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Abstract

Variational problems are ubiquitous in physics. But an introductory course on the calculus
of variations is typically restricted to solving a few standard problems like the classical
brachistochrone. Several experiments have clearly shown this theory to be inadequate,
because any actual physical situation involves resistance, but no attempt has been made so
far to reconcile experiment with theory. Adding resistive forces to the problem makes
analytical solutions intractable. We show how such hard variational problems can be easily
solved using a simple numerical approach. This allows a large variety of variational
problems to be solved at an introductory level and the solution checked against simple
experiments. We illustrate this by solving the brachistochrone problem with Coulomb
friction and fluid resistance. We outline an experiment which could be used to check the
result.

1 Introduction

Variational principles are ubiquitous in
physics. Yet an introductory course on the

calculus of variations treats very few prob-
lems. There is also no simple numerical
method (as with ordinary differential equa-
tions) through which a larger variety of prob-
lems can be examined. The classical brachis-
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tochrone problem is the standard problem
solved in introductory textbooks [1]. How-
ever, the addition of any kind of resistance
makes the problem much harder to solve. The
addition of Coulomb friction was first exam-
ined in [2] and requires a constrained varia-
tional technique. An examination of [3] re-
veals that simple models of fluid resistance
lead to very involved algebra.
There have been several experiments on

the brachistochrone performed at the under-
graduate/high school level and all of them
have shown significant deviations from the
expected result. Moreover, because the the-
ory with resistance is too complicated, there
has been no attempt to incorporate it. As
an example, take the isochronous property
of the cycloid which is also the brachis-
tochrone without resistance. Introductory
physics courses teach that the simple pen-
dulum has an amplitude dependent time pe-
riod which makes it unsuitable as a clock.
The cycloidal pendulum is proposed as the
solution to this problem on the belief that
it is isochronous. In a recent experiment
with high school students however [4], it was
found that that a real cycloidal path is not
truly isochronous and a definite amplitude-
dependence was observed, as is to be ex-
pected (however, no theoretical examination
was attempted). The obvious cause of the ex-
perimental deviations is that a real cycloidal
pendulum (as opposed to an idealised one)
involves resistance.
Similarly, an experiment with ‘Hot-

Wheels’ cars found the cycloid to be the
fastest path among those that were tried,
but the authors did not examine the differ-

ence in the experimental and theoretical time
[5]. Another experiment with undergraduates
again found significant difference in the the-
oretical and experimental time values [6] but
did not investigate the possibility that the cy-
cloid is no longer the brachistochrone when
friction is included.
We present a simple numerical method

which can be used to solve any variation of
the problem. In particular, it can be used to
quantitatively examine how resistive forces af-
fect the solution and hence obtain agreement
between theory and experiment. Using this,
one can even ask more complicated questions,
like, what is the shortest path underwater? Is
it still a cycloid? This, too, can be directly
linked to a simple experiment (as we explain
later).
The brachistochrone problem with fric-

tion has been considered by other authors
[7, 8, 9, 10]. The numerical approach found
in these references is mostly limited to ob-
taining numerical solutions to the Euler equa-
tion. Numerical solutions to partial differ-
ential equations are well known. The real
difficulty is to first formulate these problems
variationally. To get over this difficulty, we
use the fact that these situations are sim-
ple from a Newtonian point of view. This
makes it easy enough to be used in introduc-
tory courses.
In a different context, there is a numerical

approach to variational problems in mechan-
ics [11]. The algorithm used in [11] does not
directly apply to our problem because we seek
to minimize the time of descent in the pres-
ence of non-conservative forces. Further, our
numerical algorithm is useful not only as an
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educational tool, but can also be applied to
solve a wide variety of variational problems
where the analytical solution is not feasible.
We demonstrate this by solving the brachis-
tochrone problem with fluid resistance and
Coulomb friction.

2 Algorithm

The mathematical problem at hand becomes
much easier if seen as a physical problem (like
a bead sliding down a pipe filled with water).
We begin by discretizing the x axis into some
N points. Specifying the y values at those
points completely defines the curve. We now
need to minimize the time it takes for the
bead to slide down. It is simple to formulate
this from a Newtonian point of view. We need
to minimize the time it takes for the bead to
travel down a path. The time of travel is
obtained by solving the equations of motion.
While in most cases, an analytical solution
will not exist, it is easy to solve the equations
of motion numerically.
To calculate the time in this way we need,

first, to construct a path, given the y coor-
dinates at the N points. One could use a
straight line between the points. However,
this is not a very good choice for the present
problem from a numerical and algorithmic
point of view because the lines do not join
smoothly, and differentiability fails at those
points. A better choice is a smoothened poly-
nomial. Let us for the moment say that the
path is given by a function y(x). The forces
involved are the force of gravity, the buoy-
ant force, Coulomb friction and fluid resis-

tance. For the fluid resistance, we assume a
resistance proportional to the square of the
velocity. The coefficient will depend on the
nature of the fluid and the object. Then the
equations of motion for the system are

mẍ = mge sin θ cos θ − µmge cos
2 θ − kvẋ,

(1)

mÿ = −mge sin
2 θ + µmge cos θ sin θ − kvẏ,

(2)

θ = − tan−1 f ′(x), (3)

ge =
(m− 4

3
πρr3)g

m
. (4)

Here m is the mass, ρ is the density of the
fluid, µ is the coefficient of friction, k is the
drag coefficient and v =

√
ẋ2 + ẏ2. The

dot denotes derivative with respect to time
whereas the prime denotes derivative with re-
spect to x. g is the acceleration due to gravity
whereas ge is the effective acceleration due to
gravity when the buoyant force is taken into
account. The buoyant force has been calcu-
lated for a spherical object.
Let us say we want to find the brachis-

tochrone between points (0, 0) and (a, b).
The algorithm starts by calculating the time
it takes to cover this distance through some
initial path (like a straight line). This path is
defined by a set of N points (xi, yi) between
(0, 0) and (a, b), where the xi points are taken
to be fixed. Now, the algorithm proceeds by
sequentially updating the yi points by chang-
ing them by a specified small amount. So
it starts by increasing (decreasing) y1. This
gives a new curve y(x). The equations of mo-
tion are solved again to obtain a new time of
descent. If this time of descent is smaller than
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the previous one, y1 is increased (decreased)
again. This is continued till a change in y1
leads to an increase in the time of descent.
Then the algorithm proceeds to y2 and re-
peats the same process. After reaching yN the
algorithm comes back and updates y1 again.
It stops when no possible step leads to a de-
crease in time.

Figure 1: The plot shows typical curves the
algorithm tries before reaching the solution.

3 Results

For the present problem, we use a Bezier
curve to interpolate between the points. Even
though we are solving 2 equations of motion,
the curve is actually defined by 1 parameter,
say t. We use a Runge-Kutta 4th order solver
to solve the equations of motion. Though the
equations of motion implicitly constrain the
object to move along the curve, it is possible
for numerical errors to develop. Hence, for
each step the ODE solver takes, rather than
computing the derivative of the curve (which

is required in the equations of motion) from
either the current x or y position of the ob-
ject, the x, y position is first mapped to t
using a simple linear search. The derivative
of the curve is then calculated at point t. We
show typical steps in the algorithm in Fig-
ure 1. If needed, a more sophisticated opti-
mization algorithm can also easily be applied
to the problem as formulated. As an exam-
ple, the simulated annealing algorithm can be
used since the problem has a cost function as
well as a specified way to change its state. We
show simulation results for different values of
k
m
in Figure 2. The least time curves obtained

are between the cycloid and the straight line.
As the drag coefficient increases, the curves
start resembling a straight line. For a large
enough drag coefficient, the least time curve
is the straight line.

To check this independently, it is possi-
ble to perform a simple experiment for a
fluid (say, water) which we briefly describe.
This experiment requires only a flexible pipe
filled with water. By fastening the pipe
at some appropriate points it can be made
to resemble a smooth curve passing through
those points. Even though the exact shape
of the pipe might be difficult to ascertain,
the shape of the pipe can be approximated
by a smoothened polynomial through those
points. The time a ball bearing takes to slide
down the pipe can be measured and hence the
time it takes to slide down different curves
can be experimentally compared.
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Figure 2: The plot shows the brachistochrone
between points (0, 0) and (π

2
, -1). The effec-

tive gravity because of the buoyant force is
8.72 m/s2. We have µ = 0.1. Starting from
above the plots are that of a straight line, the
curve obtained for k

m
= 11, k

m
= 7, k

m
= 5,

k
m

= 3, k
m

= 1 and the cycloid between the
two points.

4 Concluding remarks

The brachistochrone problem has earlier been
suggested to be the best introduction to vari-
ational calculus. On this note, an earlier
project with undergraduates tried to analyze
this problem in detail using both theory and
experiment [6]. The difference in theory and
experiment (due to resistance) could not be
addressed since their numerical method was
limited to evaluating the time integral of the
classical brachistochrone problem for differ-
ent curves. We have shown how this problem,
which is hard even to formulate analytically,
from a variational point of view, can be eas-
ily solved using a simple numerical scheme.

Moreover, the solution can be checked with
experiments easy enough to perform in the
classroom.
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tochrone on a surface with Coulomb
friction. International Journal of Non-
Linear Mechanics, 43(5):437–450, 2008.

Volume 28, No. 3 Article Number :1 www.physedu.in



Physics Education 6 Jul Sep 2012

[8] J C Hayen. Brachistochrone with
Coulomb Friction. International Journal
of Non-Linear Mechanics, 40:1057–1075,
2005.

[9] A S Parnovsky. Some generalisations of
brachistochrone problem. Acta physica
Polonica. A, 93, 1998.

[10] O Jeremić, S Salinić, A Obradović, and
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