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Abstract

In this pedological article, we discuss about the boundedness of two electrons above the
Fermi sphere in three dimensions interacting via an attractive interaction. These two
electrons having equal opposite moneta and spin are known as Cooper pairs. According to
the spin content of this composite particle, they behave approximately as Bosons and the
pairs are essential ingredient to theory of superconductivity. We compute the bound state
of energy of the pair when the electrons interact via (i) constant potential (ii) potential
separable in two coordinates and (iii) delta function potential above the spherical Fermi
surface. With the help of the eigenstate, we proceed further to compute the average radius
of the Cooper pair and discuss its implication in theory of superconductivity. We also
generalize the form of binding energy of Cooper pair in case of ellipsoidal Fermi surface.
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1.Introduction

In nature, all particles can be classified
into Bosons and Fermions according to their
statistics. Electrons, protons and neutrons
are all Fermions. An atom, which contains

all three can also be treated as single (com-
posite) particle. Whether the composite is
Bosonic or Fermionic depends on the total
number of its constituents. For example, He4

contains two electrons, two protons and two
neutrons and thus, it is a Boson. But, the
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isotope He3 is a Fermion. Fermions obey
the Pauli exclusion principle while there is
no such restriction on Bosons. As a result,
a collection of Bosons behaves quite differ-
ently from a collection of Fermions. A good
example is the dramatic difference between a
superconductor and an ordinary metal. The
electrical conductivity in ordinary metals can
be understood in terms of the properties of
Fermions (i.e. electrons); in contrast, super-
conductivity in terms of Cooper pairs which
are Boson-like. Moreover, the response of
spinless Bosons in an external magnetic field
is diamagnetic [1] while the Fermions show
paramagnetic behaviour.

Cooper pair consists of two electrons with
equal and opposite momenta and spins. In
other words, they have zero total momentum.
At first instance, one might wonder that they
will violate Heisenberg uncertainty relation.
It is worthy to remember that the zero expec-
tation value of momentum does not mean a
zero uncertainty of momentum. In fact, there
is indeed substantial amount of fluctuation of
momentum of these pairs which makes the
non-zero uncertainty of the quantity. More-
over, we will explicitly use the uncertainty re-
lation to estimate the size of the Cooper pair.
Note that the electrons are fermions having
spin 1

2
(in units of ~) while Cooper pairs are

composite Bosons as its total spin is integer
(0 or 1). The wave functions are symmet-
ric under particle interchange and they are
allowed to be in the same state. The ten-
dency for all the Cooper pairs in a system
is to condense into the same ground state as
they are Bosons. This fact is qualitatively re-
sponsible for the peculiar properties of the su-

perconductivity. In normal superconductors,
Cooper pairs have zero spin while for He3

system, the spin of the pair is one (in units
of ~). Here, the pairs are formed by two He3

atoms. The pairs in He3 is responsible for
the superfluidity phenomenon at low enough
temperature. In case of normal superconduc-
tors, the spins are paired in such a way that
the magnetic moment of the electrons cancels
and the contribution of the pair to the mag-
netic properties will in general be a diamag-
netic one. This is reflected by the Meissner
effect [2, 3] seen in the superconductor.

If these two electrons interact via an attrac-
tive potential, above the filled Fermi surface,
will they form a bound state? This prob-
lem was attacked [4] by L. N. Cooper in 1956
and after his name, this is known as Cooper
pairing problem. This problem is a simple
two particle problem in quantum mechanics
that can reduced effectively to a single par-
ticle because of the nature of potential func-
tion. However, in contrast to normal hydro-
gen atom problem, there is another statisti-
cal interaction through the Pauli exclusion
principle to the filled Fermi sea. By con-
sidering this statistical interaction, Cooper
showed exactly that these electrons do form
a stable bound state and the normal Fermi
surface becomes unstable. Later on Bardeen,
Cooper and Schrieffer [5] used these collec-
tion of Cooper pairs to form the stable bound
state of the superconductor and showed a gap
between the metal and superconducting one.
This theory is known as BCS one. The ex-
perimental foundations of the so called BCS
theory has been beautifully demonstrated by
Ginsberg [6]. At the same time, Anderson

Volume 29, No. 1 Article Number : 4. www.physedu.in



Physics Education 3 Jan - Mar 2013

[7] also developed another theory based on
Pseudo-spin analogy to obtain a finite gap
at finite non-zero temperature between metal
and superconductor. A lucid account of this
feature [8] has been sketched for the graduate
students. Apart from normal superconduc-
tors, BCS theory is also applicable to other
fermionic system such as He3. Immediately
after the tremendous success of BCS theory,
Bohr, Mottelson and Pines [9] used the BCS
pairing analogy to explain the large gaps in
the spectra of even-even nuclei. Thus, BCS
theory has been widely used to describe su-
perconductivity in condensed matter and nu-
clear systems. The nuclear BCS theory has
been reviewed recently by Broglia [10]. Be-
sides, the spin pairing of the electrons essen-
tially influences the paramagnetic suscepti-
bility. In fact, the paramagnetic susceptibil-
ity should decrease towards zero with tem-
perature T → 0. The concept of Cooper
pairs have been used in discussing the neu-
trino emission in relation with neutron stars
[20]. The anisotropic d-wave Cooper pair
wave functions in high Tc superconductors
has been considered [21] to explain the spin
fluctuations in cuprates.

The question next comes to our mind is:
what is the reason of studying these pairs?
The formation of pairs is indeed surprising.
Because two particles of equal charge should
repel each other. But as we have mentioned
only the attraction between the electrons will
force them to bind them. Therefore, natu-
rally one is eager to know the origin of attrac-
tion between these electrons to form Cooper
pairs. It is to be noted that two free elec-
trons in a vacuum/free space always repel

each other. Thus, it is the medium which
is responsible for such an attraction between
them. The electrons under consideration are
in a dielectric medium of the solid character-
ized by a dynamic dielectric constant ε(ω).
Under an appropriate condition on the fre-
quency ω, the dielectric constant ε(ω) ) can
change from a positive value to a negative
one making the interacation to be negative.
In our modern condensed matter physics, it is
the quantized unit of lattice vibration known
as phonon which is responsible for such an
effective attractive interaction between the
electrons. It is worthy to mention that like
photons, phonons are bosons with zero chem-
ical potential. Unlike photons, phonons have
transverse polarization and the wave vectors
associated with them are restricted to Bril-
louin zone only.

When an electron passes through the solid,
on account of its negative charge, leaves be-
hind a deformation trail affecting the posi-
tion of the ion cores . This trail is associated
with an increased density of positive charge
due to the ion cores, and thus has an attrac-
tive effect on a second electron. Therefore,
the lattice deformation causes a weak attrac-
tion between the pair of electron. Thus, the
balance between of electron-phonon interac-
tion [2, 3, 12, 13, 14, 16] and the Coulomb
interaction in a material crucially determines
whether a given material is superconducting
or not. Since, electrons possess both charge
as well as spin, during its motion through
metal, the effective Coulomb interaction is
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screened dynamically[2, 15] as

V~q =
4πe2

ε(~q, ω)q2
(1)

However, with rearrangement of the electrons
due to phonon interaction, the effective inter-
action [2, 15] reduces to

V eff
~q =

4πe2

q2 + k2TF
+

4πe2

q2 + k2TF

ω2
q

ω2 − ω2
q

(2)

Here, ~q = ~k − ~k′, ~ω = Ek − E ′k with the
screening length λTF = k−1TF depending on
the density of electrons and the Fermi en-
ergy. ωq describes the spectrum of phonons
with dispersion relation ωq = sq at long wave-
length limit. In the limit ω < ωq, the effec-
tive interaction becomes negative while in the
static limit, the interaction reduces to zero.
A schematic view of the formation of Cooper
pairs is shown in figure 1. Thus, this interac-
tion is of dynamic nature only. Alternatively,
a simple physical intuitive level explanation
has been provided for this attractive interac-
tion between two electrons above the Fermi
surface by Weisskopf [17]. In fact, it has been
pointed out that the motion of Cooper pairs
is similar to that of the two nucleons in a
deuteron or of the two electrons in the ground
state of positronium.

In this pedagogical article, we would like
to discuss the many facets of Cooper pairs as
follows. In the next section, we briefly ex-
plain the meaning of bound state in quan-
tum mechanics. In section 3 , we state the
Cooper pairing problem in spherical Fermi

Figure 1: Formation of Cooper pairs inside the
lattice.

surface and solve the bound state for vari-
ous interactions between the electrons. With
the help of the eigenfunctions we also com-
pute the average radius of the Cooper pair in
section 4. We then generalize in section 5,
the bound state problem to ellipsoidal Fermi
surface. We give our conclusions in section 6.

2.Bound State Problem in

Quantum Mechanics

Classically, it is known that the bound states
can exist any time whenever there is a local
(or global) minimum in the potential energy.
However, a local minimum is insufficient to
create a bound state in quantum mechanics.
But, in quantum mechanics a global mini-
mum is necessary to allow the existence of
bound states. The classical bound states
can exist for any value of total energy which
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is low enough to keep the particle in the
minimum. However, this is not the case in
quantum mechanics.

In physics, a bound state generally de-
scribes a system where a particle is subject
to a potential such that the particle has a
tendency to remain localised in one or more
regions of space. The potential may be either
an external potential, or may be the result
of the presence of another particle.

In quantum mechanics with the con-
servation of number of particles, a bound
state is a state (of course in Hilbert space)
that corresponds to two or more particles
whose interaction energy is less than the
total energy of each individual particle, and
therefore these particles cannot be separated
unless this amount of energy is spent. The
energy spectrum of a bound state is discrete,
unlike the continuous spectrum of isolated
particles. One may have unstable bound
states with a positive interaction energy
provided that there is an energy barrier
that has to be tunnelled through in order
to decay. In general, a stable bound state
is said to exist in a given potential of some
dimension if stationary wave functions exist
(normalized in the range of the potential).
The energies of these wave functions are
negative. Bound state implies the classically
expected state, so bound state energy should
be smaller than V (x→ ±∞) or V (r →∞).

Let us illustrate some examples of the
bound states. A proton and an electron can
move separately and their the total center-

of-mass energy is positive, and such a pair of
particles can be described as an ionized atom.
However, when the electron starts to orbit
around the proton, the energy becomes neg-
ative, and a bound state so called the hydro-
gen atom is formed. Only the lowest energy
bound state, the ground state is stable. The
other excited states are unstable and will de-
cay naturally to bound states with less energy
by emitting a photon. A nucleus is a bound
state of protons and neutrons (nucleons). A
positronium atom is an unstable bound state
of an electron and a positron. It decays into
photons. The proton itself is a bound state
of three quarks (two up and one down; one
red, one green and one blue). However, unlike
the case of the hydrogen atom, the individual
quarks can never be isolated.

Any well-behaved eigenfunction ψ of a dis-
crete spectrum should satisfy

∫
|ψ|2 d3r = 1.

The integral is taken over all space. This
implies immediately that |ψ|2 must decrease
rapidly and approaching zero at infinity.
This indicates alternatively that the proba-
bilities of infinite coordinates is rather zero.
Thus, the system executes a finite motion
and hence, is said to be a bound state. For
a continuous one, the integral

∫
|ψ|2 d3r

diverges because |ψ|2 does not tend to zero
at infinity. In such a situation, the motion is
said to be extended over the infinite space. In
solving the Schroedinger equation for a given
problem, there are two types of solutions for
positive values as well as negative values of
the energy E. The negative energy solution
(E < 0) is bound one while the other one
is termed as scattering state or unbounded
state. For harmonic oscillator, the potential
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V (x)→∞ as x→∞ while for the hydrogen
atom V (r) → 0 as r → ∞. However, in
both cases, there is bound state. One has
to be careful to think whether the motion is
confined or not in a given potential. In this
respect, there is a remarkable theorem in one
dimension about the bound state.

The statement is : In one dimensional sys-
tem, there is always a bound state for any at-
tractive potential. Thus, the potential under
consideration have the the following proper-
ties; V (x)→ 0 as x→ 0 and

∫∞
−∞ V (x) dx <

0. Under this criteria, we are looking for a
variational estimation of the Hamiltonian

H =
p2

2m
+ V (x) (3)

for wave functions

ψ(x) = N exp(−α2x2) (4)

ψ(x) = N/ cosh(αx) (5)

Both these wave functions are normalizable
and go to zero as x → ±∞. Dimensional
analysis [18, 19] can be used to estimate the
contribution of the bound state energy eigen
values of bound state problem and other re-
lated problems. A simple dimensional analy-
sis yields that N2 = Cα with C being a di-
mensionless quantity and [α] = M0L−1T 0. It
is easy to notice that values of α control the
character of the wave function. For example,
in the limit of the small values of α, the wave
function is very much spread over the space
and the state is regarded as a weakly bound.
With the help of the wave function, we can
now estimate the potential and the kinetic

energy of the above Hamiltonian. For small
value of α,

〈V 〉 =

∫ ∞
−∞
|ψ|2 V (x) dx

≈ |ψ(0)|2
∫ ∞
−∞

V (x) dx

= −CWα (6)

where W =
∫∞
−∞ V (x) dx > 0. Again, on di-

mensional ground, the kinetic energy can be

estimated as
〈
p2

2m

〉
= Const.

(
α2~2
2m

)
= Dα2.

Thus,

〈H〉 = Dα2 − CWα (7)

No matter how small V is, we can have
〈H〉 < 0 for small value α. The minimum
value of 〈H〉 is −C2W 2

4D
for α = CW

2D
. Essen-

tially, the magnitude of the bound state de-
pends on the shape rather than its strength.
The variational proof of the existence of at
least one bound state in 1d is firmly rooted
to one dimension as shown explicitly on equa-
tion (3)-(7) and cannot be generalized to 2d
or 3d. In fact, for three dimensional attrac-
tive potential problem given by

V (r) = −V0, r ≤ a; V (r) = 0 r > a (8)

there exists a bound state only when the
strength of the potential V0 is greater than

the critical strength Vc =
(

~2π2

8ma2

)
. In

fact, for higher dimensions, the condition∫
V (x) ddx < 0 does not essentially support

[22, 23] always a bound state.
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3.Bound state of single

Cooper pair

The ground state of a non-interacting Fermi
gas of electron in a potential well corresponds
to the situation where all the electron states
with wave vector ~k within the Fermi sphere

[E0
F =

~2k2F
2m

at T=0K ] are filled and all states
with E > E0

F are unoccupied. We consider a
simple model [2, 3, 4] of two electrons added
to just above the filled Fermi surface char-
acterized by the Fermi energy E0

F . A weak
attractive interaction V (~r1, ~r2) between these
two electrons is switched on resulting from
the phonon exchange as discussed in the in-
troduction section. All other electrons in the
Fermi sea are assumed to be non-interacting,
and, on account of the Pauli exclusion prin-
ciple, they exclude a further occupation of
states with |k| < kF . The added two elec-
trons do feel a statistical interaction through
Pauli exclusion principle with those inside the
filled Fermi sphere. Hence, the most simple
bound state energy eigenvalue equation reads
as

HΨ0(~r1, ~r2) = EΨ0(~r1, ~r2)

H =
p21
2m

+
p22
2m

+ V (~r1, ~r2)(9)

Now, if the interaction V (~r1, ~r2) depends only
on the magnitude of the relative coordinate
~r = ~r1 − ~r2, then the lowest energy state will
correspond to the zero momentum of centre
of mass. This is true because we have a trans-
lational invariant system ([H,P ] = 0; ~P =
~p1 + ~p2). This fact also can be viewed from
the phonon mechanism. Due to phonon ex-

change the two additional electrons contin-
ually exchange their wave vector, where by,
however, momentum must be conserved.

~k1 + ~k2 = ~k′1 + ~k′2 = ~K (10)

We also assume that the interaction is short-
ranged and in k-space is restricted to a shell
with an energy thickness of ~ωD (ωD= Debye
frequency) above E0

F . The strength of the

attractive interaction is maximum for ~K=0.

It is therefore sufficient in what follows to
consider the case ~k1= ~−k2=~k , i.e. electron
pairs with equal and opposite wave vectors.
This suggest the orbital wave function to be

Ψ0(~r1, ~r2) =
∑
~k

g~ke
i~k. ~r1e−i

~k. ~r2 (11)

It should be noted here that zero momentum
of the pair does not mean that the uncer-
tainty in momentum (∆p) of the pair is zero.

Taking into account the antisymmetry [2,
24] of the total wave function with respect to
exchange of the two electrons, Ψ0 is converted
either to a sum of products of cos(~k.(~r1−~r2))
with the antisymmetric singlet spin function
(α1β2 - β1α2) or to a sum of products of

sin(~k.(~r1 − ~r2)) with one of the symmetric
triplet spin function α1α2, (α1β2 + β1α2)
,β1β2, where α= up spin state, β= down
spin state. However, because of an attrac-
tive interaction, we expect the singlet cou-
pling to have lower energy because the cosi-
nusoidal dependence of its orbital wave func-
tion on (~r1 − ~r2) gives a larger probability
amplitude for the electrons to be near each
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other. Hence, we consider a two electrons
singlet wave function of the form

Ψ0(~r1, ~r2) = [
∑
~k> ~kF

g~k cos~k.(~r1 − ~r2)]

× 1√
2

(α1β2 − β1α2) (12)

This kind of pairing of electrons is known
as S-wave pairing wave as gk will depend
on the magnitude of the wave vector ~k.
The summation is confined to pairs with
~k=~k1= ~−k2, which, because of the interaction
is restricted to the region ~ωD, must obey the
condition

E0
F <

~2k2

2m
< E0

F + ~ωD

The quantity |gk|2 is the probability of find-

ing one electron in state ~k and the other in
~−k, that is, the electron pair in (~k, ~−k). Due

to Pauli exclusion principle and above condi-
tion, we have

gk=0 for

{
k < kF
k >

√
2m(E0

F + ~ωD)/~2

With the help of the above Hamiltonian de-
picted in equation (9), the eigen value equa-
tion can be rewritten in terms of the coeffi-
cients gk as

(E − 2ε~k)g~k =
∑
~k′

g~k′V~k~k′ (13)

In this expression, the ε~k are unperturbed
plane wave energies and V~k~k′ are the matrix
element of the interacting potential obtained

through Fourier transformation of V (~r) is
given by

V~k~k′ = Ω−1
∫
V (~r)ei(

~k′−~k).~rd~r (14)

where ~r is the distance between the two elec-
trons and Ω is the normalization volume.
This V~k~k′ characterizes the strength of the
potential for scattering a pair of electrons

with momenta (~k′, ~−k
′
) to momenta (~k, ~−k).

If a set of g~k satisfying equation (13) with
E < 2E0

F can be found, then a bound pair
exists. Since it is hard to analyse this sit-
uation for general V~k~k′ , below we consider
three forms of the interaction for which we
can solve the equation (13) exactly.

3.1 Constant potential in
k-space

Cooper [4] introduces the approximation that

all V~k~k′ =-V for ~k states out to a cut off energy
~ωD away from EF , and that V~k~k′=0 beyond
~ωD. The right hand side of equation (13) is

a constant, independent of ~k, and we have

g~k = V

∑
~k′ g~k′

2ε~k − E
(15)

Summing both sides and cancelling
∑
g~k we

obtain,
1

V
=
∑
~k

(2ε~k − E)−1 (16)

Note that a constant V in the reciprocal space
means a spatially varying in real space. In
figure 2, we show the schematic variation of
the varying potential in real space.
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Figure 2: Schematic view of potential in real
space.

When we replace the summation by an in-
tegration, with N(ε) denoting the density of
states at the Fermi level for electrons, then
the above equation reduces to

1

V
=

∫ E0
F+~ωD

E0
F

N(ε)dε

(2ε− E)
(17)

Since N(ε) in three dimensions is propor-
tional to

√
ε and ~ωD � EF , then we can

assume that N(ε) does not change apprecia-
bly over the energy interval and can be re-
placed by the density of states at the Fermi
energy (N(E0

F )). Thus, we get a very simple
equation connecting the strength of interac-
tion as

1

V
= N(E0

F )

∫ E0
F+~ωD

E0
F

dε

2ε− E
(18)

1 =
1

2
N(E0

F )V ln
2E0

F − E + 2~ωD
2E0

F − E
(19)

or,

2E0
F − E = 2~ωD

e−2/N(E0
F )V

1− e−2/N(E0
F )V

(20)

Now (~ωD << E0
F ) and weak-coupling ap-

proximation is (N(E0
F )V << 1), then the so-

lution can be written as

E = 2E0
F − 2~ωDe−2/N(E0

F )V (21)

There thus exists two electron bound state,
whose energy is lower than that of the fully
occupied Fermi sea (T = 0K) by an amount
E − 2E0

F < 0. In reality the instability leads
to the formation of a new lower energy ground
state.

It is interesting to note that from equa-
tion (21) that the strength of the interac-
tion is inversely proportional to the density
of electrons at the Fermi surface. More-
over, the binding energy is finite for any arbi-
trary value of the interaction potential. This
brings out the open question of the impos-
sibility of forming the binding state in three
dimensions. This can be however argued in
the following way as illustrated in [11]. The
particles under consideration are not isolated
particles but quasi-particles related with the
filled Fermi sphere. This eventually leads to
the reduction of three dimensional problem
(
∫
d3k = N(E0

F )
∫
dE) to two dimensional

(
∫
d2k = m

∫
dE ) one. Any attractive in-

teraction in two dimensions will be sufficient
enough for the formation of bound state. In
fact this also indicates the key role played
by the filled Fermi sea in the formation of
Cooper pair. Physically speaking, in one or
two dimensions, the motion of the particle is
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restricted to a straight line or a plane. In
such a situation, any order of magnitude is
enough to produce a bound state.

An important conclusion [12] can be drawn
from equation (18). The equation (18) has a
solution for an arbitrarily weak potential if
and only if N(E0

F ) 6= 0. Note that in 3d,
N(ε) ∼

√
ε and hence N(ε) = 0 at ε = 0.

Thus, in the above integral, if the lower cut-
off were zero instead of E0

F , then there would
not be a solution for any arbitrary weak cou-
pling V . This points out the important key
role played by Pauli exclusion principle.

Suppose we split the Fermi sphere by a
magnetic field so that EF↑ 6= EF↓. In this sit-

uation, for a pair with ~K = 0, the minimum
excitation energy relative to free particles can
be computed as ∆EF = EF↑ − EF↓. Hence,
the gap connecting equation reads as

1

V
= N(E0

F )

∫ E0
F+~ωD

E0
F

dε

2ε+ ∆EF − Ẽ
(22)

Here, |Ẽ| = |E| − ∆EF . If ∆EF is greater
than the binding energy of the state for
|∆EF | = 0, no binding state is possible. Sup-
pose ∆EF = 0, but we would like to have
a finite center of mass momentum ~K rela-
tive to Fermi sea. In that situation,it is clear
that if the minimum value of εk is of the or-
der ~vFK, bound state solution disappears
when | ~K| > E

~vF
. In that sense, it is really

interesting to note that Cooper treated the
two electrons as really special and the rest as
only blocking states in Fermi sea.

If we measure the binding energy from the
Fermi energy, it is evident from the equation
(21) that the magnitude of the binding energy

is given by

|EB| = 2~ωDe−2/N(E0
F )V (23)

Moreover, as an order of magnitude estima-
tion, one can approximate |EB| to be order
of kBTc. In that situation, we can get a sim-
ple relation between microscopic interaction
and the observed critical temperature Tc in
the weak coupling limit as

Tc = 2θD exp

[
− 2

N(E0
F )V

]
(24)

Here θD is the corresponding Debye tempera-
ture of the phonon frequency. This equation
(23) can be compared with the many body
calculation involving many Cooper pairs in
BCS theory[5]

Tc = 1.14θD exp

[
− 1

N(E0
F )V

]
(25)

Again θD ∝ 1√
M

, M being the mass of the

ion and N(E0
F )V is assumed to be indepen-

dent of the mass of the ion, then we notice
from the above equation (23) that Tc ∝ 1√

M
.

This dependence on the ion’s mass is known
as isotope effect [2, 24] in superconductivity a
milestone in realizing the importance of role
of lattice or ion. Furthermore this equation
(23) can be utilized to compute the various
parameters for the microscopic theory such
as binding energy, size of the Cooper pairs.

Let us pause for a moment to estimate
the order of magnitude of this energy gap.
For Hg, assuming the transition temperature
Tc = 4K, we find that the gap is 0.001 eV.
Note that the typical Fermi energy or the av-
erage energy of free electron states is of the
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order 3-10 eV and the typical thermal energy
of a particle at room temperature (300 K) is
roughly 0.025 eV. The binding energy of an
electron in the ground state of hydrogen atom
is 13.6 eV which is almost 10,000 times that of
the energy gap seen for Hg. Thus, the minute
magnitude of this energy gap can mislead one
to use perturbation theory. However, the pre-
vious analysis by Cooper has shown clearly
that it is indeed a non-perturbative effect.
We will elaborate this point later.

What we have achieved till now is the fol-
lowing: If one starts from a degenerate free
electron gas and switch on the attractive in-
teraction V, then one notices that the elec-
trons above the Fermi sea pair themselves
and go below the Fermi surface to form a
bound state. Thus, the normal state becomes
unstable. Remarkably, this instability contin-
ues whatever may be the magnitude of the in-
teraction strong or weak. Only thing required
is the attractiveness of the interaction. How-
ever, there exists a contrasting nature from
other two particle states coupled by some at-
tractive finite range potential. They may not
form always a bound state the boundedness
of the state depends on some critical value of
the interaction. For repulsive potential, we
will have no bound state as the energy is al-
ways greater than the Fermi energy to form
continuum state. This can be visualized [24]
as follows. Consider the integral in equation
(17) as

F (E) = V

∫
N(ε) dε

−E + 2ε
; ε =

~2k2

2m
−EF (26)

For any general two body problem, we have
kF = 0 but N(ε) ∼

√
ε in three dimensions.

Then, it is easy to notice that the above in-
tegral converges for E = 0. For small V,
F (0) < 1 and for E < 0, one can convince
that F (E) < F (0) < 1. Hence, F (E) − 1 is
not realized for bound state. Following the
same logic, we can see that for Copper pair-
ing problem that N(ε) is constant over the
energy interval and F (0)→∞ and there ex-
ists always a bound state value of E < 0 such
that F (E) = 1.

It is also evident for constant Vkk′ , g~k de-
pends on the magnitude of the wave vec-
tor. This implies immediately that the spa-
tial part of the wave function is symmetric
in nature (ψ(~r1, ~r2) = ψ(~r2, ~r1)). Hence, ac-
cording to Pauli exclusion principle, the spin
part of the wave function must be antisym-
metric. Therefore, the spin part must have
the following antisymmetric form

φspin =
1√
2

(α1β2 − β1α2) (27)

where α and β are the spin up and spin
down eigenstates of spin 1/2 Pauli spin ma-
trices. The total spin operator Stot and the
z component of the spin operator Sz acting
on the above eigenstate φspin gives identically
zero eigenvalues only. This is consistent with
the argument given in the section for writing
down the variational form of the wave func-
tion for the two particles.

With the help of antisymmetric spin wave
function, we can now construct the full wave
function of two electrons as

ψ(~r1, σ1 : ~r2, σ2)

=
1√
2

(α1β2 − β1α2)
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×
∑
k

g~ke
i~k·(~k1−~r2) (28)

with g−~k = g~k. This wave function, however
can be further simplified as

ψ(~r1, σ1 : ~r2, σ2)

=
1√
2

∑
k

g~k

(
α1β2 e

i~k·(~r1−~r2)

−β1α2 e
i~k·(~r1−~r2)

)
=

1√
2

∑
k

g~k

(
(~k ↑)1( ~−k ↓)2

−(~k ↑)2( ~−k ↓)1
)

=
∑
k

g~kc
†
~k↑
c†
−~k↓
|vac > (29)

In the last step, we have used the formalism of
second quantization with fermionic creation
and annihilation operators. A quick inspec-
tion to the form of wave function reveals that

ψ(~r) = N
∫
FS

d3k ei
~k·~r

= N sin(kF r)− kF r cos(kF r)

r3
(30)

Here, N is the normalization constant. In
Figure 3, we show the variation of the wave
function with radial distance for two differ-
ent values of the Fermi wave vector. We no-
tice the drastic difference of the behaviour of
the wave function for large Fermi wave vec-
tor at small values of distance. It is clear
that the wave function is spatially symmetric
and the radial probability density P (r) varies
as r−4 as r → ∞. This indicates immedi-
ately that the mean square radius < r2 >=
4π
∫
P (r)r2dr diverges.

Figure 3: Schematic view of the wave function
for two different values of the Fermi wave vector.

The variation of the probability density can
be visualized in another way. Using the value
g~k, we can rewrite the wave function as

ψ(r) =
1

r

∫ kc

kF

dk
k sin(kr)

2εk + |E|

= −1

r

d

dr

{
cos(kF r)

∫ εc

0

cos( εr
~vF

) dε

ε+ |E|/2

}
(31)

Here we have used k − kF ≈ εk
~vF

. If we rep-
resent the integral as J(r), then it is noticed
that the wave function is nothing but that of
two free scattering particles (1

r
sin(kF r) times

the integral J(r). A careful look reveals that
J(r) is roughly constant for r < ~vF

|E| and be-

yond that it falls of as 1
r
. Therefore, the wave

function varies as 1
r2

in the limit r →∞. This
fact thus justifies the statement about the ra-
dial probability density in a natural way.

Now one may ask the following question: Is
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this spatial symmetric wave function unique
for any form of interaction Vkk′? In fact, the
nature of the wave function depends strongly
on the nature of the interaction. If the inter-
action depends on the angle between ~k and
~k′ ( such as λ(~k · ~k′)), then several bound
states [24] may arise. Moreover, spatially
anisotropic solutions leading to complicated
spin dependences rather than the simplistic
as suggested above may be found. However,
it has been noticed that in most of the normal
superconductors do not show a strong angu-
lar dependence of Vkk′ on ~k and ~k′ .

3.2 Potential separable in two
coordinates

Note that in the original Cooper pair prob-
lem, the interaction potential V (~r1, ~r2) =
V (|~r1−~r2|) = V (r). That’s why the potential
V (~r1, ~r2) is separable in relative coordinate r
only. There is no part of the centre of mass
coordinate ~R. If the potential could depend
on the individual coordinates rather than the
distance between the particles, then we can-
not write V (~r1, ~r2) as f(r)g(R). As in the
case of constant potential, here also we de-
fine the matrix element V~k~k′ as

V~k~k′ =< ~k,−~k|V |~k′,−~k′ > (32)

There is no general solution to equation (13)
unless V~k~k′ is assumed to be separable as func-

tions of ~k and ~k′ . So now we choose the sepa-
rable potential [22] given by V~k~k′ = −λω~kω∗~k′ .
We consider the potential V in relative co-
ordinate is spherically symmetric and hence,

Ψ(~r1, ~r2) is an eigenfunction of angular mo-
mentum with angular momentum quantum
numbers l and m1.
V~k~k′ can be expanded into partial wave

components

Vl(|~k|, |~k′|) = λlω
l
~k
ω∗l~k′ (33)

Thus, the eigen value equation in this case
for each value of l of Vl(|~k|, |~k′|) reads as

(Blm1 − 2ε~k)g~k = −λlωl~k
∑
~k′

ω∗l~k′g~k′ (34)

with

g~k = −
λlω

l
~k
C

(Blm1 − 2ε~k)
(35)

Where the constant C is defined as

C =
∑
~k′

ω∗l~k′g~k′ (36)

Repeating the same arguments as done in the
previous section, we obtain the desired equa-
tion

1 = −λl
∑
~k

|ωl~k|
2 1

(Blm1 − 2ε~k)

= −λlΦ(Blm1) (37)

determining the energy eigenvalues Blm1 . Be-
fore we proceed for the energy eigen value,
we would like to study the analytic struc-
ture [25] of the equation (32). The poles of
Φ(Blm1) occurs at Blm1 = 2ε~k. As Blm1 →
2ε~k from below, Φ(Blm1) → −∞ while just
above Blm1 → 2ε+~k , Φ(Blm1) → +ve. For

all the values of Blm1 � 2E0
F , Φ(Blm1) =

−ve. Therefore, a bound state forms when
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Φ(Blm1) crosses − 1
λl

. Thus, the intersection

of Φ(Blm1) with the straight line − 1
λl

de-
termines the bound state solutions for the
Cooper pair in such a solution.

For the simple case ωl~k = 1 for 0 < ε~k <

~ωD and ωl~k = 0 for otherwise, and λl < 0,
the binding energy |Blm1| of the pair in the
split off state is given by

1

λl
=

N(E0
F )

2
log[
|Blm1|+ 2~ωD
|Blm1|

]

|Blm1| =
2~ωD

exp(2/N(E0
F )λl)− 1

(38)

We have assumed the density of states N(ε)
is slowly varying in the interval 0 < ε~k < ~ωD
and have approximated it byN(E0

F ), the den-
sity of single electron states of one spin orien-
tation, evaluated at the Fermi surface. From
above equation one has in the weak coupling
limit,

|Blm1| = 2~ωD exp(−2/N(E0
F )λl) (39)

Thus, like constant potential case, we notice
in this situation also that the binding energy
is an extremely sensitive function of the cou-
pling strength for weak coupling; however, a
bound state exists for weak coupling so long
as the potential is attractive near the Fermi
surface. One more remark is in order. In
contrast to the previous constant potential
case, instead of single bound state, here we
get many bound states as indicated in the
figure 4. The bound state does not exist for
repulsive interaction between the electrons
above the filled Fermi surface. It is inter-
esting to note that the form of the binding
energy is not analytic at V = 0 or λ = 0. In

Figure 4: Schematic view of bound states for
potential separable in two coordinates.

other words, the energy cannot be expanded
in powers of V or λ, Hence, the result can-
not be obtained by perturbation theory. This
points out the importance of variational prin-
ciple as adopted here. This is one of very few
occasions in condensed matter physics, where
the final result cannot be obtained from the
perspectives of perturbation theory. The fail-
ure of perturbation theory can be traced back
in the frame work of change of different sym-
metry associated with the system [26].

We can also generalize the above analysis
to

V~k~k′ = −V0δ(~k − ~k′) (40)

to obtain exactly the energy eigen value. So,
we see that for all three above cases we get
bound state. Now it is almost impossible to
get a general analytic solution from any V~k~k′ .
The exact analytic solution exists only for
three forms of V~k~k′ as discussed above. Of
course any linear combination of the three
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forms of V~k~k′ will also form a bound state
and can be found exactly. It has been shown
by Randeria et al [27] that in two spatial di-
mensions, the many body ground state of a
dilute gas of fermions interacting through an
arbitrary pair potential is unstable to s-wave
pairing. This work has a remarkable implica-
tions in high-Tc superconductivity because of
the effective two dimensions of the materials
used.

3.3 Binding Energy and Center
of Mass Momentum

Dimensionally, one may argue that the bind-
ing energy depends on the center of mass mo-
mentum corordinate ~P as P 2. This is reason-
ably true because the wave function contains

a part of the order exp
(
i ~P ·~R
~

)
. However, we

will demonstrate below that the presence of
the Fermi surface will force the binding en-
ergy to depend only linearly [25] on the mag-

nitude of the center of mass momentum ~P .
The equation (16) in such a case is modified

as

1 = −V
∑
k

1

E − ε~k+ ~P
2

− ε−~k+ ~P
2

(41)

Now, for small ~P , neglecting the terms of the
order P 2, we can rewrite the above equation
in an integral form

1 = −V
∫ E0

F+
vF P

2
+~ωD

E0
F+

vF P

2

N(ε) dε

E − 2ε
(42)

to obain the final expression of the binding
energy in terms of the Fermi velocity vF and

other relevant parameters

E = 2E0
F + PvF −

2~ωD
exp

(
2

N(E0
F )V

)
− 1

(43)

Thus, we notice that the inclusion of the cen-
ter of mass energy in the expression of the
binding energy for the relative motion re-
duces its order of magnitude and can even
break the pair. If we measure the energy
from the Fermi surface, we can set E0

F to zero;
then the appropriate value of the magnitude
of center of mass momentum for which the
breaking of Cooper pair can be found as

PvF =
2~ωD

exp
(

2
N(E0

F )V

)
− 1
∼ kBTc (44)

If we now divide this center of mass momen-
tum by Planck’s constant, we get an inverse
of length scale [P~ ∼

kBTc
~vF

= 104 cm−1]. This
length scale ξ is known as Pippard coherence
length [2, 13, 24] and the estimated order of
magnitude turns out as ξ ∼ 10−4 cm =
1000Å. Interestingly, ξ, the coherence length
or the average size of the Cooper pair is seen
to be larger than the inter-atomic distance
between the particles. Such a large coherence
length is the signature of the electron-phonon
interaction.

4. Average Size of Cooper

pairs

In the previous section, we have used simple
dimensional argument to estimate the size of
the Cooper pair. This has been done from the
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energy gap at the Fermi energy. That’s the
key point for using this dimensional analy-
sis. This can be also be dome via uncertainty
principle [2]. In this section, we would like to
compute the size of the pair from the Cooper
pair wave function through the expectation
value [13, 24].

Cooper pair wave function can be written
as

ψ(~r1, ~r2) =
∑
~k

g~ke
i~k.~r (45)

where ~r = ~r1 − ~r2, therefore

|ψ(~r1, ~r2)|2 =
∑
~k

∑
~k′

g~kg~k′e
i(~k−~k′).~r (46)

Now the expectation value of the Cooper pair
radius squared is given by

< r2 >=

∫
|ψ(~r1, ~r2)|2r2d~r∫
|ψ(~r1, ~r2)|2d~r

(47)

putting the value of equation(31), we get

< r2 >=

∑
~k

∑
~k′

∫
r2g~kg~k′e

i(~k−~k′).~rd~r∑
~k

∑
~k′

∫
g~kg~k′e

i(~k−~k′).~rd~r
(48)

or,

< r2 >=

∑
~k

∑
~k′(∇~k.∇~k′

∫
ei(

~k−~k′).~rd~r)g~kg~k′∑
~k

∑
~k′ δ(

~k − ~k′)g~kg~k′
(49)

therefore,

< r2 >=

∑
~k

∑
~k′ ∇~k.∇~k′δ(~k − ~k′)g~kg~k′∑
~k

∑
~k′ δ(

~k − ~k′)g~kg~k′
(50)

or, we can write

< r2 >=

∑
~k |∇~kg~k|2∑
~k |g~k|2

(51)

Now, from previous section we know that

g~k =
C

2ε~k − E
(52)

where C be the constant. Therefore,

g~k =
C

2(~
2k2

2m
− EF − w/2)

(53)

where w = −2~ωDe−2/N(0)V is the binding
energy of the Cooper pair. Now,

∇~kg~k = −
C ~2k

m

2(~
2k2

2m
− EF − w/2)2

(54)

therefore,

|∇~kg~k|
2 =

C2 ~4k2
m2

4(~
2k2

2m
− EF − w/2)4

(55)

and

|g~k|
2 =

C2

4(~
2k2

2m
− EF − w/2)2

(56)

Substituting this value of |gk|2 in equation
(46), we get

< r2 >=
2~2

m

∫ EF+~ωD

EF

N(ε)εdε

( ~
2k2

2m
−EF−w/2)4∫ EF+~ωD

EF

N(ε)dε

( ~
2k2

2m
−EF−w/2)2

(57)

One can approximate those integrals as
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∫ EF+~ωD

EF

N(ε)εdε

(~
2k2

2m
− EF − w/2)4

∼ N(E0
F )EF

∫ ∞
EF

dε

(~
2k2

2m
− EF − w/2)4

(58)

or,∫ EF+~ωD

EF

N(ε)εdε

(~
2k2

2m
− EF − w/2)4

=
−8N(E0

F )EF
3w3

(59)
similarly,

∫ EF+~ωD

EF

N(ε)dε

(~
2k2

2m
− EF − w/2)2

=
−2N(E0

F )

w

(60)
Incorporating these values of the integrals, we
obtain finally,

< r2 >=
4~2v2F
3w2

(61)

where vF is the Fermi velocity given by vF =
~kF
m

= ~
m

(3π2n)1/3 with n being the density of
electrons.

Now the order of binding energy is 10−4

eV. So we get,

< r2 >1/2= 10−4cm (62)

So the extension of Cooper pair is much
greater than mean interatomic separation.
So, such a high density of such electron pairs
create a new lower energy ground state which
is known as BCS ground state.

Below we estimate the size of the Cooper
pairs in Table I for different systems assum-
ing the binding energy w ∼ kBTc. Note that

Table 1: Size of Cooper pair
Metal Tc vF (×106m/s) Size (µm)
Al 1.2 2.03 14.92
Cd 0.56 1.62 25.51
Ga 1.09 1.92 15.54
Zn 0.9 1.83 17.93
Sn 3.72 1.90 4.50
Pb 7.2 1.83 2.24
Nb 9.26 1.37 1.30
Hg 4.15 1.58 3.36
In 3.4 1.74 4.51

as V0 → 0, w → 0 rendering the average ra-
dius to diverge. Kadin [28] has beautifully
illustrated the real space physical picture for
the Copper pair consistent with BCS theory.

5.Cooper pair above the

ellipsoidal Fermi surface

Suppose we put two electrons above the ellip-
soidal Fermi surface rather than the original
spherical Fermi surface as done by Cooper
himself. Will they still form a bound state
like the spherical one? We know that the el-
lipsoidal Fermi surface can be represented by
the equation

E =
~2

2m∗x
k2x +

~2

2m∗y
k2y +

~2

2m∗z
k2z (63)

This equation can be rearranged in the fol-
lowing form

1 =
~2

2m∗xE
k2x +

~2

2m∗yE
k2y +

~2

2m∗zE
k2z (64)
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The three axis of the ellipsoid can be read of
as

a =

√
2m∗xE

~

b =

√
2m∗yE

~

c =

√
2m∗zE

~
(65)

Now, the total number of electronic state be

n =
4
3
πabc

(2π
L

)3
(66)

Putting the value of a, b, c into equation (61),
the value of n is given by

n =
4
3
π
√

8m∗xm
∗
ym
∗
z

~3(2π
L

)3
E3/2 (67)

This, the density of state is

N(E) =
dn

dE
= C

√
m∗xm

∗
ym
∗
zE

1/2 (68)

where C be the constant. Thus, like the
spherical case, here N(E) is also proportional
to
√
E. This can be understood from the fact

that by defining k̃x = kx√
m∗x/m

, k̃y = ky√
m∗y/m

k̃z = kz√
m∗z/m

, the ellipsoidal Fermi surface de-

fined in equation (58) can be transformed to
spherical one. So it is clear that, the form
of binding energy of Cooper pair does not
change for ellipsoidal Fermi surface. Only the
magnitude of the effective mass is modified
in such a situation as md = (m∗xm

∗
ym
∗
z)

1/3.
Thus, the equations (20) or (33) remain valid
with suitable replacement of the density of

states at the Fermi surface as shown above.
Although the density of states will not change
shape, however, it is to be noted that the
Fermi velocity at different k-points on the
Fermi surface will be different. This in turn
will indicate the electron-phonon coupling
will necessarily depend on k and hence, the
gap calculated above becomes anisotropic in-
stead of isotropic.

6. Conclusions

To conclude, we have discussed the energet-
ics of a single Cooper pair which eventually
forms an important ingredient for the devel-
opment of BCS theory which is nothing but
the condensate of interacting many Cooper
pairs. The meaning of bound state along
with the inapplicability of perturbation the-
ory have been addressed here. The origi-
nal bound state of Cooper pairs in spher-
ical Fermi surface has been generalized to
ellipsoidal Fermi surface with various forms
of the interacting potentials. The average
radii of the Cooper pairs for many supercon-
ducting materials have been computed and
it has been argued that they are quite larger
than the typical average distance between the
quantum particles (here electrons).
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