-
lution changes also between the slits and the
screen. (Note that STIQM is explicitly non-
local, since it is all about advanced effects, and
it is not a hidden-variable theory, since the un-
certainties in it cannot be eliminated, as the
very notion of a structure of time indicates.[6,
chp. 6a])
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Thus, with a structure of time obtained
through the use of MFDEs, wave particle du-
ality does not present any conceptual problem.
What about quantitative agreement? Will the
observed interference pattern correspond to
the de Broglie wavelength? To reiterate the
answer above, such quantitative agreement
can be obtained by supposing that (22) of
some equivalent hypothesis holds. But jus-
tifying that very simple hypothesis involves
ramifications beyond the scope of this article.

6 Schrödinger equation

It has long been known that, using Koopman’s
formalism, the representation of dynamical
variables by operators on a Hilbert space can
also be used in classical statistical mechanics.
The critical issue related to qm is the non-
commutativity of the operators. That, as
explained above, connects to a change of logic,
which may be understood using the STIQM.

But what about Schrödinger’s equation?
Now Schrödinger’s equation gives us unitary
evolution in Hilbert space; this is possible
even with Koopman’s formalism. Further,
Schrödinger’s equation holds only in equilib-
rium, and as pointed out in my first inter-
pretation of quantum mechanics[13] unitary
evolution is equivalent to stationarity which
corresponds to equilibrium or indifference to
the origin of time. Either way, unitary evolu-
tion in Hilbert space does not by itself present
any fundamental difficulty.

The critical issue is about the Hamiltonian,
or the infinitesimal generator of the unitary
group. Why is the quantum Hamiltonian the

same function of the dynamical variables as
the classical Hamiltonian (when the latter
exists)? This indicates that qm and classi-
cal physics are not just two different theories;
they are closely connected. We will not go
further into this question here, except to point
out that the STIQM is the best way currently
available to connect classical physics to quan-
tum physics.

7 Concluding remarks

Classical physics done correctly, i.e., with
MFDEs, exhibits many of the most puzzling
conceptual features of quantum mechanics.
Those puzzling features are the expected con-
sequences of the existence of advanced inter-
actions.

We emphasize that we have not derived qm
from classical physics, nor was such deriva-
tion ever a goal. At the least some extra
phenomenology will be required to obtain the
Planck constant or the fine structure constant
to obtain quantitative agreement.

We do not claim to have derived qm from
classical physics also since classical physics
with MFDE’s is not identical to qm. It is a
self-contained theory with many of the fea-
tures of qm, but distinct from qm. Thus,
with MFDEs non-locality central: the theory
can be tested by testing for the existence of
advanced interactions.

Nevertheless, the understanding acquired
above, that key features of qm can be ex-
plained as advanced “effects”, is important
for the technology of quantum computing, con-
sidered vital to the future. The key current

Volume xx, Number xx, Article Number : x www.physedu.in

Jan - Mar 2016

32                    1                                   11



Physics Education 13 xx-xx-2016

problem with that technology is the problem
of decoherence or the inability to scale up a
quantum computer.

The speed-up provided by a quantum com-
puter is due to parallelism, which on the above
understanding relates to a structure of time.
And that, according to STIQM is due to ad-
vanced effects. So, is there a way to scale
up tiny advanced effects to some reasonable
macrophysical level? Living organisms (and
only living organisms) seem to be able to do
that. We do not today understand how that
happens. For such understanding we would,
at the least, need to simulate the interactions
of biological macromolecules using MFDEs in
place of the ODEs as is done today.

However, on the structured-time inter-
pretation of quantum mechanics, we can
safely conclude that scaling advanced effects
would necessarily involve living organisms.
(Recall that time travel is impossible with
machines.[5])Hence, a (scalable) quantum
computer would necessarily be an android
(not as in the popular operating system, but
as in half-live, half-machine); it would involve
at least biological macromolecules.
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