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Gibbs paradox: Mixing and non mixing potentials
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Abstract

Entropy of mixing leading to Gibbs paradox is studied for different physical systems with
and without potentials. The effect of potentials on the mixing and non mixing character of
physical systems is discussed. We hope this article will encourage students to search for
new problems which will help them understand statistical mechanics better.

1 Introduction

Statistical mechanics is the study of macro-
scopic properties of a system from its mi-
croscopic description. In the ensemble for-
malism introduced by Gibbs[1] there are
three ensembles-micro canonical, canonical
and grand canonical ensemble. Since we are
not interested in discussing quantum statis-
tics we will use the canonical ensemble for in-
troducing our ideas. To study the thermody-

namics of any system (which is the main aim
of statistical mechanics) we need to calculate
the canonical partition function, and then ob-
tain macro properties like internal energy, en-
tropy, chemical potential, specific heat, etc.
of the system from the partition function. In
this article we make use of the canonical en-
semble formalism to study the extensive char-
acter of entropy and then to calculate the
entropy of mixing. It is then used to ex-
plain the Gibbs paradox. Most text books
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[2, 3, 4, 5, 6, 7, 8, 9] discuss Gibbs paradox
considering only the case of the classical ideal
gas, but here we analyze different physical
systems with and without potentials. The
study of Gibbs paradox is very fundamental
as pointed out by Erwin Schrdinger- “ It has
always been believed that Gibbs paradox em-
bodied profound thought. That it was inti-
mately linked up with something so impor-
tant and entirely new could hardly have been
foreseen.”

2 Gibbs paradox

When entropy of an ideal gas was calculated
using ensemble theory, it was found to be not
extensive.

S = N k

[
ln

(
V

λ3

)
+

3

2

]
.

The entropy of mixing for two ideal gases is
the difference between the total entropy after
mixing and that of individual systems before
mixing. For the same particle density, the
entropy of mixing is given by

∆S = k

[
N1 ln

N1 +N2

N1

+N2 ln
N1 + N2

N2

]
.

If we find ∆S for two different ideal gases it is
found that there is a finite entropy of mixing,
but a paradoxical situation is there for sim-
ilar ones - instead of getting ∆S = 0 there
is a finite entropy of mixing. Thus the non
extensive character of the entropy equation
causes the Gibbs paradox when there is mix-
ing. This paradox is resolved in an ad hoc
way by Gibbs. He put a correction factor N !

in the denominator of the partition function.
The corrected N particle partition function
is

QN =
QN

1

N !
,

where Q1 is the single particle partition func-
tion.

With this correction the entropy become
extensive which resolves the paradox.

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
.

The entropy of mixing then turns out to be

∆S =k

[
(N1 +N2) ln

V1 + V2
N1 +N2

]
− k

[
N1 ln

V1
N1

+N2 ln
V2
N2

]
.

If the initial particle densities of two similar
mixing systems are equal, this equation gives
∆S = 0. The recipe of Gibbs corrects the
enumeration of micro states as necessitated
by the indistinguishability of identical parti-
cles [3].

3 Thermodynamics in

the canonical ensemble

In the canonical ensemble the bridging equa-
tion to find the thermodynamics is

A = −kT lnQN ,

where A is the Helmholtz free energy, k is
Boltzmann’s constant and T is the absolute
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temperature. To circumvent Gibbs paradox
the above equation is modified as

A = −kT ln
QN

N !
.

Using Stirling’s approximation, lnN ! =
N lnN −N,

A = −kT (lnQN −N lnN +N) .

With the inclusion of Gibbs’ correction factor
A contains new terms which are T and N
dependent. So the entropy (S) given by the
equation

S = −
(
∂A

∂T

)
V,N

needs to be modified. In the coming sections
we will consider different systems with and
with out potentials which can be grouped in
to mixing and non mixing systems as relevent
to the Gibbs paradox. The systems are clas-
sified as

1. Free classical particles

2. Particles in a potential without Gibbs
paradox

3. Particles in a potential with Gibbs para-
dox

In these sections we will connect the effect
of potentials on entropy of mixing by finding
the extensive nature of entropy for different
physical systems.

4 Free classical particles

Free particles can be

1. Non-relativistic free particles

2. Massive particles with a relativistic for-
mulation

3. Ultra relativistic

4.1 Non-relativistic

For a single non-relativistic particle, the en-
ergy is

E =
p2

2m
and the N particle partition function is

QN =

(
V

λ3

)N
,

where V is the volume and λ is the de Broglie
thermal wavelength given by

λ =
h

(2πmkT )
1
2

.

The entropy is

S = N k

[
ln

(
V

λ3

)
+

3

2

]
which is not extensive. Introducing the Gibbs
correction factor 1

N !
in the N particle parti-

tion function we get

QN =
1

N !

(
V

λ3

)N
and entropy becomes

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
(1)

which is extensive.
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4.2 Massive particles with a
relativistic formulation

For relativistic particles the energy is

εp =
√
p2c2 + m2c4

For massive particles mc2 � pc and the par-
tition function is

QN =

[
V

λ3
e−βmc2

]N
,

where β = 1
kT
, and the entropy is

S = Nk ln

[
V

λ3
e−βmc2

]
+

3

2
Nk +

N

T
mc2

which is not extensive. With the Gibbs cor-
rection factor the entropy becomes

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
which is same as in Eq.(1).

4.3 Ultra relativistic

Here pc� mc2 and the partition function is

QN =

[
8πV

h3

(
kT

c

)3
]N

.

The de Broglie thermal wavelength is

λr =
hc

2π
1
3kT

.

So

QN =

[
V

λ3r

]N
.

Using this partition function if we calculate
the entropy we will get it as not extensive but
intensive. Introducing the Gibbs correction
factor the entropy becomes

S = Nk

[
ln

(
V

Nλ3r

)
+ 4

]
.

which is clearly extensive.
The above calculations show that all types of
free particles exhibit the Gibbs paradox if the
Gibbs correction factor is not used.

5 Particles in a potential

In the coming two sections we will check what
will be the effect of potentials in the sys-
tem to the extensive character of entropy and
thereby to the Gibbs paradox.

5.1 Particles in a potential
without Gibbs paradox

1. Particles in a harmonic potential
Consider an array of equally spaced N
harmonic oscillators along a finite length
L with one particle per harmonic oscil-
lator site. The Hamiltonian for a single
particle is

H =
p2

2m
+

1

2
Kx2

where K is the spring constant given
by K = mω2, where m is the mass of
the particles and ω its angular frequency.
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The single particle partition function is

Q1 =
1

h

∫ ∞
−∞

e−β
p2x
2mdpx

∫ L/2

−L/2
e−β

Kx2

2 dx

=
kT

~ω
Erf

(√
βKL2

8

)

In the thermodynamic limit N , L → ∞
and N/L is finite, the Erf(∞) = 1, so
for the infinite length the single particle
partition function reduces to

Q1 =
kT

~ω

and then

QN = (Q1)
N .

So the entropy is

S = N k

[
1 + ln

kT

~ω

]
,

which is extensive even without Gibbs
correction factor. So there is no entropy
of mixing, and in this case the entropy
is simply additive. The harmonic poten-
tial bounds the particles in the system.
When two such systems are in contact
no particle flow happens from system to
the other. Thus the harmonic potential
makes the system non mixing.

2. Quartic oscillator
For a quartic oscillator the Hamiltonian
is

H =
p2

2m
+

1

2
Kq4.

The N particle partition function is

QN =

[
Γ

(
1

4

) √
πm

2hK
1
4

(2 kT )
3
4

]N
.

The entropy is

S = Nk

[
3

4
+ ln Γ

(
1

4

) √
πm

2hK
1
4

(2 kT )
3
4

]
which is extensive.

3. Anharmonic oscillator
For an anharmonic oscillator the Hamil-
tonian is

H =
p2

2m
+ Cq2 − gq3 − fq4

where C, g and f are positive constants
but their values are very small. The N
particle partition function is

QN =

[(
2m

C

) 1
2 πkT

h
(X)

]N
,

where

X =

[
1 +

3kT

4

(
f

C2
+

5g2

4C3

)
+ ..

]
.

The entropy is

S = Nk

[
1 + ln

[(
2m

C

) 1
2 πkT

h

]]
+ Y,

where

Y = Nk

[
3

2
kT

(
f

C2
+

5g2

4C3

)
+ ..

]
.

The entropy is extensive.
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4. Electron in a magnetic field
Consider a system of localized particles
of spin half with magnetic moment µB,
in the presence of an external magnetic
field of strength B. The N particle par-
tition function is given by

QN = [2 cosh (βµBB)]N .

The entropy

S =Nk ln [2 cosh (βµBB)]

−Nk [βµBB tanh (βµBB)]

is extensive.
In all the above calculations we have
taken particles which are localized by
some potentials which makes the system
non mixing so that there is no Gibbs
paradox. There is another way to dif-
ferentiate between mixing and non mix-
ing systems or extensive and non exten-
sive systems. The technique is to draw
the single particle phase space trajecto-
ries. We can see in Figure 1 that the
phase space diagrams of the above lo-
calized systems have closed trajectories.
This then implies that the systems are
non mixing (but the converse is not true
as, for example, in chaotic systems).

5.2 Particles in a potential
with Gibbs paradox

1. Non-relativistic free particles in a
gravitational field
Consider a collection of N particles of
mass m enclosed in a vertical cylinder of

Figure 1: Single particle phase space dia-
grams

height L in a uniform gravitational field.
The total energy of the system is

E =
p2x + p2y + p2z

2m
+ mgz,

where mgz is the gravitational potential
energy with z as the height of the par-
ticle. The N particle partition function
is
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QN =

[
AkT
mgλ3

(
1− e−βmgL

)]N
,

where A is the area of cross section of
the cylinder. In the limit when L → ∞
the partition function becomes

QN =

[
AkT
mgλ3

]N
.

The entropy is

S = N k

[
ln

(
AkT
mgλ3

)
+

5

2

]
which is not extensive. With the Gibbs
correction factor the entropy is changed
to

S = N k

[
ln

(
AkT
Nmgλ3

)
+

7

2

]
which is now extensive. If the poten-
tial energy is very large the particles will
drop to the ground and will become sta-
tionary.

2. Diatomic molecule with inter-
particle potential
Here we consider a system of diatomic
molecules with the 2-particle Hamilto-
nian given by

H =
p21 + p22

2m
+ ε|r12 − r0|

where ε and r0 are positive constants and
r12 = |~r1−~r2| is the distance between the
two particles.

Q1 =

(
2πm

β

)3

V 4πX

where

X =

[
2r20
βε

+
4

(βε)3
− 2e−βεr0

(βε)3

]
.

A = −NkT ln

[(
2πm

β

)3

V 4πX

]
and the entropy

S = Nk

[
3

2
+
Y

X

]
+Nk ln

[(
2πm

β

)3

V 4πX

]
,

where

Y =
2k(r0)

2T

ε
+

12kT 3

ε

− e−βεr0
(

6kT 3

ε
+

2k2T 2r0
ε2

)
.

S is not extensive. With the Gibbs cor-
rection factor the entropy is

S = Nk

[
5

2
+
Y

X

]
+Nk ln

[(
2πm

β

)3
V

N
4πX

]
.

We now get an extensive entropy.

3. Diatomic dipoles in external elec-
tric field
Consider a system of diatomic molecules
with electric dipole moment µ and mo-
ment of inertia I placed in external elec-
tric field of strength E. The energy of a
molecule is given by

E =
p2

2m
+
p2θ
2I

+
p2φ

2I sin2 θ
− µE cos θ.
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The Nparticle partition function is

QN =

[
V

λ3

(
I

β~2
2 sinh(βµE)

βµE

)]N
and the entropy

S =Nk ln

[
8π2k2T 2IV

µEλ3
sinh(βµE)

]
− NµE

T
coth(βµE) +

7

2
Nk

is not extensive. With the Gibbs correc-
tion factor the entropy is

S =Nk ln

[
8π2k2T 2IV

µENλ3
sinh(βµE)

]
− NµE

T
coth(βµE) +

9

2
Nk

which is now extensive.

4. Particles with a potential of the
form 1

2
C |r2 − r1|2

Consider a system with Hamiltonian

H =
p21 + p22

2m
+

1

2
C|r2 − r1|2

This Hamiltonian approximates a non
interacting diatomic molecule. The N
particle partition function is

QN =

[(
2πm

hβ

)3

V

(
2π

βC

) 3
2

]N
.

The entropy

S =Nk ln

[(
2πmk

h

)3

V T
9
2

(
2πk

C

) 3
2

]
+

9

2
Nk

is not extensive. Introducing the Gibbs
correction factor the entropy becomes

S =Nk ln

[(
2πmk

h

)3
V

N
T

9
2

(
2πk

C

) 3
2

]
+

11

2
Nk

which is now extensive.

5. Free electrons in a magnetic field
Free electrons in a uniform magnetic
field ~B follow a helical path with an axis
parallel to the field direction, say, the z
axis. The projection on the x, y plane is
a circle. The energy associated with the
circular motion is quantized in units of
e~B
mc

and the energy associated with the
linear motion along the z axis is taken
as continuous. The total energy of such
particles is

E =
e~B
2mc

(
j +

1

2

)
+

p2z
2m

where j = 0, 1, 2, 3 . . . . The N particle
partition function is

QN =

[
V

λ3
βµeffB

sinh(βµeffB)

]N
where µeff = e~/2mc and the entropy is

S =Nk

[
ln

(
V

λ3

)
βµeffB

sinh(βµeffB)

]
+Nk

[
βµeffB coth(βµeffB) +

1

2

]
.

The entropy is not extensive. By intro-
ducing the Gibbs correction factor for
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the N particle partition function the en-
tropy becomes

S =Nk

[
ln

(
V

Nλ3

)
βµeffB

sinh(βµeffB)

]
+Nk

[
βµeffB coth(βµeffB) +

3

2

]

which is extensive. The above system is
the Landau diamagnetic system in which
electrons circulate in a helical path and
collide with the walls, and bounce to and
fro and behave as free particles.
From the above examples we find that
even though these systems are under cer-
tain potentials they are non localized
and such systems shows the Gibbs para-
dox.

Conclusions

We have attempted to find the dependence
of potentials and their effect on the Gibbs
paradox by studying the extensive nature of
entropy. It is found that there are potentials
which do not allow mixing and for such sys-
tems there is no need of the Gibbs correction
factor in the N particle partition function.
There are some potentials which allow mix-
ing and hence there is a necessity of the Gibbs
correction term for the entropy to be exten-
sive. We found that if the equation for the
partition function is volume and temperature
dependent it can be written as

QN ∝ V φ(T )

for systems which shows the Gibbs paradox,
and for systems which do not show the Gibbs
paradox

QN ∝ V 0φ(T )

indicating the volume independence and only
temperature dependence. In our analysis we
found that in the case of free particles, the
Gibbs correction is essential to overcome the
Gibbs paradox. In the cases of particles con-
fined in a potential like harmonic, quartic,
anharmonic potentials, and static electrons
in a magnetic field we found that confinement
makes the system localized and does not al-
low particles to flow and so there is no Gibbs
paradox. For the systems like free electrons in
a magnetic field, non-relativistic free particles
in gravitational field and diatomic dipoles in
an external electric potential, even if there is
a potential there is no confinement, and the
system is non localized which allows flow of
particles.
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