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Abstract

In this installment we shall do some problems with Poisson brackets. The Poisson brackets
can be used to state the equation of motion (i.e., time dependence in the form of a
differential equation) of any function of coordinates and momenta (i.e, ‘a dynamical
variable’) in a very elegant manner which emphasizes the role played by the Hamiltonian
function and the constants of motion. The problems are meant to demonstrate these
aspects of Poisson brackets

Consider a system of n degrees of free-
dom, whose phase space coordinates are q =
{q1, q2, . . . , qn} and p = {p1, p2, . . . , pn}. The
Poisson bracket (PB for short) of two dy-
namical variable of this system, u(p,q, t) and
v(p,q, t), is defined as

[u, v] =
∑
i

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
(1)

The range of summation is from i = 1 to

i = n, and will be assumed in all the following
expressions, unless otherwise mentioned. But
the index of summation will be always men-
tioned (no summation convention used any-
where).

Here we summarize some basic properties
of Poisson brackets which we will be using
in solving the problems of this issue. In the
following u, v and w are three dynamical vari-
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ables and c is a constant.

[u, v] = −[v, u] (2)

[u, u] = 0 (3)

[cu, v] = [u, cv] = c [u, v] (4)

[u+ v, w] = [u,w] + [v, w] (5)

[u, v + w] = [u, v] + [u,w] (6)

[uv, w] = u[v, w] + [u,w]v (7)

[u, vw] = v[u,w] + [u, v]w (8)

Problem 1: Find the PBs [Lx, Ly], [Ly, Lz]
and [Lz, Lx], where Lx, Ly, Lz are the Carte-
sian components of the angular momentum
of a particle.

Solution: We have Lx = ypz − zpy, Ly =
zpx − xpz, and Lz = xpy − ypx, where
px, py, pz are canonically conjugate momenta
for the Cartesian coordinates x, y, and z
respectively. For convenience, let us re-
name the variables as follows: {x, y, z} →
{x1, x2, x3}, {px, py, pz} → {p1, p2, p3}, and
{Lx, Ly, Lz} → {L1, L2, L3}. With this no-
tation we have L1 = x2p3 − x3p2, L2 =
x3p1 − x1p3, L3 = x1p2 − x2p1.

A compact and elegant method of carry-
ing out the algebra to find these PBs is by
using Levi-Civita symbol εijk and the Kro-
necker delta symbol δij. This you can find
in some text books, for example in Rana &
Joag [1]. Here we shall carry out the alge-
bra without using these neat mathematical
devices. In fact, we shall calculate only the
first PB [L1, L2], and the other two can be
readily calculated in the same manner by the

reader.

[L1, L2] =
3∑

i=1

(
∂L1

∂xi

∂L2

∂pi
− ∂L1

∂pi

∂L2

∂qi

)
(using eq. 1)

In the above sum the first two terms vanish
as ∂L1

∂x1
= ∂L1

∂p1
= ∂L2

∂p2
= ∂L2

∂x2
= 0. Thus

[L1, L2] =

(
∂L1

∂x3

∂L2

∂p3
− ∂L1

∂p3

∂L2

∂x3

)
= x1p2 − x2p1 = L3

In the same manner we get [L2, L3] = L1 and
[L3, L1] = L2. Note the cyclical order of the
indices. If the order is not cyclical we get
negative signs, e.g., [L2, L1] = −L3, from the
anti-commutative property of PBs as stated
in eq. 2. Also, by the property given by eq.
3 (which is actually a corollary of eq. 2) we
have [L1, L1] = [L2, L2] = [L3, L3] = 0. We
note that the quantum analogue of these
brackets ( commutator brackets ) are given
by [L1, L2] = i~L3 and so forth.

Problem 2: Using the Poisson theorem
for PBs show that the angular momentum
(about the centre of force) is a constant of
motion for the motion of a particle under an
inverse square law force.

Solution: Poisson theorem (also called
Poisson’s first theorem on PBs) states that
for a dynamical variable u(q,p, t)

du

dt
= [u,H] +

∂u

∂t
(9)

This is actually the equation of motion of u.
By definition u is a constant of motion if du

dt
=

0 .
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The angular momentum L is a vector, and
to show that it is conserved to we have to
show that all the three components Lx, Ly

and Lz are conserved. These components
have no explicit time dependence, so the par-
tial derivatives ∂Lx

∂t
= ∂Ly

∂t
= ∂Lz

∂t
= 0. Thus,

from eq. 9 the three components are con-
served if the three PBs [Lx, H] = [Ly, H] =

[Lz, H] = 0. We shall prove one of them, i.e,
[Lz, H] = 0, and the reader can easily prove
the other two in the same manner. Once
again for the components of position, momen-
tum and angular momentum we shall use the
notation used in problem 1.

We shall use Cartesian coordinates with
the centre of force at the origin. The Hamil-
tonian is given by

H(x1, x2, x3, p1, p2, p3) =
1

2m

(
p21 + p22 + p23

)
− k

r

=
1

2m

(
p21 + p22 + p23

)
− k√

x21 + x22 + x23
(10)

where k is a constant, positive for attractive
force and negative for repulsive force.

[L3, H] =
3∑

i=1

(
∂L3

∂xi

∂H

∂pi
− ∂L3

∂pi

∂H

∂xi

)
(11)

We have the partial derivatives

∂L3

∂x1
= p2,

∂L3

∂x2
= −p1,

∂L3

∂x3
= 0,

∂L3

∂p1
= −x2,

∂L3

∂p2
= x1,

∂L3

∂p3
= 0,

∂H

∂p1
=
p1
m
,
∂H

∂p2
=
p2
m
,
∂H

∂p3
=
p3
m
,

∂H

∂x1
=
kx1
r3/2

,
∂H

∂x2
=
kx2
r3/2

, and
∂H

∂x3
=
kx3
r3/2

Using these in eq. 11 we have [L3, H] = 0.

Problem 3: Show that for a free parti-
cle moving in one dimension, the function
F = x − pt

m
and ∂F

∂t
are constants of motion.

Here x, p, and m are position, momentum
and mass of the particle. Do this by direct
calculation of total time derivatives of F as
well as ∂F

∂t
, and by using Poisson’s first and

second theorem about PBs.

Solution: Note that F is explicitly a func-
tion of time, but nevertheless it is a constant
of motion. This is quite trivial to show by
taking the total time derivative of F . We use
that fact that for a free particle momentum
p is a constant.

dF

dt
=

dx

dt
− p

m

=
p

m
− p

m
= 0.
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And

d

dt

(
∂F

∂t

)
=

d

dt

(
− p

m

)
= 0

Now we use Poisson’s first theorem stated
above in the previous problem. Note that the
Hamiltonian for the free particle is H = p2

2m
.

dF

dt
= [F,H] +

∂F

∂t

=

(
∂F

∂x

∂H

∂p
− ∂F

∂p

∂H

∂x

)
− p

m

=
( p
m
− 0
)
− p

m
= 0

And, as ∂F
∂t

= − p
m

is not an explicit function
of time, if it is a constant of motion its PB
with H must be zero, as we can see:

[
∂F

∂t
,H

]
=

[
− p

m
,
p2

2m

]
= − 1

2m2

[
p, p2

]
= − 1

2m2
(p [p, p] + [p, p] p) = 0

In the above we have used PB properties
given by eqs. 3, 4 and 8 for illustration,
though here it is equally simple to take
the partial derivatives. We can also illus-
trate Poisson’s second theorem on PBs, which
states that the PB of two constants of mo-
tion is itself a constant of motion. Now that
we know F is a constant of motion, we can
take its PB with H, which is also a con-
stant of motion (because the particle is free).
This PB we already evaluated above, i.e.,

[F,H] = p
m

= −∂F
∂t

. So by Poisson’s second
theorem ∂F

∂t
must be a constant of motion, as

we already verified.
This demonstrates one valuable applica-

tion of Poisson’s second theorem: If we have
two constants of motion, we can take their
PB to construct one more constant of motion,
which might of interest. But it can also turn
out some function of already known constants
of motion, which can hardly be of any inter-
est. Consider this example. Here we have two
constants of motion, F and ∂F

∂t
, and their PB

is[
F,
∂F

∂t

]
=

[
x− pt

m
,− p

m

]
=

[
x,− p

m

]
+

[
−pt
m
,− p

m

]
= − 1

m
[x, p]− t

m2
[p, p] = − 1

m

(using the properties of PBs given by eqs. 3,
4 and 8, and [x, p] = 1), which is obviously
a constant of motion, and not a terribly
interesting one, as all it means is that mass
remains constant during the motion.

Problem 4: Consider the following func-
tions of position q and momentum p of a
one-dimensional harmonic oscillator (m is the
mass and ω angular frequency) :

a =

√
mω

2

(
q +

ip

mω

)
(12)

and its complex conjugate

a∗ =

√
mω

2

(
q − ip

mω

)
(13)
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Write down and solve the equations of motion
for a and a∗ in terms of PBs of these func-
tions with the Hamiltonian, and from these
solutions find the solutions q(t) and p(t).

Solution: The equations of motion for a
and a∗ are (from Poisson’s first theorem dis-
cussed above)

da

dt
= [a,H] (14)

and
da∗

dt
= [a∗, H] (15)

Note that the partial derivatives ∂a
∂t

and ∂a∗

∂t

are absent in the above equations of motion
as both are zero, because the functions a and
a∗ are not explicitly time-dependent. The
Hamiltonian is

H =
p2

2m
+

1

2
mω2q2 (16)

We can evaluate the the PBs [a,H] and
[a∗, H] by using the general definition given in
eq. 1 or by using the properties of PBs listed
in eqs. 2 – 8. We use the latter method, be-
cause that will also allow the reader to com-
pare the functions a and a∗ with their quan-
tum mechanical analogues – the lowering and
raising operators a and a†. Consider first the
product

aa∗ =

√
mω

2

(
q +

ip

mω

)√
mω

2

(
q − ip

mω

)
=

mω

2

(
q2 +

p2

m2ω2

)
Comparing this with eq.16 we immediately
get

H = ωaa∗ (17)

Let us also get

[a, a∗] =
∂a

∂q

∂a∗

∂p
− ∂a

∂p

∂a∗

∂q

=
mω

2

(
− i

mω

)
− mω

2

(
i

mω

)
= −i (18)

Now

[a,H] = [a, ωaa∗] (using eq. 17)

= ω [a, aa∗] (using eq. 4)

= ω (a [a, a∗] + [a, a] a∗) (using eq. 8)

= −iωa (19)

In the last line we used

[a, a] = 0 and [a, a∗] = −i.

Thus we have the equation of motion for a
(eq. 14)

da

dt
= −iωa (20)

which can be immediately integrated to give

a = a0e
−iωt (21)

where a0 is the constant of integration.
Similar calculations give us [a∗, H] = iωa∗

and using it in the equation motion of eq. 15,
and integrating we get

a∗ = a∗0e
iωt (22)

where a∗0 is the constant of integration.
Now to find the solutions q(t) and p(t), we

solve eqs. 12 and 13 for q and p to get

q =

√
1

2mω
(a+ a∗) (23)
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and

p = −i
√
mω

2
(a+ a∗) (24)

Now using eqs. 21 and 22 in eqs. 23 and 24
we have

q =

√
1

2mω

(
a0e
−iωt + a∗0e

iωt
)

(25)

p = −i
√
mω

2

(
a0e
−iωt − a∗0eiωt

)
(26)
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