
Physics Education 1 Oct-Dec, 2012

Physics Through Problem Solving XXV:
Small Oscillations

Ahmed Sayeed
Department of Physics

University of Pune
Pune - 411007

email: sayeed@physics.unipune.ac.in

Abstract
In this issue we solve some problems on small oscillations.

When a system of particles is disturbed
slightly from its equilibrium configuration
momentarily and released, it will undergo
oscillations about the equilibrium configura-
tion. These oscillations in general can be non-
linear and very complicated and very difficult
to analyze. But there is one special category
of oscillations where the problem simplifies
greatly – and this is the category of ‘small
oscillations’. If a collection of mutually inter-
acting particles oscillate in such a way that
the forces acting on them can be well approx-
imated by Hooke’s law forces, they can be
considered small oscillations. It so happens
that any restoring force can be approximated
by a Hooke’s law force if the displacement
of the particle from the equilibrium position
(i.e., the position where the restoring force is

zero) is small enough. For a full discussion
of the nature of small oscillations the reader
should refer any of the standard classical me-
chanics texts, such as the ones by Goldstein,
Poole & Safko [2] or by Rana & Joag [1].

The first two problems below are short,
and are meant to illustrate how some arbi-
trary restoring force acting on a single parti-
cle is approximated by a Hooke’s law force.
The third is a longer problem with two parti-
cles, which is meant to illustrate the general
method of solving the motion of coupled os-
cillators. In this issue we will only find the
normal frequencies for a system of coupled
oscillators. In a future issue we shall con-
sider the problem of finding the amplitudes
in terms of normal modes.
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Problem 1
Consider the Lennard-Jones Potential, which
is used as an approximate model for the po-
tential energy of interaction between two neu-
tral atoms or molecules:

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(1)

where r is the separation between the two
atoms or molecules, and ε > 0 and σ > 0
are constants. For an atom or molecule mov-
ing under this potential, find the frequency of
small oscillations about the position of stable
equilibrium.
Solution

What we are going to do here is to find an
approximate expression of the form 1

2
kr2 for

the potential energy V (r) (k > 0 is the spring
constant), so that the resulting force is the
Hooke’s law force F = −kr, and the motion
is simple harmonic with the frequency w =√
k/m, where m is the mass of the particle.
At stable equilibrium position r = r0 the

potential energy given by eq. 1 is a minimum,
which means (

∂V

∂r

)
r=r0

= 0

=⇒ 4ε

(
−12σ12

r13
+

6σ6

r7

)
r=r0

= 0

=⇒ 4ε

(
−12σ12

r130
+

6σ6

r70

)
= 0

=⇒ r0 = 21/6σ (2)

The spring constant for small oscillations is
given by

k =

(
∂2V

∂r2

)
r=r0

= 4ε

(
−12σ12

r130
+

6σ6

r70

)
Substituting for r0 from eq.2 and simplifying
we get

k =
72ε

21/3σ2
(3)

Note that k > 0, as it should be, because it
is the value of the second derivative of V (r)
at the minimum. And also we require the
spring constant to be positive. The frequency
of small oscillations is

ω =

√
k

m
=

√
72ε

21/3σ2m

where m is the mass of the particle.
Problem 2

The following potential, know as Morse po-
tential is sometimes used as an approximate
model for the potential energy of interaction
between atoms in a diatomic molecule:

V (r) = D
(
1− e−α(r−a)

)2
(4)

where r is the separation between the two
atoms, and D > 0, α > 0, and a > 0 are
constants. For an atom moving under this
potential, find the frequency of small oscilla-
tions about the position of the stable equilib-
rium.
Solution

Once again we first find the equilibrium po-
sition r = r0, which is the minimum position
for the potential energy V (r) of eq. 4.(

∂V

∂r

)
r=r0

= 0
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=⇒ 2Dα
(

(r − a)e−α(r−a)
2
)
r=r0

= 0

=⇒ 2Dα(r0 − a)e−α(r0−a)
2

= 0

=⇒ r0 = a (5)

The last equation follows by noting that
e−α(r−a)

2
is never zero for finite r and there-

fore (r0 − a) = 0. And the spring constant
is

k =

(
∂2V

∂r2

)
r=a

= 2Dα
(
e−α(r−a)

2

+ 2α(r − a)2e−α(r−a)
2
)
r=a

= 2Dα (6)

Once again k is positive, as it must be. The
frequency of small oscillations on the equilib-
rium position, for a particle of mass m is

ω =

√
k

m
=

√
2Dα

m

Problem 3
Find the normal frequencies of oscillations for
a double pendulum undergoing small oscilla-
tions in a single vertical plane. Consider the
special case of equal masses and the lengths.

Solution Let me briefly describe what are
‘normal frequencies’. In a system of cou-
ple oscillators, even when the oscillations are
small and the forces can be approximated by
Hooke’s law forces, the general motion is not
simple harmonic or even periodical. But it
can always be represented as a superposition
of simple harmonic motions. The frequencies
of these simple harmonic motion are called

θ
1

θ
2

l
1

l
2

m
1

m
2

g

Figure 1: A double pendulum. See the text for
description.

normal frequencies. It is possible for the sys-
tem to oscillate in such a way that all of the
particles undergo simple harmonic motions
with a single frequency, which is one of the
normal frequencies. Such a motion is called a
normal mode. In following we shall find the
normal frequencies for the double pendulum
and we shall find the corresponding normal
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modes in another issue.

The figure 1 shows the the double pendu-
lum – where m1,m2 are the masses, l1, l2 are
the two string lengths, and θ1, θ2 are the two
angular displacements from the equilibrium
position, which is θ1 = θ2 = 0. g is the accel-
eration due to gravity. This is a system with
two degrees of freedom, and we can use θ1, θ2
as our generalized coordinates. Note that for
the analysis of small oscillations it is con-

venient if we choose generalized coordinates
such that they take values zero at the equilib-
rium position, and that is what we have done
here. Finding the potential and kinetic en-
ergies in generalized coordinates for a double
pendulum is a very routine exercise in clas-
sical mechanics courses, and so we omit the
details and directly write down the expres-
sions. We hope the reader can easily verify
them. Taking the potential energy as zero at
θ1 = θ2 = 0. g, we get

V (θ1, θ2) = −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) (7)

T (θ1, θ2, θ̇1, θ̇2) =
1

2
m1l

2
1θ̇1

2
+

1

2
m2

[
l21θ̇1

2
+ l22θ̇2

2
+ 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
(8)

The above expressions 7 and 8 for the po-
tential and the kinetic energies of the sys-
tem are valid for all value of generalized po-
sitions θ1, θ2 and the generalized velocities
θ̇1, θ̇2. But we need to approximate these ex-
pressions for small values of the positions and
velocities. These expressions take the follow-
ing form:

V =
1

2

∑
i

∑
j

Vijθiθj (9)

T =
1

2

∑
i

∑
j

Tij θ̇iθ̇j (10)

where i, j = 1, 2, and the coefficients Vij and
Tij are constants (i.e, not functions of coordi-
nates or velocities) to be determined. In the
case of potential energy these coefficient are

nothing but the Taylor series expansion coef-
ficients about the equilibrium position (com-
pare with the problems 1 and 2 above). Thus
V11 is the coefficient of the first non-vanishing
term in the Taylor series expansion in the
variable θ1:

V11 =

(
∂2V

∂θ21

)
θ1=0

= (m1gl1 cos θ1 +m2gl1 cos θ1)θ1=0

= (m1 +m2)gl1

Similarly

V12 =

(
∂2V

∂θ1∂θ2

)
θ1=θ2=0

= 0

V21 = V12 = 0
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V22 =

(
∂2V

∂θ22

)
θ2=0

= m2gl2

Thus the potential energy of eq. 9 is

V =
1

2

[
(m1 +m2)gl1θ

2
1 +m2gl2θ

2
2

]
(11)

We do a similar exercise to the kinetic en-
ergy in the form of eq. 10. The idea is to

take the Taylor series expansion of the ki-
netic energy given in eq. 8 such that only the
terms quadratic in velocities ( i.e, the terms

θ̇1
2
, θ̇2

2
, θ̇1θ̇2 ) are retained. We can see that

eq. 8 is already in that form, except for the
factor cos(θ1−θ2) in the last term. Therefore
we expand this factor in Taylor series and re-
tain the first non-zero term, which is 1. Thus,
the kinetic energy in eq. 10 is given by

T (θ̇1, θ̇2) =
1

2
m1l

2
1θ̇1

2
+

1

2
m2

[
l21θ̇1

2
+ l22θ̇2

2
+ 2θ̇1θ̇2l1l2

]
=

1

2

[
(m1 +m2)l

2
1θ̇1

2
+m2l

2
2θ̇2

2
+ 2m2l1l2θ̇1θ̇2

]
(12)

And thus T11 = (m1 + m2)l
2
1, T12 = T21 =

m2l1l2, T22 = m2l
2
2 (You have to note that

2m2l1l2θ̇1θ̇2 = m2l1l2θ̇1θ̇2 +m2l1l2θ̇2θ̇1 to cor-
rectly compare eqs. 10 and 12 and identify
T12 and T21).

Thus eqs. 11 and 12 give us the two ma-
trices:

V =

[
V11 V12
V21 V22

]
=

[
(m1 +m2)gl1 0

0 m2gl2

]
(13)

and

T =

[
T11 T12
T21 T22

]
=

[
(m1 +m2)l

2
1 m2l1l2

m2l1l2 m2l
2
2

]
(14)

At this point we consider the special case
of equal masses and lengths, i.e. m1 = m2 =
m and l1 = l2 = l. Then the two matrices
simplify to

V =

[
2mgl 0

0 mgl

]
(15)

And

T =

[
2ml2 ml2

ml2 ml2

]
(16)

The normal frequencies ω are given by the
solutions to the equation

det
(
V− ω2T

)
= 0

det

[
2mgl − 2ml2ω2 −ml2ω2

−ml2ω2 mgl −ml2ω2

]
= 0
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We can simplify the above equation sub-
stituting g = lω2

0, and canceling out ml2

throughout (also note that ω0 =
√
g/l hap-

pens to be the frequency of a simple pendu-
lum of length l), to get

det

[
2(ω2

0 − ω2) −ω2

−ω2 (ω2
0 − ω2)

]
= 0

Expanding the determinant and simplifying
we get

ω4 − 4ω2
0ω

2 + 2ω4
0 = 0

which is a quadratic equation in ω2 and has
two solutions

ω2
1 = (2 +

√
2)ω2

0

ω2
2 = (2−

√
2)ω2

0

Thus ω1 and ω2 are the normal frequencies.
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