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Abstract 
An acceleration of g can bring a space vehicle to nearly the speed of light in less than a year. In this paper we 

study one possibility for such relativistic travel, as measured by both travelers and earthbound observers. 

Udergraduates who encounter special relativity toward the end of their introductory, calculus based physics 

course should find the paper’s mathematics accessible, and be stimulated by its extension of the usual 

topics. The sections can be either studied as presented, or offered as problems for investigation and solution 

by the students. 

 

1. Introduction 
 

The fact that the mass of an object increases without 

limit as its speed approaches c does not of itself 

prevent the object from attaining a speed arbitrarily 

close to c. In the following examples we investigate 

changes in time, mass and distance when traveling at 

relativistic speeds, acknowledging the technical 

challenges to actually doing so. We will be 

particularly interested in comparing earthbound 

measurements with those of the travelers launched 

into space. With some guidance, students introduced 

to special relativity in a calculus based physics course 

should readily understand this study, intended to 

challenge and stimulate them [1]. 

The familiar equation t = v/g reveals—perhaps 

surprisingly—that a constant acceleration of g 

(9.80665 m/s2) takes an object from a speed of 0 to c  

 

 

(299,792,458 m/s) in just 30,570,323 s or 

353.8231829 days. The number of days it takes with 

an acceleration of g to reach various fractions of c, 

with no relativistic considerations, is shown in 

column 1 of table 1. 

Although we might adopt any acceleration for this 

non-relativistic example, we use g because it is 

familiar to us both intellectually and experientially. 

Moreover, it requires a force not unreasonable to 

expect a future space vehicle to maintain, given that 

even today we can generate a much greater 

acceleration for several minutes after launch. Thus 

we will assume that g is not only the constant 

acceleration for the non-relativistic version of column 

1, but also the initial acceleration for the two 

relativistic versions tabulated in columns 2 and 3. 
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Note that we are not assuming that a constant 

acceleration is maintained. Rather we make a 

different assumption, one that seems to place a more 

sensible demand upon the mechanism of a space 

vehicle than that of constant acceleration. We assume 

a constant delivery of force—as measured by 

earthbound observers—one which launches the 

vehicle with an acceleration of g but which later 

produces a different acceleration as mass or time are 

relativistically modified. This force continues until a 

prescribed speed is attained, after which the vehicle 

can coast. Of course a model with constant force is 

only one possibility, although it is surely more 

practical than a model with constant acceleration, 

which could demand impossible outputs as mass 

increases. Students are encouraged to invent their 

own models with different assumptions. 

 

2. Measurements from the earth, 

assuming external propulsion and 

relativistic mass increase 
 

The achievement of relativistic speeds seems more 

likely to come about through a technology which 

utilizes an external source of propulsion rather than 

one which uses onboard fuel [2,3]. Even a cargo of 

matter-antimatter—the most promising current 

prospect—would be prohibitively heavy. The student 

might like to research the possibility of solar sails, 

and calculate the dimensions needed for feasible 

travel [4]. The prospects for utilizing “dark energy” 

seem more remote at this time, but may eventually 

materialize. Whatever the mechanism, since our 

study assumes an external source of propulsion, we 

will encounter no decrease in mass due to 

consumption of fuel. (We note that the assumption of 

a diminishing supply of onboard fuel leads to very 

different scenarios and equations from those studied 

in this paper.) 

Time:  Assume that the space-time coordinate system 

used by observers on the earth is an inertial frame of 

reference. That is, the accelerations due to the earth’s 

rotation and all other circular motions are negligible 

and can be disregarded.  

In our model, if m0 is the rest mass of the vehicle, a 

force of m0g is continuously applied until 

acceleration is no longer needed. As the speed v 

increases, the mass increases by a factor of  

1 1- v2 c2 , as measured by the earthbound 

observers [5]. Since force is the derivative of the 

relativistic momentum, we have: 

d (m0v / 1- v
2

c
2
)

dt
=m0 g ,    (1) 

and after integration we obtain   

 
v

1- v2 c2
= gt  or   

     

 t =
v

g 1- v
2

c
2

.   (2)                          

 

If we let u = v/c then, with 0 ≤ u ≤ 1, 

t =
c

g

æ

è
ç

ö

ø
÷

u

1-u
2

        (3) 

 

The number of days needed to reach various values 

of u is shown in column 2 of table 1. Compare these 

with those in column 1, where t = v/g. Since 
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u

1- u2
> u  for 0 ≤ u ≤ 1, the values in column 2 are 

always greater than those in column 1, with a ratio 

approaching ¥  as u approaches 1. Thus the vehicle 

can never achieve the speed of light, but can get 

arbitrarily close to it. As its mass increases without 

limit, it takes longer and longer to increase its speed 

by the slightest increment. 

Let us remind ourselves that equation (3) and the 

values in column 2 specify how observers on earth 

measure the vehicle’s motion. They are not the 

measurements of the travelers themselves, which we 

will consider below.       

Distance: While the time to attain any particular 

speed is understandably greater when mass is subject 

to relativistic increase, is the same true for the 

distance traveled? If we call the target speed vt, then 

the non-relativistic distance traveled from launch 

until vt is attained is the familiar  

s1 = gt dt = vt

2
2g

0

v t /gò , or, if  ut = vt /c,   

s1 =
c

2
u

2

t

2g
   (4) 

 The distance traveled with relativistic mass increase 

is 

s2 = v dt = gc
t

c2 + (gt)2
dt

0

tt

ò
0

vt

ò .  

The upper limit of the integral, tt , signifies 

v
t

g 1- v
2

t c
2

 , obtained directly from (2), while the 

equivalence  v =
gtc

c2 + (gt)2
 is an algebraic 

consequence of (2). After integration   

 s2 =
c2

g

c

c2 - v2
t

-1
æ

è

ç
ç

ö

ø

÷
÷
,    

and with ut = vt /c this becomes   

s2 =
c2

g

1

1-u2
t

-1
æ

è

ç
ç

ö

ø

÷
÷
.        (5) 

It is easily shown that s2> s1 for all t > 0. Inspection 

of (5) reveals that as ut®1, s2®¥. This is to be 

expected, since for the earthbound observers the 

vehicle will be traveling at a speed near c for an 

amount of time that according to (3) increases 

without limit. 

3. Measurements by the travelers 

Time:  How will the situation change if we take into 

account time dilation, whose effects the travelers’ 

measurements will reflect?  

Let T be the elapsed time since launch according to 

the travelers’ onboard clock. T is a function of t, the 

time as measured by the observers on earth. This 

function depends upon the vehicle’s entire history of 

motion, not just upon what is occurring at the 

moment. By contrast, history will prove irrelevant to 

the travelers’ measurement of instantaneous speed, V. 

That is, we will see that regardless of the vehicle’s 

history, the speed measured by the observers and the 

speed measured by the travelers are always equal. 

This of course is an ambiguous statement, but before 

we clarify what it means, let us show the simple 

derivation. Let s represent the distance traveled since 

launch as measured by the observers, and S the 

distance as measured by the travelers.  For any brief 

interval, time dilation yields: 
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 dT = 1- v2 c2 dt  

But since the travelers measure the space outside 

them to be moving past their window at a velocity of 

v, length contraction yields [6]:  

dS = 1- v2 c2 ds , and thus the instantaneous speed 

measured by the travelers is    

V =
dS

dT
=

1- v2 c2

1- v2 c2

ds

dt
=

ds

dt
= v

              

(6)  

Time dilation apparently compensates for length 

contraction, but again, what exactly does (6) assert? 

We can interpret it with a simple example. Suppose 

that both the observers and the travelers, with much 

more knowledge of the solar system and galaxy than 

we have, specify event A to be the vehicle’s passage 

past a particular comet in the Oort cloud (perhaps 

even specifying that the vehicle’s vector of motion is 

perpendicular to a line from the vehicle to the center 

of the comet.) Then the speed v which the observers 

measure at event A will equal the speed V which the 

travelers seeon their speedometer at their own event 

A. That is, the observers and the travelers will agree 

on the vehicle’s speed at the moment event A occurs. 

There is no confusion as to whether these two equal 

speeds are “happening at the same time,” which is 

not only confusing but also meaningless. We can, 

however, say something definite about time: as we 

will show below, if the travelers measure event A 

happening at time T, and the observers measure it 

happening at time t, then T<t. That is, the travelers 

measure its occurrence at an earlier time on their 

clock than the observers do on theirs. 

We will use equation (6) to obtain T as a function of t 

for the specific motion portrayed in (2), but now as 

measured by the travelers. Without noticing anything 

strange, since they are not comparing their 

measurements to those of the observers, the travelers 

are subject to two relativistic effects: a dilation of 

time, and a contraction of the space outside as it flies 

by their vehicle.  

Solving for v in (2) gives v =
tgc

c2 + (gt)2
, and 

substituting this into 

dT = 1- v2 c2 dt  yields 

 

dT = 1-
t 2g2c2

c2 (c2 + (gt)2 )
dt =

c2 + t2g2 - t2g2

c2 + (gt)2
dt =

c

c2 + (gt)2
dt . 

 

   Integrating and solving for the constant of 

integration gives: 

T =
c

g
sinh-1 gt

c

æ

è
ç

ö

ø
÷ , or                          (7)                       

t =
c

g
sinh

gT

c

æ

è
ç

ö

ø
÷        (8)                           

Replacing t in (2) with t from (8) produces the 

equation 

c

g
sinh

gT

c

æ

è
ç

ö

ø
÷ =

v

g 1- v2
c

2
, which yields  
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 T =
c

g
ln

v+ c

c2 - v2

æ

è
ç

ö

ø
÷     (9) 

Letting u = v/c,  

 T =
c

g
ln

u +1

1- u
2

æ

è
ç

ö

ø
÷.             (10) 

This is still less than satisfactory, for T on the left 

side of (10) represents the travelers’ measurement of 

time, while u on the right side is the fraction of c as 

measured by the observers. However, since for any 

event A the speed V equals the speed v, u could just 

as well be equated with V/c, and (10) would be 

exclusively in terms of the travelers’ measurements. 

The value of T for various speeds u is given in 

column 3, table 1. The entire column is in italics to 

indicate that it represents the measurements of the 

travelers. T<t for all u, an inequality which grows 

with increasing u. 

A note on measurement: Before calculating the 

distance as measured by the travelers, let us briefly 

consider the term measurement itself. This is a term 

used repetitively, not only in this paper but in all 

physical discussions. While the term conjures up—

and indeed almost always signifies—an observation 

using some calibrated instrument or apparatus, it 

might be useful to explore the concept somewhat. 

Consider this line of reasoning. Between the above 

event A and a later event B, such as the encounter 

with a second comet, there is an interval of time and 

distance measured differently by the observers and 

the travelers.  (To be clear, here the word “interval” is 

not being used to designate the invariant quantity 

[(cDt)2 - (Dx)2 ]1/2 .) Let us say that during this interval 

the traveler (we will assume female), using her 

onboard clock and her right index finger placed on 

her left wrist, calculates that during this interval her 

pulse has held steady at 60 beats per minute. An 

observer on earth, with electromagnetic access to the 

traveler’s pulse but using his own clock, will 

calculate that the traveler’s pulse began the interval 

at, say, 40 beats per minute, and after the vehicle’s 

acceleration through the interval, finished at 35 beats 

per minute. Between events A and B the total number 

of beats had to be the same for the traveler and the 

observer, but the onboard clock measured fewer 

minutes than the clock on earth. To the observer, the 

traveler’s heart seemed to beat increasingly slowly, 

while the traveler herself felt quite normal.  

Any onboard activity would give a similar result. For 

example, the observer would measure a male 

traveler’s facial hair to be growing slowly, although 

by the onboard clock the traveler himself would 

shave according to his usual schedule. To the 

observer the traveler’s speech would get slower and 

slower as the vehicle accelerated, as would the 

appearance of emotionson his face, or even—if the 

capacity to register this had been discovered—the 

succession of his thoughts. None of these activities 

would appear or feel unusual to the traveler. To him 

the onboard clock itself would advance normally, 

although the observer would perceive it as slowing 

down compared with his own clock.  

The statement that time itself slows down can be 

misleading, although it does give a sense that 

something more substantial than a mere appearance is 

actually happening. One must remember that in this 

study it ultimately refers to a measurement by a clock 

in an inertial frame, of activities that are accelerating 

relative to that inertial frame. (A more complete 

understanding is beyond the scope of this paper, but a 

comprehensive and comprehensible reference is [7].) 

Distance:  Taking a closer look at columns 2 and 3, is 

there some contradiction here? If the travelers take 

only 936.45 days to reach u = .99 (column 3), and the 

observers measure it as 2483.10 days (column 2), 

how could the speeds always be the same at every 

event along the route, such as event A? Wouldn’t the 
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travelers measure an average speed much faster than 

that measured by the observers? We can resolve this 

difficulty by considering the contraction of exterior 

distance as measured by the travelers.  

How far do the travelers measure that they have gone 

since the moment of launch until the moment they 

attain a speed of vt? Call this distance s3.  

s3 = V dT
0

tt

ò . Using (9), integrating, and replacing  vt/c by ut yields 

s3 =
c2

2g

æ

è
ç

ö

ø
÷ ln

1

1-ut
2

æ

è
ç

ö

ø
÷.                (11) 

Substitution of various values of u into (5) and (11) indicates that for 0 < u < 1, the travelers’ distance will be 

shorter than the distance observed from earth. However, we can be more convincing than this. Consider two 

specific events, B followed closely by C. The observers and travelers see the same speed at B and the same speed 

at C, and thus the same difference dut. The observers measure the distance between these events as ds2 while the 

travelers measure it as ds3. Consider the ratio 

ds3

ds2

=
ds3 dut

ds2 dut

=

d
c2

2g
ln

1

1-ut
2

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ dut

d
c2

g

1

1-u2
t

-1
æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
÷

dut

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

=
ut 1-ut

2( )
ut 1-ut

2( )
3/2
= 1-ut

2 .  (12) 

Since ds3 < ds2  for all such intervals, integrating to 

find the distance between launch and any later event 

will always result in s3 < s2. Comparing (11) with (5), 

we find that at u = .5, s3/s2 = .93 and at u = .99, s3/s2 = 

.32.  In fact, by applying L’Hôpital’s rule to the ratio 

s3/s2 , we can show that s3 / s2 ® 0 as u®1. To sum 

up, although the time measured is less for the 

travelers, so is the distance. Thus the equality of 

speeds shown in (6) is compatible with the briefer 

travel times of column 3. 

Although we will not consider it here, we might note 

that once the travelers are moving at a speed near c 

the passage of time is so slow by their measurement 

that within their lifetime they can reach distant 

locations in the galaxy or even beyond [8,9]. 

While the assumption of a constant delivery of force 

may be too simple and even unrealistic, it generates 

an interesting question: how does the vehicle’s power 

output—the delivery of energy per unit of time—

depend upon time as time itself dilates? That is, how 

do the travelers measure the delivery of force? We 

leave this for the motivated student to research. 

4. Data 

Table 1. Exterior propulsion. Time to reach u=v/c,  

or V/c to nearest hundredthof a day. In columns  

1 and 2, t is time for observers; in column 3, T is time  

for travelers. c = 299,792,458 m/s, g=9.80665 m/s2 

U=v/c 1 2 3 

.9999 353.79 25017.19 1752.03 

.99 350.28 2483.10 936.45 

.98 346.75 1742.47 812.93 

.95 336.13 1076.48 648.13 
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.90 318.44 730.55 520.91 

.80 283.06 471.76 388.71 

.70 247.68 346.82 306.87 

.60 212.29 265.37 245.25 

.50 176.91 204.28 194.36 

.40 141.53 154.42 149.90 

.30 105.15 111.27 109.52 

.20 70.76 72.56 71.73 

.10 35.38 35.56 35.50 

1:No relativistic effects; t = v /g. 

2:Relativistic mass increase, no time dilation; as  

observed from earth; t = c g( ) u 1- u2( ). 
3: Relativistic mass increase, time dilation; as  

experienced by the travelers; 

T = c g( ) ln (u+1) 1-u2( ) . 

5. Conclusion: turning student 

questions into research 

Let us look at three examples of questions which open 

the way to stimulating research. (Like many other 

instructors, I’ve finally learned to resist giving too 

complete an answer.) 

A thoughtful student will inevitably reason like this: 

since the travelers see the earth accelerating away 

from them, why not reverse the calculations? Now the 

traveler measures the observer’s clock to be going 

slow. What happens when the vehicle returns to earth 

35.28 35.56 35.50and the two clocks are compared 

side by side? How can they both be slow? Isn’t there 

some contradiction? No, in fact, there isn’t. The earth 

is assumed to carry a fixed, inertial frame of 

reference, while the vehicle carries an accelerating 

frame, not only because of its acceleration of g, but 

also because of the further acceleration it requires to 

turn around and return to earth. Our calculations 

apply to inertial frames only, and these accelerations 

would affect the clock on the vehicle but not the clock 

on earth. The situation is not symmetric. Research the 

“twin paradox.” 

Another student might point out the imprecision in 

our calculations: the effects of general relativity, 

which we have not included in this study, would 

surely modify our results. True, but the effects of 

accelerating at g are indistinguishable from those of 

the earth’s gravitational field, which we know from 

experiment has a negligible effect on mass and time 

[10]. Our calculations are accurate to several decimal 

places beyond the hundredths to which we’ve 

rounded off.  

A third questioner, perhaps a down-to-earth 

engineering student, might dismiss relativistic travel 

as mere fantasy, theoretically impossible, beyond any 

feasible technology. This is the stuff of pop  

culture, why bother with it? Perhaps so, but an overly 

conservative attitude—however well informed—can 

be too restrictive. At the end of the nineteenth century 

many scientists believed that physics had reached its 

culmination. Probably the most celebrated comment 

to this effect was A.A.Michelson’s of 1894 [11]: “The 

more important fundamental laws and facts of 

physical science have all been discovered, and these 

are so firmly established that the possibility of their 

ever being supplanted in consequence of new 

discoveries is exceedingly remote.” Perhaps every 

era, satisfied with its accomplishments, believes it has 

made the ultimate discoveries [12]. This attitude is 

somewhat tempered today, for recent discoveries—

the acceleration of the universe’s expansion, or the 

finding of the Higgs boson in 2012—have clearly 

posed new fundamental questions. Without apology 

we can speculate sensibly about the future and make 

tentative assumptions such as those in this paper. 
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