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Abstract 
Under  the hypotheses commonly employed  in  textbooks, we calculated  the spectrum of a 
particle  in  a  one‐dimensional  regular  curve  embedded  in  2D  with  a  general  smooth 
parameterization x = g(t) and y = h(t), where t  is the curve parameter. The solution of the 
one‐dimensional  Schrödinger  equation  under  the  confined  boundary  conditions 
corresponding to our generalized particle  in a box model shows that the  linear box has the 
same energy spectrum as parabolas, cubics, exponentials, or any other open regular curves: 
E = h2n2/8mL2, whereas the circular box has the same energy spectrum as ellipses, ovals, or 
any  other  closed  regular  curves:  E  = h2n2/2mL2.  There  are  many  studies  of  quantum 
mechanics  on  curves  using  different  theoretical  approaches,  however  the  present 
elementary approach and  its conclusions are not  found  in  the  literature. We observe  that 
the  Schrödinger  equation  does  not  make  sense  when  applied  to  spaces  that  are  not 
manifolds. 

 
 
1. The particle in a box problem 
The particle in a box model (PIB model) is one of the 
most fundamental and versatile tools in the history of 
quantum mechanics [1-5]. Since Erwin Schrödinger’s 
pioneering paper published in 1926 [1],  the PIB 
model has emerged in a number of studies on diverse 
subjects such as: the spectrum of solids, the electronic 
absorption spectrum, nuclei, specific heat, optical 
rotation, NMR, PIB in the presence of an electric 
field, and the particle in a ring system. But the PIB 

 
 
model is not so simple, as evidenced by its 
applications in quantum mechanics propagators, 
Feynman path integrals, quark confinement and the 
Casimir effect, delta potential, two particles in two 
boxes, minimum Planck length, the PIB relativistic 
model, D-dimensional PIB, and quantum dots in 
nanotechnology [3-13]. In light of these different 
approaches, it is worth asking: how is the energy 
spectrum of the particle modified as a result of 
changes in the geometry of the curve? The answer to 
this question, that we were not able to find in the 
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chemistry and physics literatures [9-15], could help 
to further expand the applicability of the PIB model. 
Let us start with the circular box problem (rotator 
with fixed axis), which was first solved by 
Schrödinger [1] using the eigenvalue equation: 

 
 

(1) 
 
 
where m is the rest-mass of the particle and r is the 
circumference radius. Using the boundary condition 
for the wave function Ψ(φ) = Ψ(φ+2π), the particle 
energy is E = (h2n2/2mL2), where L = 2πr is the 
length of the one-dimensional box [1,5,6]. The PIB 
model has since spread to classrooms and 
textbooks, and it has been revisited, directly or 
indirectly, in scientific and didactic papers [1-13]. 
As a result, the PIB model is now considered one of 
the fundamental problems in quantum mechanics. In 
this paper, we provide an extended PIB model 
taking into account a box with a smooth shape in 
order to calculate the spectrum of a particle in any 
one-dimensional regular curve embedded in 2D. 
We found two expressions for the energy spectrum: 
E = h2n2/8mL2 for open curves and E = h2n2/2mL2 
for closed curves. This means that, once fixed the 
length, the linear box has the same energy spectrum 
as parabolas, cubics, exponentials or any other open 
regular curves. Also, the circular box has the same 
energy spectrum as ellipses, ovals, or any other 
closed regular curves possessing the same length. 
 
2. The  one‐dimensional  Laplacian 
operator 
Let us consider the following parametrization of a 
smooth regular curve x = g(t) and y = h(t),  where t 
is the parameter (t is not the time).  

Figure 1. Open and closed regular curves. 

We recall that a smooth curve is said to be regular if 
its velocity vector, α`(t) = (g`(t), h`(t)), is nowhere 
vanishing. Taking into account this 
parameterization, we obtain the one-dimensional 
Laplacian operator (Laplace-Beltrami) on the curve 
and rewrite it in the arc-length variable s: 
 
 

 

Since: 

 

it follows that:  
 

(2) 
 
Using expression 2., note that in the original case of 
equation 1. (using t as angle) we have x = r cost and 
y = r sint and find the Laplacian operator 2׏  = 
d2/dx2 + d2/dy2 = (1/r2)d2/dt2 (the arc length depends 
on the angle and the radius).  
Using the Laplacian operator 2., the Schrödinger 
equation 1. turns out to be in the well known case: 
 

(3) 
 
This is the usual one-dimensional harmonic 
oscillator equation, and from this point on the 
discussion of eigenvalues and eigenfunction follows 
the traditional steps. We can now solve the PIB 
model by using equation 3. and considering the two 
possible cases of boundary conditions. For the open 
curve (linear or not), the boundary conditions are 
Ψ(so) = Ψ(s1) = 0, which are similar to those of the 
linear box [4]; for the closed curve, the boundary 
conditions are Ψ(so) = Ψ(s1) (univalued periodic 
wave function condition), which are similar to those 
of the circular box [1].  
The general solution of 3. is Ψ(s) = Asin(ks) + 
Bcos(ks), with A and B real constants.  The 
parameter k relates to the energy as follows: 

 
 

 

.2
1

2
1

2 
1 

2
12 ⎟

⎠
⎞⎜

⎝
⎛= ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂

∂

∂

∂
=∇ − −−

dt
d

g
dt
d

g
q 

g g 
q

g
k 

ik 
i

.2

2
2

ds
d

=∇

)(2)( 22

2

smEs
ds
d

Ψ−=Ψ
h

,
22 

2 
1

11
2

1

dt
ds

dt
dy

dt 
dx

gg = ⎟
⎠
⎞

⎜
⎝
⎛+ ⎟

⎠
⎞

⎜
⎝
⎛==

)()(
2

)( 2

2

2

2

φφ
φ

φ Ψ=Ψ−=Ψ E
d
d

mr
H h

)(tg )(tg

)(th)(th

2
2 2

h

mEk =



Physics Education                                                                                         Oct – Dec 2012
 

Volume 28, No.4, Article Number : 1                                                                                   www.physedu.in 

The arc length relates to the box length L as 
indicated by the equation: 
 
 

  

Using this result for the open curve, with the usual 
assumption so = 0, and the boundary condition 
requires Ψ(so) = Ψ(s1) = 0, then Asin(kso) = 
Asin(ks1) = 0, kso = mπ and, from the periodicity of 
the sine function,  ks1 = mπ + nπ, ks1 – kso = k(s1 – 
so) = kL = nπ, where n is a natural number. In order 
to find a final expression for the energy, we have: 
 

                                                                      

                                                                  

(4) 

This relation describes the energy spectrum of any 
regular open curve, such as straight lines, parabolas, 
hyperbolas, cubics, sinusoidal curves, etc.  
 
For a closed curve, let so be the initial arc length 
and let s1 be the arc length after one turn around the 
curve L = s1 - so. In order to find an expression for 
the energy, we impose the boundary condition Ψ(so) 
= Asin(kso)  + Bcos(kso) = Ψ(s1)  = Asin(ks1) + 
Bcos(ks1) and the periodicity condition Ψ(so)= 
Ψ(so+L); from the periodicity of the sine function, 
ks1 = kso + (2πn),  then k = (2πn)/L, where n is an 
integer number, we deduce: 
                                                                    

                                                                                   
 
 
 
 
 

(5)                      
 
 
 
 

Relation 5. describes the energy spectrum for the 
conventional circular box with length L, and, as 
evidenced above, it actually describes the energy 
spectrum of any regular closed curve, for example 
ellipses, ovals, smoothed polygons, etc. The two 
expressions 4. and 5. show that, for regular curves 
of the same length L, the energy spectrum can be 
used to distinguish between open and closed curves. 
For the same n, we have Eclosed = 4Eopen. As far as 
we know, this result is not found in the literature [1-
13]. It represents an explicit general solution for the 
PIB model of regular curves under the usual 
hypotheses found in textbooks [2, 9-12]. 
 
3. Mathematical note 
It is well known in differential topology [16] that a 
smooth curve which is a manifold (locally, at each 
point, it looks like a line segment) can only be 
diffeomorphic to either a line segment or a circle. In 
this paper, we show that the energy spectrum of a 
smooth, regular curve of a fixed length is 
determined by this topological classification; the 
topology (open or closed) of such a curve, whose 
length is known, suffices to determine its spectrum, 
and conversely, given the length of the curve, the 
energy spectrum determines the topology of the 
curve. Although this is a criterion which mixes 
topology and geometry, a purely topological 
criterion can be obtained by noticing that, for all 
closed regular curves, the eigenfunctions come in 
pairs, sine and cosine, and zero is also an 
admissible eigenvalue. These properties are not 
shared by open regular curves.  
 
The problem of understanding the topology of a 
manifold from its spectrum is currently of interest 
in Mathematics. In that sense, a classical reference 
to this problem is the famous paper “Can you hear 
the shape of a drum?’’ by Mark Kac [17]. In this 
paper, we show that you can “hear the topology” of  
a 1D drum, provided you know its length.  Notice 
that smooth curves with self-intersections are not 
manifolds in general and thus cannot be treated in 
the same way as regular embedded curves. The 
Schrödinger equation actually does not make sense 
when applied to spaces that are not manifolds since 
the Laplacian is no longer globally defined. 
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4. Conclusions 
We used the corresponding Laplacian operator for a 
smooth curve with a general parameterization in the 
Schrödinger equation and found the eigenfunctions 
Ψ(s) = Asin(ks) + Bcos(ks), where s is the arc 
length parameter, and energy spectrum E given by 
only two possible expressions: E = h2n2/8mL2 for 
open curves, and E = h2n2/2mL2 for closed curves. 
This result is a new contribution to the literature on 
the PIB model spectrum calculation of a particle 
constrained to a one-dimensional regular curve 
embedded in a 2D surface. 
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