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Abstract

It is often stated that complex numbers are essential in quantum theory. In this article, the
need for complex numbers in quantum theory is motivated using the known results of
tandem Stern-Gerlach experiments.
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1 Introduction

Complex numbers are essential in quan-
tum theory. In classical physics complex
quantities are often introduced to aid in
solving problems rather than as a necessity.
That makes it mysterious for students about
the role of complex numbers in quantum
theory. In this pedagogical report, it is illus-
trated that the need for complex numbers
in quantum theory can be made plausible

after discussing the results of Stern-Gerlach
(SG) experiment. This idea is presented
in many texts, for instance, Sakurai[1] or
Townsend[2]. Here, we wish to bring this to
the notice of physics students and make a
simplified presentation.

A SG apparatus is an arrangement to
provide a spatially inhomogeneous magnetic
field. The purpose of spatial inhomogeneity
is to exert force on spins, which are like mag-
netic moments, so that spins of different ori-
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entations are spatially separated. The direc-
tion of maximum gradient (a measure of in-
homogeneity) is the axis along which spatial
separation occurs. If this direction is chosen
to be the z-axis, the corresponding SG appa-
ratus is said to be oriented along z-axis and
it is denoted by SGz. If the ”spin” is indeed
like a classical magnetic moment, then every
possible orientation with respect to the ori-
entation of the SGz is possible and the out-
put beam is expected to be continuously dis-
tributed along z direction in in space. How-
ever, experiments indicated that there were
finite number of output streams. Particles in
each of the stream is assigned a ”spin” value.
If there are two outputs, the particles in one
of the beams are said to be in up-spin state
and those in the other output are said to be
in the down-spin state. Such particles are
said to be ”spin-half” particles. Electrons,
protons, neutrons, singly ionized silver atoms
are some examples of spin-half systems.

2 Tandem Stern-Gerlach

Experiments

The need for introducing complex numbers
is easily recognized by knowing the results
of experiments using two SG apparatuses in
tandem. Consider a beam of spin-half sys-
tem, for example, singly ionized silver atoms,
passing through a SGz. The output of the
apparatus will have two beams that are spa-
tially separated. This indicates that the spin
of an atom in the beam has two possible
values. In quantum theory this is taken to

mean that the required state space is two-
dimensional. Associated with these two pos-
sible spin values are two quantum states,
namely, |z+〉 and |z−〉, corresponding to up-
spin and down-spin respectively. . An arbi-
trary spin state |ψin〉 is described by a super-
position of the two states,

|ψin〉 = r1|z+〉+ r2|z−〉, (1)

where r1 and r2 are the superposition coeffi-
cients that satisfy r21 + r22 = 1. A short nota-
tion is used to present these facts. A SG ap-
paratus oriented along the z-axis is denoted
by Z enclosed in a box. The experimental
fact that an arbitrary beam of spin-half sys-
tems will give rise to two output beams is
represented by

|ψin〉 −→ Z −→ {|z+〉, |z−〉},

where the states corresponding to the two
output beams are enclosed in curly brackets.
The relative intensities of the output beams
decide the magnitude of the superposition co-
efficients. Let us assume that the superposi-
tion coefficients are real. According to the
Born’s rule for statistical interpretation, the
relative intensities of the beams correspond-
ing to orthogonal states are the squares of
the magnitudes of the respective superposi-
tion coefficients. In the case of SGz experi-
ment with two output beams of equal inten-
sity, the input state is a superposition of the
two output states:

|ψin〉 =
1√
2

[|z+〉+ |z−〉. (2)

If the input beam is in the state |z+〉, there
is a single output beam corresponding to the
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output stream represented by |z+〉. In the
short notation introduced earlier, tt is repre-
sented as

|z+〉 −→ Z −→ |z+〉.

That is, |z−〉 cannot be generated from |z+〉
using SGz. Similarly, if the input state is
|z−〉,

|z−〉 −→ Z −→ |z−〉,
implying that |z+〉 cannot be obtained from
|z−〉. In simple terms, SGz does not affect
|z+〉 and |z−〉. Hence, they qualify as ”eigen-
states” of SGz. More importantly, the fact
that SGz cannot generate |z+〉 from |z−〉 im-
plies that the two states |z+〉 and |z−〉 are
”orthogonal” to each other. In mathematical
terms, orthogonality means the inner product
between the two states is zero.

The choice of orientation of the SG appa-
ratus is arbitrary. For instance, if the SG
apparatus is oriented along x-direction, then
an arbitrary input beam of spin- half parti-
cles results in two output beams, separated
spatially along the x- direction. The respec-
tive states of the particles in the two beams
are denoted by |x+〉 and |x−〉. As in the case
of SGz, the following are true:

|ψin〉 −→ X −→ {|x+〉, |x−〉},

|x+〉 −→ X −→ |x+〉,
and

|x−〉 −→ X −→ |x−〉.
And the conclusion is that the states |x+〉
and |x−〉 are orthogonal, eigenstates of SGx.
Similarly, for an experiment with SGy ,

|ψin〉 −→ Y −→ {|y+〉, |y−〉},

|y+〉 −→ Y −→ |y+〉,

and
|y−〉 −→ Y −→ |y−〉.

As in the other cases, the states |y+〉 and
|y−〉 are orthogonal, eigenstates correspond-
ing to SGy.

2.1 Experiment I

Are |z+〉 and |z−〉 unaffected by SGx? To
find out, one of the outputs of SGz, say, the
beam of particles corresponding to |z+〉, is
used as input to SGx. The experimental re-
sult is that there are two output beams of
equal intensity. So, from |z+〉, both |x+〉 and
|x−〉 emerge. Then the following assignment
is possible:

|z+〉 =
1√
2

[|x+〉+ |x−〉], . (3)

Once this choice is made for |z+〉, the require-
ment for orthogonality implies that

|z−〉 =
1√
2

[|x+〉 − |x−〉]. (4)

These expressions are consistent with the re-
quirement that |z+〉 and |z−〉 are orthogonal
to each other. Note that the superposition
coefficients are chosen to be real. It does not
matter if the expressions for the states |z+〉
and |z−〉 are swapped.

2.2 Experiment II

Let one of the outputs of SGz be sent through
a SGy. Like the previous case, two output
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beams of equal intensity emerge from the ap-
paratus. Arguing as before, the results are

|z+〉 =
1√
2

[|y+〉+ |y−〉], (5)

|z−〉 =
1√
2

[|y+〉 − |y−〉], (6)

where the superposition coefficients have
been assumed to be real. There is no incon-
sistency so far.

2.3 Experiment III

The last piece of information required is a re-
lationship among the states |x±〉 and |y±〉.
For this, one of the output beams of SGx, for
instance, the output corresponding to |x+〉,
is fed as input to SGy. Two output beams
of equal intensity emerge. If the input is
changed to |x−〉, there are two output beams
of equal intensity. So, the results can be sum-
marized as

|x+〉 =
1√
2

[|y+〉+ |y−〉], (7)

|x−〉 =
1√
2

[|y+〉 − |y−〉], (8)

assuming that the superposition coefficients
are real.

3 Analysis of results

What can be inferred from the results of the
three experiments described above? First of
all, the conclusions from the Experiment III

can be used to rewrite the results of the Ex-
periment II. This yields

|z+〉 = |x+〉, (9)

|z−〉 = |x−〉. (10)

This is at variance with the results of the Ex-
periment I which indicate that |z+〉 and |z−〉
are linear combinations of |x+〉 and |x−〉.
Obviously, one of the assumptions used in ex-
pressing the results should be wrong. The
crucial assumption made is that the input
state is expressible as a linear combination of
output states with real coefficients. Now, it
needs to be argued that using complex coeffi-
cients yields consistent results. The require-
ments are that the two output beams are of
equal intensity and the corresponding states
orthogonal to each other. So, one possibil-
ity is to recast the results of Experiment III
using complex coefficients to give

|x+〉 =
1

2
[(1− i)|y+〉+ (1 + i)|y−〉], (11)

|x−〉 =
1

2
[(1 + i)|y+〉+ (1− i)|y−〉]. (12)

where i =
√
−1. The definition of inner prod-

uct between two states |ψ1〉 = a|z+〉+ b|z−〉
and |ψ2〉 = c|z+〉 + d|z−〉 is 〈ψ1|ψ2〉 = a∗c +
b∗d, where superposition coefficients a, b, c
and d are complex numbers, and the super-
script ∗ implies complex conjugation. With
this definition of inner product, the orthogo-
nality condition is satisfied. Further, the co-
efficients are of equal magnitude to account
for the observation that the output beams are
of equal intensity. This specific choice of su-
perposition coefficients ensures that the re-
sults of the Experiments I and II need not
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be rewritten with complex coefficients, and it
concurs with the convention adopted in quan-
tum physics. Other choices such as

|x+〉 =
1√
2

[|y+〉+ i|y−〉], (13)

|x−〉 =
1√
2

[|y+〉 − i|y−〉], (14)

to express the results of Experiment III would
require rewriting the results of the Experi-
ment I and Experiment II using complex su-
perposition coefficients.

4 Discussion

Complex numbers are essential in the Hilbert
space formulation of quantum theory. With-
out invoking complex numbers, it is impos-
sible to consistently explain the outcomes of
some simple experiments performed with SG

devices in tandem. Another important point
to note is that the Schrodinger equation has
not been used in the arguments presented
here. Even though

√
−1 appears explicitly in

the Schrodinger equation which governs dy-
namics in quantum physics, the requirement
for complex numbers is not due to this partic-
ular rule of dynamics. It is the linear vector
space structure that is crucial in necessitating
complex numbers in quantum theory.

References

[1] J J Sakurai, Introduction to Modern
Quantum Mechanics(Addison-Wesley,
1994, New York) p27.

[2] J. S. Townsend, A Modern Introduction
to Quantum Mechanics (McGraw Hill,
1992, Singapore) p17.

Volume 28, No. 3 Article Number : 3. www.physedu.in


	Introduction
	Tandem Stern-Gerlach Experiments
	Experiment I
	Experiment II
	Experiment III

	Analysis of results
	Discussion

