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Abstract 
The undergraduate courses on modern physics generally consider the particle interpretation 
of Compton Effect. Motivated by a student’s solution in an undergraduate examination on 
modern physics here we consider the wave characteristics of recoiled electrons in the 
Compton Effect. The de Broglie wavelength, wave and clock frequency of the scattered 
electrons are expressed in terms of the wavelength and the frequency of the incident and 
the scattered photons respectively using the familiar particle interpretation of the Compton 
effect, where initially the electron is at rest and its spin is ignored. Both non-relativistic and 
relativistic cases are considered.  Numerical values of de Broglie wavelength, wave and clock 
frequency of the scattered electron are calculated for an incident photon energy that was 
used in the original experiment of Compton as a function of the scattering angle of the 
recoiled electron. Considering the relativistic effects which are however insignificant for the 
de Broglie wavelength of the recoiled electron under these conditions, the minimum value 
obtained is in the range of X-rays.  The non-relativistic de Broglie wave frequency obtained 
by neglecting the rest mass of the electron leads to an underestimation of its value. The 
implications of de Broglie wavelength and clock frequency for Compton scattering 
experiments are briefly discussed and possible extensions of the obtained mathematical 
formulations are indicated. The results are useful for understanding the wave-particle duality 
of the recoiled electron in the context of the Compton Effect. 

 
 

1. Introduction 
In several undergraduate texts on modern physics 

[1,2], the concept of the particle nature of wave 

(light) is introduced prior to that of wave nature of 

the particle (electron). The latter is demonstrated by 

the Davisson-Germer experiment. The former is 

illustrated using the Compton Effect where a photon 

collides with a stationary electron which is treated as 

a particle using the laboratory frame of reference 

 

and its spin is ignored. Rarely the concept of de 

Broglie waves are discussed in the context of 

Compton scattering. Several attempts have been 

made to obtain the expression for Compton shift by 

considering the interaction of electromagnetic waves 

with electron [3-5]. Schrödinger [4] considered the 

interaction classical electromagnetic waves with the 

de Broglie waves of the electron. Pedagogical 

exposition of Schrödinger’s treatment was 

considered by Strand [6] and an approach similar to 
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that of Schrödinger has been used by Su [7]. 

Compton Shift has also been explained as a double 

Doppler shift considering the interaction of 

electromagnetic wave train with electron [8]. But 

generally these are not discussed in the 

undergraduate courses on modern physics.  

de Broglie when attempting to obtain the relativistic 

transformation of Planck-Einstein’s equation [9] 

proposed three different frequencies to a particle 

with rest mass em  (i) frequency of the internal 

energy of the particle at rest hcmeC
2  (ii) 

frequency of the total energy of the particle as 

measured by a ‘fixed’ observer: hcmedB
2  , 

where  is the Lorentz factor (iii) ‘internal periodic 

phenomenon’ /clock frequency as measured by a 

‘fixed’ observer:  Ccl  . Recently there is a 

renewed interest [10-13] to understand the internal 

clock frequency of the electron. The experiments of 

Catillon et al. [11], aimed at detecting the clock 

frequency of the electron in terms of interactions 

electrons with atoms indicate that one needs to 

consider the internal motion of the centre of charge 

of the electron around its centre of mass [10] with a 

frequency twice that of  C  corresponding to the 

frequency of internal motion of the electron 

(zitterbewegung proposed by Schrödinger) used by 

Dirac. 

This paper was motivated by a student’s (the second 

author) solution to the problem posed in an 

undergraduate modern physics examination at VIT 

University, Chennai Campus, Chennai (August, 

2011) on calculating the de Broglie wavelength of 

recoiled electrons in the Compton effect. The de 

Broglie wavelength and the de Broglie wave and 

clock frequency of the scattered electrons are 

generally expressed in terms of relativistic velocity 

of the recoiled electrons. Here we obtain these 

parameters in terms of the wavelength and frequency 

of the incident and the scattered photons. The 

familiar expressions for the conservation of energy 

and momentum that describe the Compton scattering 

by considering the particle nature of photon and 

electron (initially at rest and ignoring its spin) are 

used. Both non-relativistic and relativistic cases are 

considered. Considering an incident photon energy 

that was used in the original experiment of Compton 

[13], numerical values of the de Broglie wavelength, 

wave and clock frequency are obtained. The 

implications of de Broglie wavelength and clock 

frequency for Compton scattering experiments are 

briefly discussed and possible extensions of the 

obtained mathematical formulations are indicated. 

Hence these results can be effective for 

understanding the wave-particle duality of the 

recoiled electrons in the context of the Compton 

effect.    

 

2. Results and Discussion 

We obtain the wave characteristics of the scattered 

electrons from the familiar Compton scattering 

mechanics where the photon and the electron are 

treated as particles in the frame work of special 

theory of relativity. The electron before the collision 

is considered to be free (valid when the binding 

energy of the electron is negligible compared to the 

energy of the incident photon) and at rest in the 

laboratory frame of reference, and its spin is 

ignored. Figure 1 shows the geometry of Compton 

scattering in terms of the angles of the scattered 

photon ( ) and the electron ( ) respectively with 

respect to the direction of the incident photon.  

 

 
FIG. 1: The geometry of Compton scattering showing the directions of 
the scattered photon and electron with respect to the direction of 
the incident photon. 
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The relativistic de Broglie wavelength of the 

scattered electron can be obtained by applying the 

conservation of energy (Fig. 1), 

 

  cpcpcmcmcp pheeeph


 2
1

22422                (1)                                         

where php  and  
php are the momenta of the incident 

and the scattered photon respectively,  
ep  is the 

relativistic momentum of the scattered electron, em  

is the rest mass of the electron and c  is the velocity 

of light. Substituting hp ph  , 


hp ph  and 

R
dBe hp 

  (where h  is the Planck’s constant) 

respectively in Eq. (1), 
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where R
dB  is the relativistic de Broglie wavelength 

of the scattered electron,  and   are the 

wavelength of the incident and scattered photon 

respectively, cmh eC   is the Compton 

wavelength. A primitive form of this equation was 

derived by the student in the examination. A similar 

expression for the relativistic de Broglie wavelength 

of the scattered electron can be obtained using the 

conservation of momentum (Fig. 1) 
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Taking the self vector dot product and 

substituting hp ph  , 


hp ph  and R
dBe hp 

 ,  
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where   is the angle between the incident and the 

scattered photon. The de Broglie wavelength in Eq. 

(4) can be expressed in terms of the angle between 

the directions of the scattered electron with respect 

to the incident photon (θ) using the well known 

relation,                                            
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where hcmeC
2 . 

Under the non-relativistic kinematics,   
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where   and    are the frequencies of incident and 

scattered photons respectively, and V is the velocity 

of the scattered electron. Hence the non-relativistic

 de Broglie wavelength of the scattered electron is   
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The de Broglie wave frequency, associated with an 

electron is                                                          

 

C
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where  is the Lorentz factor. Hence hcmeC
2  

with a value of 1.2356×10
20

 Hz is the rest frequency 

that was identified by de Broglie with the internal 

clock of the electron. A non-relativistic expression 

for the de Broglie wave frequency is obtained by 

neglecting the rest mass of the electron and treating 

the scattered electron as a free particle. Hence 2mc  

in Eq. (8) is replaced by the kinetic 

energy mpEk 22 , where p  is the non-relativistic 

momentum of the scattered electron. Thus Eq. (8) 

becomes 

 

mh

pNR
dB

2

2
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Using  NR
dBhp   and substituting for NR

dB  from Eq. 

(7) in Eq. (9), 

 

 NR
dB                                             (10)                                                                      
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The expression for the relativistic de Broglie wave 

frequency in terms of the frequency of the incident 

and scattered photon is obtained starting from 

dB

p
dB

V
v


                                                 (11)                                                             

where pV  is the phase velocity of the de Broglie 

waves associated with the scattered electron. 

Substituting for dB  from Eq. (2), using VcVp
2  

and expressing V  in terms of   and   using the 

relativistic kinetic energy of the scattered electron 

(    hK ), Eq. (11) becomes 
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Similarly using Eq. (4),  
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The internal clock frequency of the scattered 

electron as measured by an observer in the 

laboratory frame is 
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where one should substitute for R
dB  using Eq. (12) 

or (13).Note that  in Eq. (2), (4) and (7) can be 

expressed in terms of   and  (or ) while    in 

Eq. (12), (13) and (14) can be expressed in terms 

of  and   (or ). Table I shows the calculated de 

Broglie wavelength (from Eq. (7) and (4)), de 

Broglie wave frequency (from Eq. (10) and (12)), 

and de Broglie clock frequency (from Eq. (14)) for 

an incident photon of wavelength 0.707831 Å 

using MATLAB R2008b. This wavelength was 

chosen for the purpose of illustration, since 

Compton in his original experiment [14] used 

MoK1 X-ray source. For comparison, the value 

of C  is shown in the last column. The variation 

of R
dB , R

dB , and cl  as a function of   for an 

incident photon of wavelength  0.707831 Å are 

shown in Fig. 2 obtained from Eq. (4), (12) and 

(14) respectively plotted using MATLAB R2008b. 
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TABLE I. The calculated de Broglie wavelength, wave frequency and clock frequency of the scattered electron for an incident 

photon of wavelength  0.707831 Å at different angles of the scattered photon (  45°, 90°, 135°, 180°). The values of the 

constants c, h, me, C , and the  wavelength of MoK1 radiation were obtained  from the NIST website.
15

 

θ  

() 

NR
dB

 

(Å)
a 

R
dB

 (Å)
b 

NR
dB

 (×10
17

 Hz)
c 

R
dB

 (×10
20

 Hz)
d 

cl

 (×10
20

 Hz)
e 

C

 (×10
20

 Hz)
f 

0 0.3658 0.3656 2.7173 1.2383073 1.

 

2328786 1.2355899 

21.82 0.3941 0.3939 2.3414 1.2379313 1.

 

2332530 1.2355899 

44.03 0.5090 0.5089 1.4037 1.2369936 1.2341878 1.2355899 

66.81 0.9295 0.9294 0.4210 1.2360110 1.2351692 1.2355899 

a
Using (7), 

b
Using (4), 

c
Using (10), 

d
Using (12), 

e
Using (14), 

 f
m0c

2
/h 

 

 
FIG. 2.  The variation of (a) de Broglie wavelength (b) de 
Broglie wave frequency (c) de Broglie clock frequency of the 

scattered electron as a function of (a) scattering angle of 

the recoiled electron () using Eq. (4), (12), and (14) 
respectively for an incident photon of wavelength 

 0.707831 Å. 

 

 

The calculated de Broglie wavelength of the 

recoiled electron in columns 2 and 3 of Table I, 

increases with the increasing angle of the scattered 

electron since the velocity of the recoiled electron 

is maximum at 0 and minimum at 2  . The 

value of the de Broglie wavelength in column 3 

(also see Fig. 2 (a)) are lower than those of 

column 2 for a given   indicative of relativistic 

effects. The asymptotic behavior of de Broglie 

wavelength (Fig. 2 (a)) close to 2   is the 

result of assuming free electron at rest before 

collision. It is clear that under the conditions 

considered in Table I the relativistic effect on the 

de Broglie wavelength of the recoiled electron is 

not very significant since the maximum kinetic 

energy of the scattered electron under the assumed 

conditions (1.1238 keV) is small compared to its 

rest mass energy (511 keV). However at higher 

energies such as 0.1-1 MeV of incident photon, 

the relativistic effects cannot be ignored. The 

minimum de Broglie wavelength obtained in 

Table I (365.6 pm) is comparable to the 
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wavelength of X-rays. Hence when the scattering 

medium is a crystalline solid the recoiled electrons 

under suitable conditions can undergo diffraction. 

de Broglie wavelength of recoiled electron has 

significance in Compton scattering experiments. A 

Compton resonance process has been reported 

where the recoiled electrons in Compton scattering 

resonate with the Si (111) crystal [16]. The de 

Broglie wavelength in a direction normal to the 

lattice plane is considered [16] for obtaining such 

resonance condition. 

The de Broglie wave frequency of the scattered 

electron obtained by neglecting the rest mass of 

the electron (Eq. (10)) although consistent with 

literature [17] leads to an underestimation of the 

de Broglie wave frequency (see column 4  in 

Table I), since cdB   . For the relativistic case 

(column 5, Table I), the de Broglie wave 

frequency of the scattered electron decreases with 

respect to   (see Fig. 2 (b)). However the change 

is not very significant for the input parameters 

considered here ((V/c)max=0.0662). The de 

Broglie’s clock frequencies ( cl ) of the scattered 

electron obtained from Eq. (14) are shown in 

column 6 of Table I. The clock frequency 

increases with increase of   (see Fig. 2 (c)) again 

indicative of relativistic effects. The measurement 

of the internal clock frequency of the electron 

( C ) using channeling of 80 MeV electron beam 

in silicon crystal has been reported [11]. The 

maximum kinetic energy of the scattered electron 

(1.1238 keV) under the conditions considered in 

Table I is highly insufficient for such channeling 

experiments. However the differential Klien-

Nishina cross section  dde as a function of 

 indicates that at high incident photon energies (> 

10 MeV) the recoiled electrons are very strongly 

forwarded directed along  0 and hence the 

possibilities of channeling of recoiled electrons at 

high incident photon energies (≥ 80 MeV) in 

crystalline scattering medium can to be explored.  

 

The formulations mentioned in Eq. (2) and (14) 

can be useful to determine the de Broglie 

wavelength and frequency of the recoiled 

electrons while considering a guided photon [18] 

and when considering the effect of refractive 

index of the scattering medium on Compton 

scattering [19]. In addition these formulations can 

be extended to bound electron and when including 

the spin of the electron.  

 

Teachers while evaluating students in the 

university examination must be receptive to new 

ideas or interpretations that can arise from 

student’s answers/solutions. In an examination 

situation the student is forced to give an answer in 

a limited time. According to the experience of the 

first author of this paper who is involved in 

teaching physics and evaluating students, 

creativity of a student may be unknowingly 

triggered by the pressure to score good grades. 

3. Conclusions 

The de Broglie wavelength, wave and clock 

frequency of the scattered electron in the Compton 

effect were obtained in terms of the wavelength 

and frequency of the incident and the scattered 

photon respectively. The numerical values of these 

parameters for wavelength of incident photon that 

was used in the original experiment of Compton as 

a function of the scattering angle of the recoiled 

electrons indicate that (i) the relativistic effects for 

de Broglie wavelength is insignificant (ii) the 

minimum value of the de Broglie wavelength of 

the scattered electron calculated is in the range of 

wavelength of X-rays and hence under suitable 

conditions these recoiled electrons can undergo 

diffraction with the crystalline scattering medium 

(iii) the de Broglie wave frequency obtained by 

neglecting the rest mass of the electron leads to 

underestimation of its value. The relevance of the 

de Broglie wavelength and clock frequency of the 

recoiled electrons in Compton scattering 

experiments and future extensions of the obtained 

mathematical formulations were briefly 

highlighted.  
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