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Abstract

In 1908 Minkowski wrote a paper in which he introduced the concept of a 4-dimensional
”world” popularly known as space-time, and introduced ”world postulate” suggesting that
all physical phenomena should be described only in space-time. He showed how to
construct 4-vectors, and classified them into two categories, namely time-like and space-like
vectors. Some of the examples of these vectors as worked out by him are the velocity and
acceleration vectors, the momentum and the force vectors, all in 4-dimensions. He derived
the 4-dimensional law of motion from which he also obtained the famous E = mc2 formula.
In his final analysis Minkowski demonstrated further application of the world postulate by
giving a geometrical construction of the Lienard-Weichert potentials and used it to obtain
the force exerted by a moving charge on another moving charge. In this article we have
explained Minkowskis work as mentioned above using our own interpretation.

1 Introduction

In 1905 Einstein wrote two revolutionary pa-
pers [1] giving the framework of what he
later called the Special Theory of Relativ-
ity (STR). Eleven years later, i.e., in 1916,
he presented his General Theory of Relativ-
ity (GTR) which turned out to be a geomet-
rical theory of gravitation[2]. Whereas the

STR is mathematically a simple theory origi-
nally intended to set right some “asymmetries
in Maxwell’s Electrodynamics”, the GTR
involved complex mathematics of Reiman-
nian geometry. It visualized gravitation as
a curvature in a four dimensional “world”,
more familiarly now known as space-time
and the orbits of planets and satellites (even
trajectories of mundane earthly objects like
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cricket balls) as geodesics marked out on this
“curved space-time”.
The geometrical ideas that form the bridge

between the STR and the GTR were cre-
ations of H. Minkowski [3]. In 1908 he
geometrized the STR, which under Ein-
stein later culminated in the geometriza-
tion of gravity[2]. In his original paper
Minkowski fancied a four-dimensional mani-
fold of “events” where the time co-ordinate
t takes equal status along with the three
space co-ordinates (x, y, z), and called it
world. The points in this “world” are there-
fore “events” characterized by 4-coordinates
(x, y, z, t). The basic physical quantities of
classical mechanics. e.g., displacemnent, ve-
locity, momentum, energy and force were
conceived as 4-vectors (geometrical objects),
or components of 4-vectors, in their corre-
sponding 4-dimenational “worlds”.
In 2005, as part of celebration of Einstein’s

birth cenetennary, we had written an exposi-
tion of Einstein’s special relativity papers[4]
with the following remarks. “Einstein’s orig-
inal papers were terse because they were
meant to be read by the leading physicists
of that time. We have therefore simplified
his work by providing between-the-lines elu-
cidation for many of the concise statements in
these papers which many students may find
difficult to understand. It is hoped that stu-
dents and physics teachers may be able to get
a full view of Einsteins relativity papers us-
ing our article as a guide.” In the same spirit
we are writing this article to expose the stu-
dents and teachers of physics to the pioneer-
ing work of Minkowski. We have banked on
the English version of this paper available in

Ref.[3].
The original paper of Minkowski appears

to be difficult to understand on first reading.
It requires considerable efforts to comprehend
his statements which are very brief. We have
tried to elucidate these statements, as best
as we could understand them, by expanding
them into explanatory notes.
In the Appendix of Ref.[3] there

are explanatory notes given by Prof.
A.Sommerfeld. The reader may also take a
look at these notes. However, most of these
notes refer to other papers/articles written
in German to which we could not get access.
Even though we have benefitted from a few
of these notes, we have mostly interpreted
Minkowski’s original paper with our own
understanding.
It is our hope that the readers of this article

(students and teachers) will find this article
useful in strenthening their understanding of
the special theory of relativity, in particular
their concept of the 4-dimensional represen-
tation of classical mechanics, its equations of
motion, E = mc2, and the covariant formula-
tion of classical electrodynamics. It may also
help them place the works of the founding fa-
thers of the theory of relativity in a proper
historical perspective.
In this article we shall frequently use

the term space-time to mean Minkowski’s
“world”. Many of the new concepts and
terms introduced by Minkowski, e.g., world
point, world line, proper time, pictured in the
4-dimensional “world” are now familiar terms
in text books. Even the famous mass-energy
equivalence equation E = mc2, which we nor-
mally attribute to Einstein, was written in
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this revolutionary form by Minkowski1. See
our remarks on page 39.
Wherever we shall quote an axact passage

from Minkowski’s paper, we shall place them
within “quotes”. Most of these quotes (at
least the most important ones of them) will
be found in a separate paragraph, placed with
an “indent”.
Minkowski’s paper has 5 sections, labelled

with roman numerals I-V. We have coverd
them in this article in 17 sections. Our Sec-
tions 2-10 cover Sec. I of Minkowski, Section
11 covers Sec.II, Sections 12-14 cover Sec.III,
Section 15 covers Sec.IV, and Sections 16-17
cover Sec.V.
Minkowski begins his article with the philo-

sophical prediction, “Henceforth space by it-
self, and time by itself, are doomed to fade
away into mere shadows, and only a kind of
union of the two will preserve an independent
reality.”

2 Two-fold invariance of

Newtonian Mechanics

The concepts of newtonian mechanics revolve
around displacement r, velocity v, accelera-

1In his relativity papers of 1905 Einstein derived a
series of corollaries of his relativity postulates, some
of them being (i) transformation under Lorentz trans-
formation of the electromagnetic field, (ii) consequent
derivation of the relativistic Doppler formula, (iii)
transformation of light energy. Using the last re-
sult he established the following. Suppose an object
(e.g., an atom) loses energy equal to δw by emission
of light. As a consequence the object also loses its
mass by an amount δm which satisfies the equality:
δw = (δm)c2. See page 67 of Ref.[4].

tion a. All these quantities are referred to
a certain frame of reference S, e.g., a Carte-
sian system of XY Z axes, having its origin O
located somewhere. However, the laws of mo-
tion remain unchanged (a) “if we subject the
underlying system of spatial coordinates to
any arbitrary change of position”, by which
Minkowski seems to imply rotation of the co-
ordinate axes from XY Z to X ′Y ′Z ′, or (b)
“if we change its state of motion, namely, by
imparting to it any uniform translatory mo-
tion”, i.e., switch into another frame of ref-
erence S ′ whose origin O′ is moving with re-
spect to O with a constant velocity u.

The totality of all operations (a) and (b)
form two distinct groups of transformation.

“The two groups side by side, lead their
lives entirely apart. Their utterly inho-
mogenous character may have discour-
aged any attempt to compound them.
But it is precisely when they are com-
pounded that the complete group, as a
whole, gives us to think.”

Minkowski begins Sec. I of his paper with
the proposal to combine the two groups into
a single one (which he later calls Gc.) He
proceeds towards this goal by introducing the
terms world point, world and world-line.

“The objects in our perception invari-
ably include places and times in combi-
nation. Nobody has ever noticed a place
except at a time, or a time except at a
place... A point of space at a point of
time, that is, a system of values x, y, z, t,
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I will call a world point. The multiplic-
ity of all thinkable x, y, z, t, systems of
values we will chirsten the world.”

We shall elucidate. The term “world
point” is synonimous with the term “event”
used in special relativity. Having fixed a
frame of reference defined by the Cartesian
coordinate system XY Z an event Θ takes
place at some point P having coordinates
(x, y, z) and at a certain time t. We can
therefore fancy a 4-dimensional “manifold”
W having four axes X, Y, Z, T in which the
event Θ is represented by a corresponding
image Θ having coordinates (x, y, z, t) with
reference to the above mentioned four axes.
This point Θ is a world point. The continuum
of all points in this manifold having values of
each one of x, y, z, t from −∞ to +∞ is the
“world” as defined by Minkowski.

We shall however feel more comfortable to
use the more familiar term space-time for
Minkowski’s world.
We shall illustrate some of Minkowski’s ar-

guments using the diagram in Fig. 1. Since
it is not possible to picture the 4-dimensional
space time, we have eliminated the Z axis and
have presented a kind of picture of space-time
on a sheet of paper. In doing this we have
taken the XY plane as the base on which
we have constructed the superstructure, the
space-time, by going vertically up, along the
T axis.
Let us think of a material particle mov-

ing in some manner such that its location at
time t is at some point P having spatial co-
ordinates x, y, z. Minkowski refers to such a
particle by the term “substance”. We shall
find it more natural to use our familiar term
“particle” instead of “substance”.

Consider two successive events on the path of a material particle.

ΘP : The particle is at P(x, y, z) at time t.
ΘQ : The particle is at Q(x+ dx, y + dy, z + dz) at time t+ dt.

The displacement vector
−→
PQ has Cartesian

components (dx, dy, dz). Seen in the space-
time W there is a progression of the parti-
cle from ΘP to ΘQ through four coordinates
(dx, dy, dz, dt). The line joining ΘP to ΘQ is
an element of the world line of the particle.

In the 3-dimensional Euclidean space, of-
ten denoted as E3, the particle moves from
A to B along a certain path Γ. In the 4-

dimensional space-time W the particle traces
out the continuous curve Ω as it progresses
from the event ΘA to the event ΘB. This
curve is the world line (WL) of the particle.
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3 Freedom of the Time

Axis

Let us now get back to the group of transfor-
mations (a), i.e., rotation of the XY Z axes,
called orthogonal transformations, and often
denoted by the symbol O(3) in the termi-
nology of group theory. The simplest such
transformation is the rotation of theXY axes
about the Z axis by an angle θ, shown in
Fig. 2. The coordinates (x, y, z) of a point
change to (x′, y′, z′) in such a transformation
and

x′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ,
z′ = z.

(1)

In this transformation, in fact in all general
orthogonal transformations, the distance of a
point measured from the origin remains un-
changed, i.e.,

x2 + y2 + z2 = x′2 + y′2 + z′2. (2)

As we have noted, and we repeat it here,
the equations representing Newton’s laws of
motion donot change if the old coordinates
(x, y, z) are replaced by the new coordinates
(x′, y′, z′) which are obtained from the former
by any orthogonal transformation.
The group of transformations (b) consists

of Galilean transformations of “events”. We
shall abbreviate it as GT. Let us consider a
material particle moving along a certain tra-
jectory Γ. It is at a certain point P at time
t. Let the spatial coordinates of the point
P be (x, y, z) when viewed from an inertial
frame S, and (x′, y′, z′) when viewed from an-
other inertial frame S ′ which is moving with

respect to S with a constant velocity u. It is
assumed that the Cartesian axes XY Z of S
remain parallel to the Cartesian axesXY Z of
S ′, and coincide at t = 0. In the parlance of
special relativity we often say that the frame
S ′ has a boost u with respect to S.
In Fig. 3 we have illustrated a boost in the

X direction with velocity u. The GT for this
special case is

x′ = x− ut; y′ = y; z′ = z; t′ = t. (3)

In a more general boost, the frame S ′ will
be moving in an arbitrary direction with ve-
locity u having componets u = (ux, uy, uz)
in the X, Y, Z directions. The GT for this
general case will be

x′ = x−uxt, y′ = y−uyt, z′ = z−uzt, t′ = t.
(4)

We shall represent GT in space-time as il-
lustrated in Fig. 4. To make the comprehen-
sion of the graphical construction easier we
shall consider the special case of boost in the
X direction, represented by Eqs. (3).
Just as the transformation of the coordi-

nates (x, y, z) represented by the orthogonal
transformation (1) induces in the space E3

the rotation of the XY axes as illustrated in
Fig. 2, the transformation GT represented by
Eqs. (3) induces a kind of rotation shown in
Fig.4(a) in which the time axis T is rotated
by the angle tan−1 u to become the T ′ axis,
whereas the X ′, Y ′, Z ′ axes remain parallel to
the corresponding X, Y, Z axes. To see this
clearly we should only note that the equation
of the new T ′ axis should be

x′ = 0; Or, x− ut = 0. (5)

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 7 Apr-Jun 2013

X

Z

S
S

Y

Γ

P

X

Z

Y

u

Figure 3: Boost in the X direction

X

Y

T
T

(b)

Y

X

XX

−
1

ta
n

  
u

t

T

x

*

x =0
x−ut=0

t

ut

ut

T

6

1

2

3

5

6

7

8

3 4 5 6 7 81 2
1

2

3

4

5

7

8

O

Θ

x

(a)

4

C

A B

C

O
Space

Time

Time

Figure 4: Boost seen in Space-time

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 8 Apr-Jun 2013

We can get back the GT given by Eqs. (3)
from the above diagram in the following way.
Consider an arbitrary event Θ represented in
space-time. Draw three lines ΘA, ΘB and
ΘC parallel to the axes T ′, T and X respec-
tively. The first two intercept the X axis at
A and B respectively, and the third one inter-
cepts the T axis at C, and the T ′ axis at C′.
Fix the scale of the X and X ′ axes 1,2,3,...
at equal intervals by taking unit length along
theX ′ axis to be unit length along theX axis.
Similarly fix the time scale 1,2,3,.. on the T
axis at equal intervals. Draw lines 11,22,33,..
from the T axis, parallel to the X axis, to fix
the length scale on the T ′ axis as shown. In
other words if the intercept O1 on the T axis
represents unit length on the T axis then the
intercept O1 on the “slanted” T ′ axis rep-
resents unit time on this axis. Using these
scales it is then seen that

ÔC′ = ÔC, Or, t′ = t.

ÔA = ÔB− ut, Or, x′ = x− ut.
(6)

In the above equation we have used “wide-
hat” .̂..... to represent the measure of a given
segment indicated by the capital letters. We
have thus retrieved the same GT as given in
Eqs. (3) by a graphical method.
It is then seen that just as the XY Z axes

are not unique due to invariance of Newton’s
laws of motion, under the group (a) of trans-
formations, the time axis is not unique due to
invariance of Newton’s laws of motion under
the (b) group of transformations.
In Fig. 4(b) we have pictured a rotated time

axis T ′ under a more general GT.
Minkowski observes, which we write as the

following proposition

“Hence we may give to the time axis
whatever direction we choose towards
the upper half of the world, t > 0.”

He next poses the question,

“Now what has the requirement of or-
thogonality in space to do with the per-
fect freedom of the time axis in an up-
ward direction?”

4 The Group Gc

The central theme of Minkowski’s paper is in-
variance of the laws of physics under a group
of transformation which he denoted as Gc. It
consists of all linear transformations in space-
time which change the co-ordinates (x, y, z, t)
of an “event” to a new set of co-ordinates
(x′, y′, z′, t′) in such a way that the expres-
sion

F (x, y, z, t)
def
= c2t2 − x2 − y2 − z2 (7)

remains invariant, i.e.,

c2t′2−x′2−y′2−z′2 = c2t2−x2−y2−z2. (8)

In Minkowski’s words

“Let us take a positive parameter c, and
consider a graphical representation of

c2t2 − x2 − y2 − z2 = 1.

It consists of two surfaces separated by
t = 0, on the analogy of a hyperboloid
of two sheets. We consider the sheet in
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the region t > 0, and take those homoge-
neous linear transformations of x, y, z, t
into four new variables x′, y′, z′, t′, for
which the expression for this sheet in the
new variables is of the same form. ...
It is evident that the rotations of space
about the origin pertain to these trans-
formations.”

It seems to us that by “rotations of space”
Minkowski means “rotations of space-time”.
Minkowski then proposes a graphical con-
struction of this transformation simplifying
it by keeping the y, z variables unchanged.

“Thus we gain full comprehension of
the rest of the transformations simply
by taking into consideration one among
them, such that y and z remain un-
changed.”

We shall explain this construction in the
next section. We shall however proceed
with the following remarks. A trivial ex-
ample of Gc is pure rotation in space, i.e.,
the group of orthogonal transformations de-
noted by SO(3) and discussed in the pre-
vious section. It is obtained from Eq. (8)
by setting t = 0. Our interest however lies
in Lorentz transformation proper which had
been derived by Einstein as a corollary to
his relativity postulates. In our discussion
to follow we would like to be clear that we
are talking about Lorentz transformation, or
the group of Lorentz transformations (even
though Minkowski is silent about it) by men-
tioning Gc. We shall often use the abbrevia-
tion LT to mean Lorentz transformation.
Let S and S ′ be two “inertial frames of ref-

erence” whose axes X, Y, Z and X ′, Y ′, Z ′ are

parallel and coincide at t = t′ = 0. In the rest
of this article we shall prefer the term Lorentz
frame to mean an inertial frame in the con-
text of special relativity. Let u = βc be the
velocity with which S ′ is moving relative to
S. Here c is the speed of light, so that β

is a dimensionless velocity having magnitude
less than unity. The “event” co-ordinates
(x, y, z, t) and (x′, y′, z′, t′) mentioned above
are with reference to S and S ′ respectively.
A simple and special case of this transfor-

mation is when the boost is in the x direction,
so that u = βc i as illustrated in Fig. 3. The
intended transformation is then:

x′ = γ(x− βct), (a)
y′ = y; z′ = z. (b)
ct′ = γ(ct− βx). (c)

with γ = 1√
1−β2

. (d)

(9)

5 Graphical Construction

of Lorentz

Transformation

We shall now present Minkowski’s construc-
tion of Lorentz Transformation, analogous to
the graphical construction of Galilean trans-
formation presented in Sec. 3. Imagine the
hyperboloid hyper-surface

F (x, y, z, t) = 1, (10)

carved out in space-time, where the expres-
sion for F (x, y, z, t) was defined in Eq. (7).
For the sake of pictorial representation of this
hyperboloid on this sheet of paper we shall
suppress the y and z dimensions. This will
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reduce the hypersurface to a two dimensional
curve, viz., the hyperbola

c2t2 − x2 = 1. (11)

In Fig. 5(a) we have plotted the above hyper-
bola and its asymptotes OE (t = x

c
) and OF

(t = −x
c
). Its vertex V lies at (x = 0, t = 1

c
).

Draw any “radius vector” OA from the ori-
gin O to any point A on the hyperbola. This
line extended indefinitely becomes the new T ′

axis. At A draw a tangent to the hyperbola,
intersecting the asymptote OE at B. The par-
allelogram ABCO is completed by drawing
BC and OC parallel to AO and AB respec-
tively and intersecting at C. The straight line
OC is now extended to represent the new X ′

axis.
We now specify the scales of the new axes

as follows. The intercept OC is to measure
unity on the X ′ axis and the intercept OA
to measure 1

c
on the T ′ axis. We have repro-

duced this scale in Fig. 5(b).
Let us consider an arbitrary event P hav-

ing co-ordinates (xP , tP ) with respect to the
X −T axes. The event P is now projected to
the pair of points (R,Q) on the X ′ − T ′ axes.
With the scales just defined the space-time
co-ordinates (x′P , t

′
P ) of P with respect to the

X ′ − T ′ axes are now given by the following
ratios.

x′P =
ÔR

ÔC
, t′P =

1

c

(
ÔQ

ÔA

)
. (12)

In the above equation we have used “wide-
hat” to represent the length of a given seg-
ment indicated by the capital letters. This

completes Minkowski’s graphical transforma-
tion of (x, t) to (x′, t′).
It now needs to be seen that the transfor-

mation of co-ordinates given above meets our
requirement, which we write in the form of
the following statement.

Theorem 1 The co-ordinates (x′, t′) of an
arbitrary event P referred to the new X ′ − T ′

axes are related to their old co-ordinates (x, t)
referred to the X−T axes in such a way that

F (x, t)
def
= c2t2 − x2 (13)

remains invariant. That is,

c2t′2 − x′2 = c2t2 − x2. (14)

Instead of proving the above theorem di-
rectly we shall now prove the following equiv-
alent lemma.

Lemma: 1 The co-ordinates (x′, t′) of an ar-
bitrary event P referred to the new X ′ − T ′

axes are related to their old co-ordinates (x, t)
referred to the X−T axes in such a way that
they satisfy Lorentz transformation given in
Eq. (9).

It is a simple exercise (the reader must have
done this himself as part of his homework in
special relativity) to prove that the transfor-
mation (9) satisfies the invariance required by
Eq. (14).

Proof of lemma 1 : Let us first note that the
X ′ and T ′ axes must satisfy t′ = 0 and x′ = 0
respectively. By Eq. (9) they must therefore
to be represented by the following straight
lines

X ′ axis : t = β

c
x (a)

T ′ axis : t = 1
βc
x (b)

(15)
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Let the angle subtended by the line OA
(which represents the T ′ axis) with theX axis
be θ. Then by Eq. (15b) tan θ = 1

βc
.

Note that a tangent dt
dx

to all hyperbolas of
the form

c2t2 − x2 = k, satisfies
dt

dx
=

x

c2t
. (16)

Hence the tangent AB drawn at A must have
the slope tanφ = x

c2t
= βct

c2t
= β

c
, since the

point A lies on the T ′ axis. Consequently the
line OC which is parallel to AB, will have the
same equation as that of the X ′ axis given by
Eq. (15a). We are thus satisfied that the lines
OC and OA truly represent the transformed
X ′ − T ′ axes.
In summary, the angles θ, φ that the T ′, X ′

axes make with the X axis are given as

tan θ =
1

βc
; tanφ =

β

c
. (17)

We shall now convert the segment ratios
given in Eq. (12) into algrebraic expressions
in terms of the co-ordinates (xP , tP ) of the
event P. For this purpose we shall obtain the
(x, t) co-ordinates of the points A, B, C, R, Q
on the x−t diagram. Each of these points lies
at the intersection of two curves or straight
lines. The reader should work out the equa-
tions of the straight lines OA, AB, CB, OC,
QP, RP and the co-ordinates of the intersec-
tion points to tally with the results tabulated
below.

Straight line # 1 Curve/straight line # 2 Their intersection
OA : T ′ axis: t = 1

βc
x Hyperbola ; c2t2 − x2 = 1 A: (xA, tA) =

(
βγ, γ

c

)

AB : t = 1
c

(
1
γ
+ βx

)
OE :x = ct B: (xB, tB) =

1
γ(1−β)

(
1, 1

c

)
.

OC : X ′ axis : t = β

c
x BC : t− 1

cγ(1−β)
= 1

βc

(
x− 1

γ(1−β)

)
C: (xC , tC) =

(
γ, βγ

c

)

OC : X ′ axis : t = β

c
x PR : t− tP = 1

cβ
(x− xP ) R: xR = γ2(xP − βctP )

OA : T ′ axis : t = 1
βc
x PQ : t− tP = β

c
(x− xP ) Q: tQ = γ2(tP − β

c
xP )

Ox : X axis : t = 0 BC : t− 1
cγ(1−β)

= 1
βc

(
x− 1

γ(1−β)

)
D:xD = 1

γ

(18)

The last row in the table, though not rele-
vant to the present exercise, will be useful in
the next section.

We can now compute the ratios suggested
in Eq (12) from the geometrical construc-
tions given in Fig. 5 and the values of the
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co-ordinates obtained in Eqs. (18).

x′P =
ÔR

ÔC
=
xR
xC

= γ (xP − βctP ) ;

t′P =
1

c

(
ÔQ

ÔA

)
=

1

c

tQ
tA

= γ
(
tP − β

c
tP
)
.

(19)
which are same as the Lorentz Transforma-
tion equations of (9).

Q.E.D.

We have thus completed a graphical con-
struction of Lorentz transformation for arbi-
trary “boost” βc in the X direction. With
0 ≤ β < 1 as continuous parameter the set
of all such boosts constitute a 1-parameter
group. It is a subgroup of a larger 3-
parameter group in which the boost velocity
β has arbitrary direction. It is this group that
Minkowski has identified with the symbol Gc.
We shall summarize the essential features

of Minkowski’s graphical construction in the
following proposition.

Proposition 1 1. A straight line drawn
from the origin O of the X − T plane to any
point A of the hyperbola given in Eq. (11) can
become a new time axis which we can repre-
sent as T ′.
2. Let AB be a tanegent to this hyperbola

at A. Then a straight line OR drawn from
the origin O and parallel to the straight line
AB can be the new space axis which we can
represent as X ′.
3. Projection of an event P projected on

the new X ′, T ′ axes according to the rules and
scales defined in this section will give the new
(x′, t′) coordinates of this event under a boost
cβ along the X axis.

6 The Group G∞

We have just seen that Gc is associated with
Lorentz transformation. When c → ∞, γ →
1, βc = u, and Gc becomes G∞. In this lim-
iting case the Lorentz transformation Eq. (9)
reduces to the old Galilean Transformation
as given in Eq. (3).

In Fig. 6 we have illustrated graphically
the metamorphosis of Gc → G∞ as c → ∞.
However, cβ = u remains unchanged, so that
β → 0. As a consequence the inclination an-
gle θ = tan−1 u of the axis T ′ remains un-
changed. However, since β

c
→ 0, the angle

φ = tan−1
(
β

c

)
→ 0, and the axis X ′ merges

with the X axis.

In Fig. 6(a) the line TT′ is parallel to the

X ′ axis, so that the intercepts ÔT on the T
axis and ÔT ′ on the T ′ axis give the same
measure of time interval with respect to the
frames S and S ′ respectively. The same is
true in Fig. 6b, with the line TT′ being now
parallel to the common X and X ′ axis, since
the two have merged.

In contrast one common scale of length
measurement (along the common X and X ′

axis) applies to both systems of reference.

Now consider an arbitrary event P with co-
ordinates (x, t) with respect to the system S.
It is projected to the points (R′,Q′) on the
X ′−T ′ axis and (R,Q) on theX−T axis. Us-
ing the scales as described above one obtains
the same values for the co-ordinates (x′, t′) of
P with respect to S ′ as given in Eq. (3). We
get back the GT in space-time as in Sec.3 and
Fig. 6(b) becomes similar to Fig.3(a). This is
the transformation under the group G∞.
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Figure 6: Metamorphosis Gc → G∞

7 Invariance of the Laws

of Nature under Gc

Minkowski observes,

“The axis of T ′ may have any upward
direction whatever, while X ′ approaches
more and more exactly to X. In view of
this it is clear that the group Gc, in the
limit when c = ∞, that is the group G∞,
becomes no other than that complete
group which is appropriate to Newto-
nian Mechanics. This being so, and since
Gc is more intrelligible than than G∞, it
looks as though the thought might have
struck some mathematician, fancy-free,
that after all, as a matter of fact, natural
phenomena do not possess an invariance
with the group Gc, but with a group Gc,
c being finite and determinate, but in or-

dinary unit of measure, extremely great.
Such a premonition would have been an
extraordinary triumph for pure mathe-
matics. Well, mathematics, ... with its
senses sharpened by an unhampered out-
look to far horizona, to grasp forthwith
the far-reaching consequences of such a
metamorphosis of our concept of nature.

I will state at once what is the value of
c with which we shall be finally dealing.
It is the velocity of propagation of light
in empty space.”

Minkowski now touches on the central
theme of his paper, viz., invariance of the laws
of nature,

“The existence of the invariance of the
natural laws for the relevant group Gc

would have to be taken then in this way:-
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From the totality of natural phenomena
it is possible, by successive enhanced ap-
proximations, to derive more and more
exactly a system of reference x, y, z, t,
space and time, by means of which these
phenomena then present themselves in
agreement with definite laws. But when
this is done, this system of reference is
by no means unequivocally determined
by the phenomena. It is still possible to
make any change in the system of refer-
ence that is in conformity with the trans-
formations of the group Gc, and leave the
laws of nature unaltered.”

We shall elucidate. There was a hypothet-
ical frame of reference, often referred to as
the Absolute frame of reference, which New-
ton had in mind when he enunciated the laws
of motion. We shall refer to it as the ab-
solute inertial frame, or the AIF. However,
the basic tenets of Newtonian mechanics hold
not only with reference to the AIF but also
with reference to any “non rotating frame of
reference” whose origin is moving relative to
the AIF in a straight line with a constant
velocity βc. Such a frame of reference is
called an inertial frame, or IF. It had been
believed that Maxwell’s equations of electro-
dynamics were valid when referred to the
AIF, but not with reference to any other IF.
The null result of Michelson-Morley experi-
ments pointed to the fallacy of such a no-
tion. Einstein’s formulation of special rel-
ativity demonstrated that Maxwell’s equa-
tions are valid in all IFs, provided one trans-
formed both the co-ordinates and the fields
from one IF to another according to Lorentz

transformation. What Minkowski proposed
in the above statements is an echo of Ein-
stein’s relativity postulate, which essentially
says that the laws of physics, when formu-
lated with correct mathematical equations,
are valid with reference to all IFs. This prin-
ciple is often referred to as the Principle of
Covariance. Since different IFs are now con-
nected by Lorentz transformations, we shall
use the term Lorentz frames to mean all IFs
(as already mentioned.)

Referring to the geometrical construction
shown in Fig. 5, in which we have trans-
formed x, t axes to x′, t′, keeping y, z axes
unaltered, Minkowski points out,

“We may also designate time t′, but then
must of necessity, in connection there-
with, define space by the manifold of the
three parameters x′, y, z, in which case
the physical laws would be expressed
in exactly the same way by means of
x′, y, z, t′ as by means of x, y, z, t. We
should then have in the world no longer
space, but an infinite number of spaces,
analogously as there are in three dimen-
sional space an infinite number of planes.
Three dimensional geometry becomes a
chapter in four-dimensional physics.”

We shall present our interpretation. The
term “space” may perhaps be given the
following mathematical connotation. It is
a continuum, being a continuous set P of
points having co-ordinates (x, y, z) given
with reference to the Cartesian axes XY Z of
a certain IF S, at any instant of time t. P :
{(x, y, z);−∞ < x, y, z <∞, t = constant}.
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In a sense P is the entire set of “simulta-
neous events” in S. Similarly the space P ′

is the entire set of simultaneous events in
S ′. However, with respect to S (almost) half
of the events comprising P ′ occured in the
past and (almost) the other half will occur
in future, as we know from LT. The “space”
P ′ is therefore not the same as the space P .
Every IF has its own space which, in general,
is different from the space of another IF.
This point can be further illustrated with
reference to Fig. 5a, which, due to sppression
of the Y, Z axes, presents the picture of a
1-dimensional universe. The axis X, or any
straight line parallel to it, represents the
space P . Similarly any straight line parallel
to X ′ represents the space P ′. Except one
point they have nothing in common.

If we had taken into consideration both
the X and the Y axes while constructing
the diagram in Fig. 5a, the staright line X
axis would be replaced by one X − Y plane.
In that case P would be represented by any
plane parallel to the X − Y plane, and P ′ by
any plane parallel to theX ′−Y ′ plane. There
would be an infinite number of such planes
representing spaces P ,P ′,P ′′, . . ., associated
with inertial frames S, S ′, S ′′, . . ..

Further extension of this picture into the
real 3-dimensional universe is difficult to vi-
sualize. The spaces P ,P ′,P ′′, . . . in this case
are 3-dimensional “planes” embedded in the
4-dimensional “world” of Minkowski.

8 The Fundamental

Axiom

Sec. II of Minkowski’s paper is devoted to two
important statements, the first one of which
he calls the fundamental axiom, and the sec-
ond one, the world postulate.

Let us consider the world lines (WL) of
three particles, which we have labelled as #1,
#2 and #3 in Fig. 7.
(a) Particle #1 is a stationary particle in

the frame X − T . Its WL is a staight line
parallel to the T axis.
(b) Particle #2 is moving with constant ve-

locity u = βc in the X direction. Its WL is a
staight line of the form x = x0+ut, where x0
is a constant. This WL is therefore parallel
to the T ′ axis (same as the T ′ axis of Fig. 5.)
(c) Particle #3 is moving with varying speed

in the X direction. Its WL is a curved line.

It is then that the WLs of a stationary or a
uniformly moving particle is the same as the
time axis of the Lorentz frame in which the
particle is at rest. Minkowski’s fundamental
postule is an extension of this statement.

Suppose at a world point U the tangent to
the WL of #3 is parallel to the straight line
OA drawn from the origin to the hyperbola,
so that the instantaneous velocity of the par-
ticle at the event point U is u = βc. One can
then choose a new set of axes X ′′ − T ′′ at U,
parallel to the X ′ − T ′ axes (as in the graph-
ical construction of LT, shown in Fig. 5, in
which the X ′ and the T ′ axes are given by the
lines OR and OA) and the particle will be “at
rest” with respect to these axes at the event
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Figure 7: Rest frame of a moving particle

U. This, according to Minkowski is a funda-
mental axiom and states it with emphasis as
follows.

Fundamental Axiom: “The substance at
any world point may always with the appro-
priate determination of space-time, be looked
upon as at rest.”

Minkowski points out an important corol-
lary of this axiom. Let there be two infinitely
close events U: (x, y, z, t) and V: (x+ dx, y+
dy, z + dz, t + dt) on the world line of an ar-
bitrarily moving particle. Let us assume that
the instantaneous velocity of the particle at
U is βc = (βx, βy, βz)c, so that

dx = βxct, dy = βyct, dz = βzct;

with β2 = β2
x + β2

y + β2
z .

(20)

Now, since all transformations under Gc

are linear transformations, the co-ordinate

differentials (dx, dy, dz, dt) transform linearly
in the same way as the coordinates (for exam-
ple, their transformations may follow Eq. (9)
with the differentials dx, .., dt; dx′, ..., dt′ re-
placing x, ...t; x′, ..., t′). All transformations
under Gc leave the expression F (x, y, z, t) in-
avariant, as indicated in Eqs. (7), (8). The
transformation of the co-ordinate differentials
(dx, dy, dz, dt) must then leave the following
expression invariant.

ds2
def
= c2dt2 − dx2 − dy2 − dz2. (21)

This is the same thing as saying

c2dt′2 − dx′2 − dy′2 − dz′2

= c2dt2 − dx2 − dy2 − dz2.
(22)

Applying the above equation to the infinites-
imal displacement along the WL #3, noting
that dx′′ = dy′′ = dz′′ = 0, since the particle
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is instantaneously at rest, and using Eq. (20),
we get

c2dt′′2 = c2(1− β2)dt2. (23)

Since the left side is positive definite, it fol-
lows that β < 1, so that u < c. This is
same as the following corollary, as stated by
Minkowsi:

Corollary: “c would stand as the upper
limit of all substantial velocities.”

The expression written in Eq. (21) is now
known as the Minkowski metric. Minkowski
wrote only the expression on the right side
of (21), but not the ds2 appearing on the left
side, which we have inserted following the ex-
isting convention, and in recognition of the
major role it played in Einstein’s construc-
tion of a relativistic theory of gravity (known
as the general theory of relativity).
In retrospect the Minkowski metric con-

tains the seed of a geometrical idea which
Einstein absorbed to formulate the new the-
ory of gravity based on differential geometry.
The metric brings in geometrical concepts,
like curvature, geodesics (shortest line join-
ing two points). Minkowski metric represents
“flat” space-time in which gravity is absent,
and the geodesics, representing world lines of
particles, are straight lines.
In Einstein’s theory the metric of space-

time is more general than the form given
in Eq. (21), and gravity is recognized by
how much it differed from the Minkowskian
one. In Einstein’s theory of gravity “the met-
ric is the foundation of all[5].” Distribution
of matter, or rather distribution of energy-
momentum in space distorts space-time into
a curved one, making the geodesics curved,

and the world lines of free falling objects, like
planets, into curved lines.

9 Group Gc for Optics

and G∞ for Rigid

Bodies

Before establishing a justification for the
group Gc Minkowski raises the following
questions.

“The question is what are the circum-
stances which force this changed concep-
tion of space and time upon us? Does it
actulally contradict experience? And is
it advantageous for describing phenom-
ena?”

To the first question he gives the following
answer.

“The impulse and true motive for assum-
ing the group Gc came from the fact that
the differential equation for the propa-
gation of light in empty space possesses
that group Gc.”

We shall present our intepretation of the
above statement. By “the differential equa-
tion for the propagation of light in empty
space” we mean the following homogeneous
wave equation:
[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]
ψ(x, y, z, t) = 0.

(24)
in which ψ represents any one of the 6-
components of the propagating electromag-
netic field (E,B) = (Ex, Ey, Ez, Bx, By, Bz)
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in any region of space where there are no
sources of electric charge and current. It is
known that the wave equation (both the ho-
mogeneous form shown above which is valid
in empty space, and the inhomogeneous form
for the scalar and vector potentials which is
valid everywhere) is a direct consequence of
Maxwell’s equations. Einstein had shown in
the first one of his 1905 relativity papers that
the transformation (9) leads to transforma-
tions of the electromagnetic field (E,B) →
(E′,B′), and electric charge-current densities
(ρ,J) → (ρ′,J′), in such a way that Maxwell’s
equations remain invariant[6]. That would
mean that Lorentz transformation will trans-
form [(x, y, z, t), ψ] → [(x′, y′, z′, t′), ψ′], and
when this is done the “equation for the prop-
agation of light” given in Eq. (24) will trans-
form into a new equation in which the un-
primed quantities will be replaced by primed
quantities. In other words Eq. (24) will re-
main invariant under any transformation un-
der the group Gc.
Referring to the second question

Minkowski surmises, “the concept of
rigid bodies has meaning only in mechanics
satisfying the group G∞,” suggesting thereby
that Gc contradicts our concept of rigid
bodies.
How? Let the XY Z axes be fixed in a rigid

body with its origin at O, and let (x, y, z)
be the space co-ordinates of any arbitrary
point P in the rigid body. Mechanics of a
rigid body starts with the axiom that the dis-
tance

√
x2 + y2 + z2 between O and P is un-

changed in any motion of the body. It is easy
to show that this assumption is violated by
LT.

Proof : For convenience we redesignate the
space co-ordinates of any arbitrary point P
in the rigid body with respect to its rest
frame S ′ as (x′, y′, z′). The distance ÔP is
r′ =

√
x′2 + y′2 + z′2. Let us now imagine

that the same rigid body is moving in the
X direction with velocity βc. We would like
to know the distance ÔP as measured by a
laboratory observer S.
Since the body is moving with respect to S,

we have to think of two simultaneous events
O : “O(0, 0, 0) at t = 0” and P : “P (x, y, z)
at t = 0”, and find out the distance between
their locations in S. Using Lorentz transfor-
mation (9) we get x′ = γx. Hence the dis-

tance ÔP , as measured in S, is

r =
√
x2 + y2 + z2 =

√
x′2/γ2 + y′2 + z′2.

Thus r < r′.

(25)

The body has contracted in the direction of
motion by a factor γ (Lorentz contraction).

Q.E.D.

10 Graphical

Construction of

Length Contraction

Minkowski does not derive the formula (25)
using LT. He presents a graphical construc-
tion of length contraction. His motivation is
to show that

“the Lorentzian hypothesis (of length
contraction) is completely equivalent to
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the new conception of space and time,
which, indeed makes the hypothesis
much more intelligible.”

We shall present Minkowski’s construction
in a slightly different form to suit our taste.
In Fig. 8(a) we have redrawn the hyperbola
of Eq. (11) and the X ′ − T ′ axes. The par-
allelogram OA′B′C′ is same as the parallel-
ogram OABC of Fig. 5. The X ′ axis (the
straight line OC′) represents an infinite set of
events which are simultaneous in S ′ at t′ = 0.
The straight line A′B′, which is parallel to the
X ′ axis, represents another infinite set of si-
multaneous events (in S ′) when t′ = 1

c
(see

specification of time scale in Sec. 5, following
Eq. (11).)

Imagine two frames of reference S and S ′,
characterized by coordinate axes X,T and
X ′, T ′ respectively, such that S ′ has boost cβ
in the X direction with respect to S. Let M
and M′ be two standard (hence identical) me-
ter sticks. These sticks are lain, respectively,
along the X axis of S, and along the X ′ axis
of S ′ such that their left ends coincide with
the respective origins. The right ends of M
and M′ will coincide with the points C and
C′ on the X axis of S and X ′ axis of S ′ re-
spectively (Fig. 8b). Note that the segment
OC′, shown with thick line, represents unit
length on the X ′ axis. The world line of its
left end will be the T ′ axis represented by the
line OA′t′ and the world line of the right end
will be the parallel line C′B′ intersecting the
X axis at D.

What is the length ℓ of M′ in the frame S?
It is the distance between the points O and D
on the x axis which coincide with the left end

and the right end of the rod simultaneously
(at t = 0). In other words ℓ = ÔD.
In the last row of table-equation (18) we

had obtained the x co-ordinate of the point
D to be equal to 1

γ
. Hence,

ÔD =
1

γ
. (26)

Eq. (26) gives contracted length of a 1 meter
long meter rod in motion.
Let there be now two objects (which

Minkowski calls“images of two equal
Lorentzian electrons”) each of length ℓ. The
first one of them is at rest and the second
one moving with uniform velocity βc, when
seen from the system S. Then the length of
this second object will be ℓ′ = rℓ = ℓ

γ
in the

system S.
There is an alternative graphical construc-

tion method suggested by Loedel for obtain-
ing length construction and time dilation[7].

11 The World Postulate

Much of classical mechanics and classical
electrodynamics is built on geometrical pic-
turization of physical quantities - e.g., veloc-
ity, acceleration, electric and magnetic fields -
as vectors, which are directed line segments in
a 3-dimensional Euclidean space E3 spanned
by the X, Y, Z axes.
We have two fundamental equations of

classical mechanics. One of them equates the
time rate of change of linear momentum vec-
tor p to force vector F. The other one equates
the time rate of change of angular momentum
vector L to torque vector N. Similarly, the
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Figure 8: Geometrical construction of length contraction

laws of classical electrodynamics are written
in the form of four equations involving elec-
tric field vector E and magnetic field vector
B. In a sense the important physical quan-
tities of classical physics are vectors, or ge-
ometrical objects, in the 3-dimensional Eu-
clidean space, and what we call physical laws
are relationships among such 3-dimensional
geomterical objects.

Minkowski feels that the term relativity
postulate (coined by Einstein) is a rather fee-
ble word to emphasize invariance of the laws
of the laws of nature under Gc. He prefers
the term the Postulate of the Absolute World,
or, in brief, the World Postulate for which he
makes the following statement:

“Only four dimensional world in space
and time is given by the phenomena, but
that the projection in space and in time
may still be undertaken with a certain
degree of freedom.”

Here we may add that the above statement
is similar to what Minkowski says earlier, “It
is still possible to make any change in the sys-
tem of reference...”, quoted by us in Sec. 7,
on page 15.

12 Construction of

Time-like and

Space-like Vectors

Minkowski now follows up the World Postu-
late to propose a 4-dimensional equivalent of
Newton’s 2nd Law of motion, familiar in the
form F = ma. As a first step towards this
goal he begins by showing how to construct
4-vectors. He begins Sec.III of his paper with
the following remarks.

“The world postulate permits identi-
cal treatment of the four co-ordinates
x, y, z, t. By this means, as I shall now
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show, the forms in which the laws of
physics are displayed gain in intelligibil-
ity. In particular the idea of acceleration
gains a clear-cut character.”

He explains his ideas using a space-time di-
agram which we have expanded into four sub-
figures in Fig. 9.
In Fig. 9a we have presented a flat pic-

ture of space-time by showing only two axes
viz., X and T , whereas in the remaining ones
of Fig. 9 we have tried to present a kind
of 3-dimensional view by including one extra
space axis.
Let O be an arbitrary event point. Tak-

ing O as the origin and using the function
F (x, y, z, t) = c2t2 − x2 − y2 − z2, as defined
in Eq. (7) we draw the following three sur-
faces of revolution around the T axis: (a)
F (x, y, z, t) = 0; (b) F (x, y, z, t) = 1; and (c)
F (x, y, z, t) = −1. To be more explicit, these
three surfaces are given by the following three
implicit equations.

(a) ⇒ c2t2 − x2 − y2 − z2 = 0.
(b) ⇒ c2t2 − x2 − y2 − z2 = 1.
(c) ⇒ c2t2 − x2 − y2 − z2 = −1.

(27)
They are described below.
(a) two branches of the cone F (x, y, z, t) = 0,
corresponding to t < 0, called the front cone,
and t > 0, called the back cone, as shown
in Figs. 9a and 9b. We shall refer to these
cones as light cones.
(b) two branches of the hyperboloid
F (x, y, z, t) = 1, corresponding to t < 0 and
t > 0, as shown in Figs. 9a and 9c.
(c) the hyperboloid F (x, y, z, t) = −1, as
shown in Figs. 9a and 9d.

Minkowski goes further with his descrip-
tion.

“The territory between the cones is filled
by the one-sheeted hyperbolidal figures
−F = k2. ... We are specially inter-
ested in the hyperbolas with O as cen-
tre, lying on the latter figures. The sin-
gle branches of these hyperbolas may
be called briefly the internal hyperbolas
with centre O. One of these branches,
regarded as a world line, would repre-
sent a motion which, for t = −∞ and
t = +∞, rises asymptotically to the ve-
locity of light.”

We have shown one such hyperbolid, cor-
responding to k = 1 in Fig. 9d., and one such
internal hyperbola, labelled Ω, inscribed on
it. It represents the the world line of a parti-
cle that comes from infinity at t = −∞ with
the speed of light, approaches the origin at
t = 0 where it momentarily stops, and then
recedes back to infinity at t = ∞ with the
speed of light.
The territory within the cones is also filled

with two sheeted hyperboloids F = k2. One
of them shown in Figs. 9a and 9b corresponds
to k = 1. There is however no mention of the
family of hyperboloids in Minkowski’s state-
ments.
The reader should note that the two dimen-

sional curves F = 1 and F = 0 appearing in
Fig. 9a are the same as the hyperbola and its
asymptotes shown in Fig. 5.

“If we now, on the analogy of vectors
in space, call a directed length in the
manifold of x, y, z, t a vector, we have
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Figure 9: Time-like and Space-like vectors and their relation to the Light Cone. (a) 2-dimensional

(x-t) view of the light cone F = 0, the hyperbolids F = 1 and F = −1, and time-like, space-like

vectors A,B. 3-dimensional (x-y-t) views of (b) the light cone and A,B; (c) the hyperboloid F = 1;

(d) the hyperboloid F = −1 and an internal hyperbola.

to distinguish between the time-like vec-
tors with directions from O to the sheet

+F = 1, t > 0, and the space-like vec-
tors with directions from O to −F = 1.
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The time axis may run parallel to any
vector of the former kind.”

The most elementary example of a 4-
vector is a 4-dimensional directed line seg-
ment stretching from one event P to an-
other event Q drawn in Space-time (i.e.,
Minkowski’s World.) Minkowski proposes
two types of 4-vectors, viz., time-like and
space-like vectors.
Minkowski proposes the components of

these vectors in the following language.

“We divide any vector we choose, e.g.,
from O to x, y, z, t into four components
x, y, z, t.”

We shall make a small departure from
Minkowski’s convention and take the compo-

nents of the 4-vector
−→
OR as (x, y, z, ct), i.e.,

multiply with c the time component proposed
by Minkowski so that all the components of
a 4-vector have the same dimension, viz., the
dimension of length. This practice will be fol-
lowed in the rest of this article
It will be interesting to quote Minkowski’s

definition of two new types of vector.

“If we now, on the analogy of vectors
in space, call a directed length in the
manifold of x, y, z, t a vector, we have
to distinguish between the time-like vec-
tors with directions from O to the sheet
+F = 1, t > 0 and the space-like vectors
with directions from O to −F = 1.”

We shall elucidate. Let
−→
OA be a directed

line segment marked out on a straight line
OR that intersects the upper sheet (i.e., t >

0) of the hyperbolid F (x, y, z, t) = 1 (Fig. 9c)

and let
−→
OB be another directed line segment

marked out on another straight line OS that
intersects the hyperboloid F (x, y, z, t) = −1

(Fig. 9d). Then
−→
OA is a time-like 4-vector,

and
−→
OB is a space-like 4-vector.

Let us denote these vectors as
−→
A and

−→
B .

Any vector
−→
A which is parallel to

−→
A, is a

time-like 4-vector and any vector
−→
B which is

parallel to
−→
B , is a space-like 4-vector 2. We

shall find a better criterion in the next section
for qualifying a vector as time-like or space-
like.
In this article we shall denote a 4-vector

with a full arrow “→” on top of the symbol,

as in the example
−→
A, and the conventional 3-

vector with just a bold letter, e.g., A without
any arrow on top.
Why such peculiar adjectives “time-like”

and “space-like”? Minkowski’s justification
for the first adjective :

“The time axis may run parallel to any
vector of the former kind.”

The last sentence is a reminder of the princi-
ple adopted in the graphical construction of
Lorentz transformation, shown in Fig. 5, and
expressed in the paragraph below Eq. (11) on

2Author’s comment: A line segment that inter-
sects the surface +F = 1 will also intersect the fam-
ily of surfaces +F = k2, since they are all asymp-
totic to the light cone F = 0, and lie inside the cone.
Similarly a line segment that intersects the surface
−F = 1 will also intersect the family of surfaces
{−F = k2}. In effect then a time-like vector is one
which has the end point within the light cone, and a
space-like vector is one having the end point outside
it.
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page 10: any radius vector drawn from the
origin to any point of the hyperbola F = 1
can become the time axis.

We shall elucidate this further. Let O and
A be two events. If it is possible to find
a Lorentz frame of referece S ′, (by trans-
forming from S to S ′ by a suitable Lorentz
transformation) such that these two events
accur at the same spatial coordinates (i.e., at
x′ = x = 0, y′ = y = 0, z′ = z = 0), then

the radius vector
−→
OA is a time-like vector. In

this new frame S ′ this 4-vector will have a
non-zero component cτ only along the time
axis T , its spatial components (i.e., along the
X, Y, Z axes) being all equal to zero. This
time is the proper time between the events as
we shall define in the next section.

In general any 4-vector
−→
A is a time-like

vector if a suitable Lorentz transformation
can reduce its X, Y, Z componets to zero,
leaving a non-zero component only for its
time component, i.e., along the cT axis.

Mikowski’s justification of the second ad-
jective “space-like” can be seen by taking an-
other look at Fig. 5. Any straight line OX ′

that does not intersect the hyperbola lies nec-
essarily beyond the asymptotes and can be-
come a space axis. Analogously, in Fig.9(b)
and (c) any straight line that does not in-
tersect the hyperboloid F = 1 lies necessar-
ily beyond the light cone and can become a
space axis. All events are simultaneous along
a space axis in a 4-dimensional space-time.

Let us now consider two events O and B.
If it is possible to find a Lorentz frame of
referece S ′, in which these two events accur
simultaneously, then in this new frame the

radius vector
−→
OB has only space components,

and no time component. Consequently we

call this radius vector
−→
OB a space-like vector.

In general any 4-vector
−→
B is a space-like

vector if a suitable Lorentz transformation
can reduce its time componet to zero, leaving
a non-zero component along the space hyper-
plane spanned by the X, Y, Z axes.

It will be worthwhile to quote Minkowski’s
statement, “Any world point between the
front and back cones of O can be arranged
by means of the system of reference so as to
be simultaneous with with O, but also just as
well so as to be earlier than O or later than
O. Any world point within the front cone of
O is necessarily always before O; any world
point within the back cone of O necessarily
after O.”

What about a line segment that intersects
neither hyperboloid? Such a line segment

must be either
−→
QO lying on the front cone, or−→

OP lying on the back cone. Minkowski has
not given any name for such vectors. In mod-
ern textbooks such vectors are called null vec-
tors, and the cones they lie on (i.e., the front
cone and the back cone) are jointly called the
light cone. Justification of the first name will
become clear as we proceed further. Justifi-
cation of the second name lies in Minkowski
own statement: the front cone of O consists
of all the world-points (like Q) which “send
light to O” and the back cone of O, of all
the world points (like P) which “receive light
from O”. In brief, all points lying on the light
cone drawn from O are connected to O by
light signals.
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13 Orthogonality and

Magnitudes of

4-vectors

We shall quote Minkowski’s definition of or-
thogonality and magnitudes of 4 vectors.

“We divide up any vector we choose, e.g.,
that from O to x, y, z, t into the four
components x, y, x, t. If the directions
of two vectors are, respectively, that of
a radius vector OR from O to one of
these two surfaces ∓F = 1, and that
of a tangent RS at the point R of the
same surface, the vectors are said to be
normal to each other. Thus the condi-
tion that the vectors with components
x, y, z, t and x1, y1, z1, t1 may be normal
to each other is

c2tt1 − xx1 − yy1 − zz1 = 0. (28)

For the measurement of vectors in differ-
ent directions the units of measure are to
be fixed by assigning to a space-like vec-
tor from O to −F = 1 always the magni-
tude 1, and to a time-like vector from O
to +F = 1, t > 0 always the magnitude
1
c
.”

We shall do some thinking to absorb the
meaning of the above statement. Let us con-
sider the first part of the statement (i.e., up
to Eq. 28). In Fig. 10(a) we have shown
the trace of the surfaces ∓F = 1 on a 2-
dimensional X − T plane. They have been
marked by the labels Ω and Γ .

The line OR intersects the hyperboloid
F = 1, and the line RS is a tangent to it.
According to Minkowski’s proposition the 4-

vector
−→
U = (ux, uy, uz, ut) which is paral-

lel to the line OR and the 4-vector
−→
V =

(vx, vy, vz, vt) which is parallel to the tangent
RS are normal to each other.

Why do we attribute orthogonality be-
tween these two vectors? The answer can
be found in the graphical construction of
Lorentz transformation presented in Sec. 5.

Let us define orthogonal vectors in the
4-dimensional space-time W by proposing
that the unit vectors along the four axes
X, Y, Z, T , as defined below,

−→ex = (1, 0, 0, 0),
−→ey = (0, 1, 0, 0),
−→ez = (0, 0, 1, 0),
−→et = (0, 0, 0, 1).

(29)

are the foremost example of a quadruple of
mutually orthogonal vectors.

Now, the Lorentz transformation S → S ′

can set the time axis along OR and the space
axis along the line OX′ which is parallel to
the line RS. These directions are then the di-
rections of the transformed unit vectors −→et ′
and −→ex ′, and hence, are orthogonal to each
other.

It may require some deeper thinking to ap-
preciate the definition of orthogonality given
in Eq. (28). Let us recall how we construct
a normal vector on a three dimensional sur-
face. Let Φ(x, y, z) = k be a surface shown
as Σ in Fig.10(b). Let P(x, y, z) be a point
on this surface. The gradient vector ∇Φ at
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P defined as

∇Φ(r)
def
= i

∂Ψ(r)

∂x
+ j

∂Ψ(r)

∂y
+k

∂Ψ(r)

∂z
. (30)

This vector is necessarily normal to this sur-
face at P. A unit normal vector n on Σ at P is
∇Φ divided by its magnitude, i.e.,n = ∇Φ

|∇Φ|
.

Let Q(x + dx, y + dy, z + dz) be a point
on the surface Σ infinitesimally close to P, at
a displacement vector dr = dxi + dyj + dzk
from P, so that Φ(x+ dx, y+ dy, z+ dz) = k.
Hence,

Φ(x+ dx, y + dy, z + dz)− Φ(x, y, z) = 0, (a)

Or,
∂Φ(r)

∂x
dx+

∂Φ(r)

∂y
dy +

∂Φ(r)

∂z
dz = 0. (b)

Or, ∇Φ(r) · dr = 0. (c)

(31)

Now, dr is a tangent vector on the sur-
face Σ, passing through the point P. Let t

be a unit tangent vector in the direction of
dr. Then the last relation in Eq. (31) is same
as the trivial statement n · t = 0, i.e., n and
t are orthogonal.

Now we come back to space-time W
and think of the hypersurface Σ shown in
Fig. 10(a) of which the equation is

F (x, y, z, ct) = c2t2−x2−y2−z2 = k2. (32)

We shall obtain the 4-dimensional version of
Eq. (31), using the 4-dimensional gradient

operator
−→
���

def
=
(

∂
∂x
, ∂
∂y
, ∂
∂z
, ∂
∂ct

)
.

−→
���F (x, y, z, ct) =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z
,
∂F

∂ct

)

= 2(−x,−y,−z, ct)
(33)

Let d−→r = (dx, dy, dz, dct) be a 4-
displacement vector on the hypersurface S.
Then analogous to Eq. (31b) we have here

∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz ++

∂F

∂(ct)
d(ct) = 0. (a)

Or, −x dx− y dy − z dz + ct d(ct) = 0. (b)
(34)

Here R(x, y, z, ct) is a point on the hyper-

surface given in (32), so that −→r =
−→
OR =

(x, y, z, ct) is the 4-radius vector from the ori-
gin to the hyperboloid, as shown in Fig.10(a).
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Figure 10: Orthogonal 4-vectors

By assumption
−→
dr = (dx, dy, dz, dct) is tan-

gent to this surface at P. Its direction is same
as the direction of the tangent RS shown in
Fig.10(a). Therefore they are mutually or-
thogonal.

Let us now think of the 4-vector−→
U = (ux, uy, uz, ut) which is parallel
to −→r = (x, y, z, ct) and the 4-vector−→
V = (vx, vy, vz, vt) which is parallel to−→
dr = (dx, dy, dz, dct). These vectors are
orthogonal, as already said. Eq. (34b) would
now imply

−uxvx − uyvy − uzvz + utvt = 0. (35)

Eq. (35) matches Eq. (28), and is therefore
the criterion of orthogonality of any two 4-
vectors as laid out by Minkowski.

We shall now interpret the second part
of Minkowski’s statement (regarding “mag-
nitude”) using Fig. 11.

Consider the “unit vectors”, in the 3-
dimensional Euclidean space, as shown in
Fig.(a). These vectors are shown as the line

segments
−→
OA,

−→
OB,

−→
OC, · · · −→OE. (a) The tips

of these vectors lie on the surface of a sphere
with O as origin, and given by the equation

x2 + y2 + z2 = 1. (b) Any vector
−→
OA can

be transformed into any other vector
−→
OB by

an orthogonal transformation mentioned in
Sec. 3 and represented by Eq. (2). (c) One of

these vectors, namely
−→
OE, intercepts the Z

axis at z = 1.

There exists an analogous situation in
space-time illustrated in Fig.(b), in which

we have shown 4-vectors
−→
OA,

−→
OB,

−→
OC, · · · −→OE

drawn against the X − T axes (suppressing
the Y, Z axes.) (a) The tips of these vec-
tors lie on the hyperboloid F (x, y, z, ct) ≡
c2t2 − x2 − y2 − z2 = 1. (b) Any vector

−→
OA

can be transformed into any other vector
−→
OB
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by the Lorentz transformation mentioned in
Sec. 4 and represented by Eq. (8). (c) One

of these vectors, namely
−→
OE intercepts the T

axis at ct = 1. Therefore, we assign to all
these vectors unit magnitude.

The class of unit vectors mentioned in the
previous para are all time-like vectors. In
Fig (c) we have shown shown space-like vec-
tors originating from the origin O and ter-
minationg on the surface of the hyperboloid

F (x, y, z, ct) ≡ c2t2 − x2 − y2 − z2 = −1.
As in the case of time-like vectors all the
space-like 4-vectors shown in the diagram,

namely,
−→
OA,

−→
OB,

−→
OC, · · · −→OE have the same

length. Since x = 1, ct = 0 for the point E,
all these space-like 4-vectors have unit mag-
nitude.

How does one arrive at the magnitude
of any arbitrary 4-vector using Minkowski’s
proposition? We shall find the answer in
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Fig.(d). Here
−→
OA and

−→
OB are two arbi-

tray vectors, time-like and space-like respec-
tively. The region within the front cone is
filled with a family of hyperboloid hypersur-
faces F = k2 corresponding to every positive
value of k. One of these hypersurfaces, hav-
ing value k = α will pass through the point

A. Then the magnitude of
−→
OA is α.

Similarly, the space between the front cone
and the back cone is filled with another fam-
ily of hypersurfaces F = −k2 corresponding
to every positive value of k. One of these
hypersurfaces, having value k = β will pass
through the point B. Then the magnitude of−→
OB is β.
Whatever Minkowski has said in the

present context can be simplified by defining
a scalar product of two vectors.

Let us think of two arbitrary vectors
−→
A =

(ax, ay, az, at) and
−→
B = (bx, by, bz, bt). We de-

fine their scalar product as

−→
A · −→B def

= atbt − axbx − ayby − azbz. (36)

Minkowski has not defined scalar product
in his article. However, it is an important
concept. In particular Lorentz invariance of
scalar product is useful in working out many
relativistic formulas involving energy and mo-
mentum. By Lorentz invariance we mean
that even though the components of the 4-

vectors
−→
A and

−→
B will change under a Lorentz

transformation, the scalar product will not
change at all. That is, it is same in all Lorentz
frames.
We can now define orthogonality and mag-

nitude in a slightly different way. Instead of
magnitude we shall use the term “norm” of a

vector, which is, in a sense, square of magni-
tude.
(a) The 4-vectors

−→
A and

−→
B are orthogonal if−→

A · −→B = 0.
(b) The norm of a 4-vector

−→
A is defined as

A2 def
=

−→
A · −→A = a2t − a2x − a2y − a2z.

(c)
−→
A is (i) time-like if A2 > 0, (ii) space-like

if A2 < 0, (iii) is a null vector if A2 = 0.
A null vector lies along the light cone. In

Fig. (d) the displacement vectors
−→
OC and

−→
OD

are null vectors. A null displacement vector
represents propagation of a light signal (i.e.,
a photon.)
The norm, being a scalar product, is an in-

variant quantity. If we accept Minkowski’s
definitions of magnitude, and denote the

magnitude of a 4-vector
−→
V as V̌ , then the

magnitudes Ǎ and B̌ of a time-like vector
−→
A

and a space-like vector
−→
B are given as

Ǎ =

√
(
−→
A · −→A) =

√
a2t − a2x − a2y − a2z,

B̌ =

√
−(

−→
B · −→B) =

√
b2x + b2y + b2z − b2t .

(37)
and these magnitudes are same in all Lorentz
frames.

14 Proper Time, Proper

Velocity, Proper

Acceleration

In Fig. 12 we have shown the world line of a
material particle and marked it as Ω. The
particle is at two infinitesially close world
points Q and R at times t and t+ dt. The 4-
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displacement vectors of these two points are:
−→r =

−→
OR = (x, y, z, ct) and −→r +d−→r =

−→
OQ =

(x+ dx, y + dy, z + dz, ct+ d ct).

We are interested in the infinitesimal 4-
displacement d−→r =

−→
RQ = (dx, dy, dz, d ct)

taking place in the infinitesimal time interval
dt. The norm of this 4-vector is called the
metric of space-time. It is given as

ds2 = d−→r ·d−→r = c2dt2−dx2−dy2−dz2. (38)

The vector d−→r is necessarily a time-like
vector, i.e., ds2 > 0. To realize its time-like
nature let assume that the particle has veloc-
ity v = (vx, vy, vz) at R. Then

ds2 = c2dt2 − v2xdt
2 − v2ydt

2 − v2zdt
2

=
(
c2 − v2

)
dt2.

(39)

Since c > v, the right side is positive.

The time-like property of d−→r ensures that
it always lies within the light cone. This
also implies that the at every world point the
world line of the particle lies within the light
cone, as we have shown in the figure. The
angle that a tangent to the world line will
make with the cT axis must be always less
than 450.

Since ds2 is positive, we can take its square
root and get a positive real number c dτ .

dτ
def
=

√
ds2

c
=

1

c

√
c2dt2 − dx2 − dy2 − dz2

(40)
We integrate this infinitesimal between from

the event Po to the event P and get

τ(Po → P) =
1

c

∫ t

t0

√
c2dt2 − dx2 − dy2 − dz2

=

∫ t

t0

√
c2 − v2 dt.

(41)

Minkowski calls the integral τ(Po → P) “the
proper time of the substantial point at P”. In
keeping with this nomenclature we shall call
the infinitesimal dτ defined in Eq. (40) the
infinitesimal proper time of the particle from
the event R to the event Q.
It should be remarked in passing that

proper time is the time measured by an ob-
server comoving with the particle (whose mo-
tion we are monitoring.)
The proper time dτ is Lorentz invariant,

because it is the square root of a norm (which
is invariant) divided by the speed of light
which is also invariant.
In non-relativistic physics velocity is dis-

placement per unit coordinate time: v = dr
dt
,

i.e., infinitesimal displacement dr divided by
infinitesimal coordinate time dt which is in-
variant under Galilean transformation. By
analogy, Minkowski defines 4-velocity −→v of
the particle as

−→v def
=
d−→r
dτ

=
1

dτ
(dx, dy, dz, d ct)

=

(
dx

dτ
,
dy

dτ
,
dz

dτ
, c
dt

dτ

)
.

(42)

Minkowski adopts the convention that a
dot (·) over a symbol representing a vari-
able will represent derivative of the vari-
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Figure 12: Construction of velocity and acceleration 4-vectors

able with respect to proper time τ . Com-
pare this with the convention adopted in
non-relativistic mechanics: a dot represents
derivative with respect to ordinary time t.
Using Minkowski’s convention we rewrite the
above equation as

−→v = −̇→r = (ẋ, ẏ, ż, cṫ). (43)

In a similar vein Minkowski defines accel-
eration 4-vector −→a as

−→a def
= −̇→v =

d−→v
dτ

=

(
d2x

dτ 2
,
d2x

dτ 2
,
d2x

dτ 2
, c
d2t

dτ 2

)

= (ẍ, ÿ, z̈, cẗ).

(44)

At this point Minkowski points out,

the velocity vector is the time-like
vector of unit magnitude in the di-
rection of the world line at P, and

the acceleration vector at P is nor-
mal to the velocity vector at P, and
is therefore, in any case a space-like
vector.

We shall prove different parts of this state-
ment. As a prelude to this we define Lorentz
factor Γ associated with the particle velocity
v as

Γ
def
=

1√
1− v2

c2

. (45)

It is then seen from (39) that

c2dτ 2 = ds2 =
c2dt2

Γ 2
, ⇒ dτ =

dt

Γ
;

Or, ṫ =
dt

dτ
= Γ.

(46)

In the sequel we shall find it convenient to
convert d

dτ
→ d

dt
, using the prescription

d

dτ
= Γ

d

dt
. (47)
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(a) The velocity vector v is time-like.
Proof : The norm of −→v is given as

−→v · −→v = Γ 2c2 − Γ 2v2

= Γ 2(c2 − v2) = c2.
(48)

Since −→v · −→v = c2 > 0, the 4-vector −→v is
time-like.

Q.E.D.

The “magnitude” of 4-velocity, accord-
ing to our definition of magnitude given in
Eq. (37), is the same for all velocities (for a
particle at rest as well as for a particle mov-
ing with relativistic speed, close to that of
light) and equals c. However, the same mag-
nitude is considered to be unit magnitude by
Minkowski, who proposes at the end of Sec.IV
of his paper to set c = 1.

(b) −→v and −→a are mutually orthogonal.
Proof: Let us first rewrite Eq. (38) as an expression for c2dτ 2, take derivative with respect
to τ .

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2.
Dividing both sides with dτ 2 c2 = c2ṫ2 − ẋ2 − ẏ2 − ż2.

Differentiating with respect to τ 0 = 2
[
c2ṫẗ− ẋẍ− ẏÿ − żz̈

]
,

which implies 0 = vtat − vxax − vyay − vzaz,

(49)

thereby establishing orthogonality between −→v and −→a .

Q.E.D.

(c) The acceleration vector −→a is space-like.
Proof: Let us first establish a theorem:

Theorem 2 Let
−→
A be a time-like vector

which is orthogonal to
−→
B . Then

−→
B is spce-

like.

Proof of the theorem: As shown in Sec.12,

a time-like vector
−→
A can be oriented along

the time axis by a proper choice of Lorentz
frame. Let S be that frame so that the vec-
tor

−→
A will have only time-component in S,

i.e.,
−→
A = (0, 0, 0, cat). Let

−→
B have compo-

nents (bx, by, bz, cbt) in this frame S. By our
assumption of orthogonality

−→
A ·−→B = 0×bx+0×by+0×bz−cat×cbt = 0,

implying that bt = 0, which establishes the

space-like property of
−→
B .

Q.E.D.

In this particular case −→v is time like, and
orthogonal to−→a . Therefore by the above the-
orem we conclude that −→a is space-like.
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Q.E.D.

For future use we shall write the 4-vectors
−→v and −→a in a different form, identifiable by
a bold letter without an arrow on top, often
referred to as the 3+1 form.
Therefore, from (43)

−→v = Γ

(
dx

dt
,
dy

dt
,
dz

dt
, c
dt

dt

)
= Γ (vx, vy, vz, c)

= Γ (v, 1) = (Γv, Γ c).

(50)

In this case the block v stands for the non-
relativistc 3-velocity

v = (vx, vy, vz) =

(
dx

dt
,
dy

dt
,
dz

dt

)

=

(
ẋ

ṫ
,
ẏ

ṫ
,
ż

ṫ

)
.

(51)

We can write the 3+1 form of −→a as follows.

−→a = −̇→v = Γ
d−→v
dt

=

(
Γ
d(Γv)

dt
, c Γ

dΓ

dt

)
.

(52)
By analogy with centripetal acceleration of

a particle moving in a circle Minkowski pro-
poses a formula for the acceleration of a par-
ticle in space-time in the following language.

“Now, as is readily seen, there is a
definite hyperebola which has three in-
finitely approximate points in common
with the world line at P, and whose
asymptotes are generators of a “front
cone” and a “back cone”. Let this hyper-
bola be called hyperbola of curvature at
P. If M is the centre of this hyperbola, we

here have to do with an internal hyper-
bola with centre M. Let ρ be the magni-
tude of the vector MP; then we recognize
the acceleration vector at P as vector in
the direction MP of magnitude c2/ρ.

If (ẍ, ÿ, z̈, cẗ) are all zero, the hyperbola
of curvature reduces to a straight line
touching the world line at in P, and we
must put ρ = ∞.”

We shall try to explain the statement.
However, before proceeding further we shall
have a brief review of what is often referred
to as “a hyperbolic motion”[8, 9].
Consider a particle moving along the X

axis under a constant acceleration a, as mea-
sured in its instantaneous rest frame3. Let us
assume that at t = 0 this particle is instan-
taneously at rest, and located at the origin,
in a certain frame S. Then the (x, ct) coordi-
nates of this particle are given in this frame,
as functions of the proper time τ , as

x =
c2

a

[
cosh

aτ

c
− 1
]
; ct =

c2

a

[
sinh

aτ

c

]
.

(53)
We have shown the world line of this parti-
cle in Fig.13(a). By shifting the origin, as
shown in Fig.13(b), the same world line can
be written as

x =
c2

a

[
cosh

aτ

c

]
; ct =

c2

a

[
sinh

aτ

c

]
. (54)

Then the above parametric equations of
the world line transform into the familiar

3An example of this is the motion of a particle of
charge e moving under a uniform electric field in the
X direction. A detailed analysis for this case for a
relativistic particle is not trivial.

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 35 Apr-Jun 2013

O

(x,ct)P

(a)

constant acceleration 

H
yp

er
bo

la
 o

f c
ur

va
tu

re

(c)

ρ

W
or

ld
 li

ne

(b)

x  − (ct)  =ρ2 2 2

ρ

(x,ct)
ρ

X

T

O

M

P

A

P

O
X

TT

X

light cone

lig
ht

 co
ne

lig
ht

 co
ne

light cone

Figure 13: Hyperbolic trajectory

equation of a hyperbola, involving only the
space and time coordinates.

x2 − (ct)2 = ρ2; where ρ =
c2

a
. (55)

We shall differentiate the coordinates (x, ct),
as given in (54), with respect to proper time
τ to obtain 4-velocity and 4-acceleration.

ẋ = c sinh aτ
c
; cṫ = c cosh aτ

c
;

ẍ = a cosh aτ
c
; cẗ = a sinh aτ

c
;

−→a = (ẍ, cẗ) = a(cosh aτ
c
, sinh aτ

c
).

(56)

The 4-acceleration −→a is a space-like 4-
vector. According to Minkowski’s prescrip-
tion, shown in (37), its magnitude is is

ǎ =
√
a2x − a2t = a =

c2

ρ
. (57)

One can make a formal identity between
the above hyperbolic motion and a “circular

motion” by adopting an imaginary time coor-
dinate: u = ict. Set ω = ia

c
so that ωτ = iaτ

c
.

Then from Eq. (54),

x = ρ
[
cosh aτ

c

]

= ρ
[
cos iaτ

c

]
= ρ cosωτ. (a)

u = ict = ρ
[
i sinh aτ

c

]

= ρ
[
sin iaτ

c

]
= ρ sinωτ. (b)

x2 + u2 = ρ2. (c)
(58)

The hyperbolic path in space-time looks
formally like a circular path of radius ρ fol-
lowed by a particle with angular velocity ω,
except that now this angular velocity is an
imaginary quantity.
An infinitesimal segment of any curve (in

E3) at any point P can be considered to have
three infinitesimally adjacent points passing
through a circle. This circle is referred to as
the circle of curvature at P and the radius ρ
of this circle is called the radius of curvature.
A particle moving along this curve and hav-
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ing velocity v at P has a normal acceleration
equal to an = v2

ρ
, and directed towards the

centre of curvature.
By analogy, any infinitesimal segment of

a world line at any event point P can be
considered to have three infinitesimally ad-
jacent points passing through a hyperbola.
Minkowski calls this hyperbola the hyperbola
of curvature at P. The parameter ρ of this
hyperbola appearing in (55) is analogous to
the radius of curvature. What we have just
seen in (57) is that the magnitude of the ac-
celeration 4-vector is equal to ǎ = c2

ρ
.

If we take u to be a real variable in
Eq. (58c), then the origin is the centre of
the circle. By analogy, Minkowski defines
the same origin to be the centre of the hyper-
bola of curvature when u is pure imaginary.
How to identify this centre for the general
case when the centre is no longer the origin
of coordinates (for example, when equation of
the hyperbola is transformed by shifting the
origin of the coordinate system?) By finding
out where the two asymptotes of the hyper-
bola intersect, as we have shown in Fig. 13(b).
These asymptotes are also the traces of the
light cones passing through the centre.
In the figure we have denoted the centre

as M. Any straight line segment joining M
to any point P on the hyperbola of curvature
gives the “magnitude” ρ of the displacement
4-vector (see Sec. 13 and Fig. 11) and hence
the radius of the hyperbola of curvature.
Fig. 13(c) illustrates the construction of the

the hyperbola of curvature at the event point
P of a of a particle moving with a variable
acceleration. The world line of this particle
is shown with a thicker line, and the light

cones with broken lines.

15 The Four Dimensional

Law of Motion

Section IV of Minkowski’s paper is of a
greater historical significance. He lays out
the foundation and plan for Mechanics in
the new relativistic order. While unravelling
this plan he combines 3-dimensional (Newto-
nian) momentum with kinetic energy to form
a new 4-dimenaional entity which he simply
calls Momentum. He combines 3-dimensional
(Newtonian) force with the rate of work done
into another new 4-dimensional entity which
he calls Motive Force Vector. Many people
today refer to Minkowski’s motive force as
Minkowski force.
Minkowski begins with a sort of preamble,

“To show that the assumption of the
group Gc for the laws of physics never
leads to a contradiction, it is unavoid-
able to undertake a revision of the whole
of physics on the basis of this assump-
tion. ... For the last branch of physics
(i.e., mechanics) it is of prime impor-
tance to raise the question - When a
force with components X, Y, Z parallel
to the axes of space acts at a world point
P (x, y, z), where the velocity vector is
ẋ, ẏ, ż, ṫ what must we take this force to
be when the system of reference is in any
way changed?”

He answers the self-posed question with the
following proposition,
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“When the system of reference is
changed, the force in question trans-
forms into a force in the new space co-
ordinates in such a way that the ap-
propriate vector with the components
ṫX, ṫY, ṫZ, ṫT , where

T =
1

c2

(
ẋ

ṫ
X +

ẏ

ṫ
Y +

ẏ

ṫ
Z

)
(59)

is the rate at which work is done by the
force at the world point divided by c, re-
mains unchanged. This vector is always
normal to the velocity vector at P. A
force vector of this kind, corresponding
to a force at P, is to be called a “motive
force vector” at P.”

We shall elucidate. We shall adhere to our
convention of multiplying the time compo-
nent proposed by Minkowski with c to get
all components having the same dimension.
We shall denote Minkowski’s proposed mo-

tive force as
−→
F and, using Eq. (46), write its

expression as

−→
F = (Fx,Fy,Fz,Ft)

= (ṫX, ṫY, ṫZ, ṫcT )
= Γ (X, Y, Z, cT )
= Γ (F, cT ), (a)

F = Xi+ Y j+ Zk. (b)

(60)

Here F is the 3-dimensional force, as defined
in Newton’s second law of motion, acting on
a particle at a world point P.

Now, the rate at which the force F is do-
ing work on the particle per unit “co-ordinate

time” t is

dW

dt
= F · v = Xvx + Y vy + Zvz

= X
ẋ

ṫ
+ Y

ẏ

ṫ
+ Z

ż

ṫ
.

(61)

We have used Eq. (51) to get the second
equality. Comparing Eq. (61) with (59) we
find that

cT =
1

c

dW

dt
, (62)

as pointed out by Minkowski. We therefore

rewrite the expression for
−→
F as

−→
F = Γ

(
F,

1

c
F · v

)
= Γ (F,F · β), (63)

where we have set β = v

c
.

It has now to be shown that the motive
force

−→
F is normal to the velocity 4-vector −→v .

The proof is easy and straight forward.
Proof:

−→
F · −→v = ΓF · Γv − ΓcT × Γc

= Γ 2

(
dW

dt
− c2T

)
= 0.

Q.E.D.

He proceeds further,

“I shall now describe the world-line of a
substantial point with constant mechan-
ical mass m̄, passing through P. Let the
velocity vector at P, multiplied by m̄, be
called the “momentum vector” at P, and
the “acceleration vector” at P, multiplied
by m̄ be called the “force vector” of the
motion at P. With these definitions the
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law of motion of a point of mass with
given motive force vector runs thus:- The
Force Vector of Motion is equal to the
Motive Force Vector.”

It should be remarked here that the term
“constant mechanical mass m̄” used in the
above statement is same as what is gener-
ally referred to as “rest mass” (for which
Minkowski has used the symbol m.) In this
article we shall use the symbol m0 to mean
the same rest mass, so that we can reseve

m for “relativistic mass” which will be de-
fined in Eq (65) below. We can now repre-
sent Minkowski’s “momentum vector” by the

symbol
−→
P , and his “force vector” by the sym-

bol
−→
F . We shall refer to the first one as 4-

momentum. Using Eq. (43)

−→
P

def
= m0

−→v = Γm0(v, c)
= (p,mc), (a)

−→
F

def
= m0

−→a (b)

(64)

At this point the reader should note that we have defined two quantities while writing
(64), namely, the relativistic mass m and the relativistic 3-momentum p.

Relativistic mass m
def
= Γm0 =

m0
√

1− v2

c2

. (a)

Relativistic 3-momentum p
def
= mv = Γm0v = m0v

√

1− v2

c2

. (b)
(65)

Minkowski’s proposition of “the law of mo-
tion of a point of mass” runs as follows:

−→
F =

−→
F . (66)

In view of Eq. (64b) the law of motion looks
like the 4-dimensional version of Newton’s
law of motion:

m0
−→a =

−→
F . (67)

It may be noted, from the definitions of mo-
mentum in Eq. (64a), and acceleration in
(44), that the above equation of motion can
be written in the following alternative form:

d
−→
P

dτ
=

−→
F . (68)

We shall find the form (68) to be more con-
venient than (67).
Minkowski continues:

“This assertion comprises four equations
for the components corresponding to the
four axes, and since both vectors are a
priori normal to the velocity vector, the
fourth equation may be looked upon as
a consequence of the other three. In
accordance with the above significance
of T , the fourth equation undoubtedly
represents the law of energy. Therefore
the component of the momentum vector
along the axis of t, multiplied by c, is to
be defined as kinetic energy of the point
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mass. The expression for this is

= m̄c2
dt

dτ
=

m̄c2√
1− v2

c2

, (69)

i.e., after removal of the additive con-
stant m̄c2, the expression 1

2
m̄v2 of New-

tonian mechanics down to the magni-
tudes of the order 1

c2
.”

To explain the above statemant we shall
resolve the equation of motion (68) into four
components, converting d

dτ
→ d

dt
using (47)

and (60).

dPx

dτ
= Fx, ⇒ dpx

dt
= X. (a)

dPy

dτ
= Fy, ⇒ dpy

dt
= Y. (b)

dPz

dτ
= Fz, ⇒ dpz

dt
= Z. (c)

dPt

dτ
= Ft, ⇒ d(mc)

dt
= cT. (d)

(70)

In view of Eq. (62) the line (d) of the above
equations implies

d(mc2)

dt
= c2T =

dW

dt
. (71)

Since the work done results in changing the
kinetic energy K, i.e., dW

dt
= dK

dt
, Minkowski

sets the kinetic energy to be equal to the ex-
pression given in (69). We shall however fol-
low the current usage and call the expression
total energy E.

E = mc2 = Γm0c
2 =

m0c
2

√
1− v2

c2

, (72)

which is the famous energy equation at-
tributed to Einstein.

The total energy E of the particle consists
of a kinetic energy partK and a “rest energy”
part Vo.

K = E −m0c
2, Vo = m0c

2. (73)

To appreciate this we shall expand the right
side of (72) in powers of v

c
.

E ≈ m0c
2

[
1 +

1

2

v2

c2

]
= m0c

2 +
1

2
m0v

2

= Vo +K.

(74)

In non-relativistic physics, 1
2
m0v

2 is the ki-
netic energy of the particle. Therefore we
have represented it by K, the symbol for ki-
netic energy. The balance part Vo can be con-
sidered to be potential energy, in view of the
fact that matter can be converted entirely to
energy (as in the cases like electron-positron
annihilation resulting into a pair of gamma
rays.)
We can now see the significance of the last

sentence in Minowski’s statement following
Eq. (69).
We shall now rewrite the 4-dimensional

equation of motion (70) compactly in two
lines, breaking it up into a 3+1 form. For
this we note that the external force F acting
on the particle is as given in (60b). Also from
(61) and (62), c2T = dW

dt
= F·v. Hence, from

(70) and (72),

dp

dt
= F. (a)

dE

dt
= F · v. (b)

(75)

The 4-dimensional equation of motion breaks
up into Newton’s second law of motion (ex-
cept that p has a extra factor Γ ), as shown
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in line (a), and an energy equation, as shown
in line (b). This is because E/c is the time
component of the 4-momentum, as seen from
Eq. (64a), which we should now write in the
following preferable form.

−→
P =

(
p,
E

c

)
. (76)

Before concluding Sec. III Minkowski in-
troduces “natural unit of velocity” and imag-
inary coordinate for time.

“We can determine the ratio of the units
of length and time in such a way that the
natural unit of velocity becomes c = 1.
If we then introduce, further,

√
−1 t = s

in place of t, the quadratic expression

dτ 2 = −dx2 − dy2 − dz2 − ds2 (77)

thus becomes perfdectly symmetrical in
x, y, z, s; and this symmetry is commu-
nicated to any law which does not con-
tradict the world-postulate. Thus the
essence of the postulate may be clothed
mathematically in a very pregnant man-
ner in the mystic formula 3 · 105 km =√
−1 secs.”

16 Lienard-Weichert

4-Potential - the

Minkowski Way

Section V of the paper begins with the fol-
lowing statement.

“The advantages afforded by the world-
postulates will perhaps be most strik-
ingly exemplified by indicating the ef-
fects proceeding from a point charge in
any kind of motion according to the
Maxwell-Lorentz theory. Let us imag-
ine the world-line of such a point elec-
tron with charge e, and introduce upon it
the proper time τ from any initial point.
In order to find the field caused by the
electron at any world point P1, we con-
struct the front cone belonging to P1.
The cone evidently meets the world line,
since the directions of the line are ev-
erywhere those of time-like vectors, at
the single point P, We draw the tan-
gent to the world-line at P and construct
through P1 the normal P1Q to this tan-
gent. Let the length of P1Q be r. Then
by the definition of a front cone, the
length of PQ must be r/c. Now the
vector in the direction PQ of magnitude
e/r represents by its components along
the axes of x, y, z, the vector potential
multiplied by c, and by the component
along the axis of t, the scalar potential of
the field excited by e at the world-point
P. Herein lie the elementary laws formu-
lated by A.Lienard and E.Wiechert. ”

This is a crucial statement which we shall
try to interpret using our understanding of
the Lienard-Weichert potentials (A,Φ) of a
point charge emoving arbitrarily along an ar-
bitrary path and the Lorentz transformation
of these potentials from a frame S to another
frame S ′, or vice versa.
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The word “electron” used by Minkowski
will mean any charged particle in our article.
Fig. 14(a) shows the particle of charge e mov-
ing along the trajectory Λ. At any instant of
time t′ it is located at some point P′, hav-
ing coordinates r′(t′) = (x′(t′), y′(t′), z′(t′))
where its velocity is v(t′) = cβ(t′). Due to its
charge it generates an electromagnetic field
(E,B) at all times, which propagates with the
speed of light, reaching all points in space. D
is one such point, located at the radius vec-
tor r = (x, y, z), fixed in space, and equipped
with a detector. We may like to call it a “field
point”. ,

Let t be any arbitrary time. Then “the
field is detected at D at time t” is a cer-
tain “event” having space-time coordinates
(x, y, x, ct), which we shall designate as the
“field event” P1. The radius vector R(t′) =
r − r′(t′) gives the displacement of D with
respect to P′ at time t′. Let R(t′) be the dis-

tance between P′ and D, and n(t′) = R(t′)
R(t′)

a

unit vector directed from P′ to D. Then the
the e.m. field at the event P1 is given by the
following expressions (in gaussian units)[10]:

E(r, t) = −∇Φ(r, t)− 1
c

∂A(r,t)
∂t

, (a)
B(r, t) = ∇×A(r, t), (b)

where A(r, t) =
[

eβ(t′)
(1−n·β(t′))R(t′)

]
t′=tr

, (c)

and Φ(r, t) =
[

e
(1−n·β(t′))R(t′)

]
t′=tr

. (d)

(78)
Here Φ(r, t),A(r, t) are the scalar and vec-
tor potentials at r at time t, and are known
as Lienard-Weichert potentials. The expres-
sions for these potentials given in lines (c)
and (d) require some explanation.

Let us consider t as the “present time”
(when the field is detected). The charge is lo-
cated at Po at the present time. However, the
field that reaches D at t originated somewhere
in the past, at time tr, called the retarded
time (corresponding to the present time t)
when the particle was located at the retarded
point Pr. The retarded time tr is determined
by solving the equation

R(tr) ≡ |r− r′(t′)|t′=tr = c(t− tr), (79)

because the field propagates with the speed
of light. The expressions given within square
brackets in Eqs.(78c,d) are to be evaluated at
t′ = tr after solving Eq. (79).
The scalar potential Φ and the vector po-

tential A together form a 4-vector
−→
A =

(A,Φ) which we shall call 4-vector poten-
tial. For the simple boost along the X
axis explained in Sec. 4 the the compo-
nents of the 4-potential will undergo the
same Lorentz transformation from S to S ′ as
given in Eq. (9) with (x, y, z, ct) replaced by
(Ax, Ay, Az,Φ).
We shall first try to interpret the statement

for the simpler special case in which a point
charge e charge is moving with a constant ve-
locity v along a straight line which we take
as the X axis. We have shown this path
at the bottom of Fig. 14(b) as the straight
line OX, coinciding with the X axis, and
superimposed above this line the construc-
tion of the potentials using the hint given by
Minkowski.
The world line OPQ represents the uniform

motion of the source charge e moving along
the X axis. The observer is the detector D,
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Figure 14: Lienard Weichert 4-vector Potential. (a) Field originating at the retarded time tr from
an arbitrarily moving charge e; (b) Field originating from a charge e in uniform motion seen in
space-time.

located at a fixed distance d from the origin.
The world lines OP of the source and DP1

of the detector will intersect at some event
point (not shown in the diagram) indicating
the the two will collide somewhere. We are
however considering an event P1 before such
a collision occurs.

We identify the laboratory frame S with
the space-time axes X−T and the rest frame
S ′ of e with the axes X ′ − T ′. The axis cT ′

coincides with the world line of e. (See state-
ment in italics at the beginning of Sec. 8.)

From the event P1 drop a “normal” (in
Minkowskian sense) P1Q to the world line
OPQ, meeting the world line at Q. Draw the
front light cone (i.e., a straight line at 45o

with the X axis) meeting the world line at P.
The event P, located at coordinates (xr, ctr),
is the source of the event P1 located at (x, ct),
i.e., the field detected at P1 originated from P
at the retarded time tr. It should be remem-
berd that the 4-vector

−−→
PP1 is a null vector

that is, the events P and P1 are connected by
a light ray.

The 4-vectors
−−→
P1Q and

−→
OP are normal to

each other (in the Minkowski sense), and
−→
OP

is parallel to the T ′ axis. Therefore
−−→
P1Q is

parallel to the X ′ axis. Let the intercept P̂1Q
(measured along theX ′ axis) be r. According
to Minkowski’s statement,

−→
A =

e

r
−→et ′, (80)
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where −→et ′ is a unit 4-vector along the T ′ axis.
Resolving either side of (80) along the time

and space axes of the frame S ′ we get the
vector and scalar potentials (A′

x, A
′
y, A

′
z,Φ

′)
in S ′.

A′
x = A′

y = A′
z = 0; Φ′ =

e

r
. (81)

The equations are familiar. In the frame S ′

the point charge e is at rest, and the detector
which is moving towards it is at a distance
r from from it at the detection time t. The
detector sees only a static Coulomb electric
field derivable from the scalar potential Φ′ as
shown, but no magnetic field at all, so that
A′ = 0.
In order to get the potentials in the in

the Lab frame S we have to perform Lorentz
transformation from S ′ to S.

Φ = γ(Φ′ + βA′
x) =

γe

r
.

Ax = γ(A′
x + βΦ′) = γβe

r
.

Ay = A′
y = 0; Az = A′

z = 0.
(82)

The above equations show the potentials in
the Lab frame S as functions of the distance r
between e and D, measured in the rest frame
S ′ of e, at the time of detection. They are now
to be expressed as functions of the distance
R, between D and e, measured at the retarded
time tr in the Lab frame S. The answer can
be found in the following lemma.

Lemma: 2 Consider an emitter E moving
along the X axis with velocity v = cβ and a
detector D placed on the same axis at a dis-
tance R from the origin. The emitter E emits
a sharp light pulse at time t = 0 when it is at

the origin O (Event E). This pulse is received
by the detector D at time t (event D). Let r
be the distance between D and E, as measured
in S ′, when the pulse is detected. Then

r = γ(1− β)R. (83)

Proof of the lemma. In Fig. 15(a) we have
shown the events in space-time against X,T
axes as seen from S. In Fig. 15(b) we have
shown the same events against X ′, T ′ axes, as
seen from S ′. We set the coordinates of E to
be (x = 0, ct = 0) in S and (x′ = 0, ct′ = 0)
in S ′. Since the event D is connected to E
by a light signal, the coordinates of D are
(x = R, ct = R) in S and (x′ = r, ct′ = r) in
S ′. Applying Lorentz transformation we get

x′ = γ(x− βct), Or, r = γ(1− β)R.

Q.E.D.

The last line gives the desired relation con-
necting the unknown variable r to the dis-
tance R between the source point and the
field point at the retarded time. Now go-
ing back to Eqs. (82), and using (83) we get
the Lienard-Weichert potentials for the sim-
ple case of point charge in uniform motion:

Φ =
e

(1− β)R
; A =

βe

(1− β)R
i =

βe

(1− β)R
.

(84)
In the second equation i is a unit 3-vector in
the direction of the X axis.
We shall now come back to the general case

in which the particle e is moving with arbi-
trary velocity and acceleration. In order to
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Figure 15: Emission and detection of a light pulse seen from two frames seen in space-time.

show the picture on a sheet of paper we shall
imagine that the trajectory of the particle is
confined to a plane which we shall take as
the XY plane, and that the detector D is
located at (x, y) on this plane. The detec-
tor D receives the field at time t, so that the
field event is P1 (as before), but now hav-
ing coordinates (x, y, ct). This field originates
from the event point P having coordinates
(xr, yr, ctr). We have illustrated this case in
Fig. 16 in which we have shown theXY plane
with a light colour to mark it out from space-
time.

We have shown the path of e on the XY
plane (with a thick line) as Λ, and its world
line (with a broken thin line) as Ω. The points
1,2,P,3,4 on Λ have their corresponding im-
ages 1,2,P,3,4 on Ω.

As in the special case, we identify the lab-
oratory frame S with the space-time axes
X − T . To make the work easier we orient
the axes such that the X axis is in the di-
rection of the instantaneous velocity at the

source event P, so that v = βc = βci is the
velocity of e at the event P. We shall now
consider the instantaneous rest frame of e at
the event P to be the S ′ frame. The time axis
T ′ of S ′ is parallel to the 4-velocity vector −→v
at the event P (making angle α with the T
axis), as we have shown in the figure.
From the event P1 drop a “normal” P1Q to

the axis T ′ meeting it at Q. The front light
cone drawn from the event P1 meets the T ′

axis at P, which is the source event for the
field event P1.
The rest of the arguments, including

Eqs. (82)-(84) are the same as for the “special
case” and will not be repeated. The lemma
2, valid for the special case, is to be replaced
by the following lemma which is valid for the
general case.

Lemma: 3 Consider an emitter E moving
arbirarily and emitting a sharp light pulse at
time t = 0 when it is at a point P (Event E).
This pulse is received by a stationary detec-
tor D at time t (event D). Let S be the Lab
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frame (i.e., the frame of the detector), and S ′

the instantaneous rest frame of E at the event
E . If R is the (fixed) distance between D and
P, as measured in S, and r the distance be-
tween D and E, as measured in S ′, when the
pulse is detected, then

r = γ(1− β · n)R, (85)

where cβ is the instantaneous velocity of E
at the event E , and n is a unit vector directed
from P to D.

Proof of the lemma. We shall consider only
(x, y, ct) coordinates, and suppress the z co-

ordinate. We take the origins of the Lorentz
frames S and S ′ to be the event E .
Let us take the plane polar coordinates

of the detector D as (R, θ) so that x =
R cos θ; y = R sin θ. Here cos θ = β · n. The
event D has coordinates (R cos θ, R sin θ, ct)
in S and (r cosφ, r sinφ, ct′) in S ′. Since
the signal propagtes with the speed of light,
ct = R, ct′ = r. Therefore, performing
Lorentz transformation (9) from S to S ′,

ct′ = γ(ct− βx).

Or, r = γ(R− βR cos θ) = γR(1− β · n).
(86)

Q.E.D.
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Now we go back to Eqs. (82) and (85) to
get the Lienard-Weichert potentials for this
general case.

Φ = e
(1−β·n)R

;

cA = βe i

(1−β)R
= β e

(1−β·n)R
.

(87)

Note that i is a unit 3-vector in the direction
of the X axis which is same as the direction
of β at the retarded time t = 0. Therefore
we have set βi = β in the second line.
The potentials written in Eq. (87) can be

found in Jackson[10].

17 Force between two

charged particles

moving in arbitrary

trajectories

In Fig. 17(a) we have shown two particles of
charges e and e1 moving along arbitrary tra-
jectories Λ and Σ respectively. The shaded
plane represents the space E3 with the Z axis
suppressed. The particle e1 is acted on by
the e.m. field originating from e. The 4-force−→
F that is exerted on e1 at the event point
P1 can be computed by first finding out the
electromagnetic field emanating from e at the
retarded point P and traveling along the back
light cone to reach P1 (as already explained
in the previous section,) and then using the
Lorentz force equation (see Eq. (91) below.)
Minkowski gives a formula for this force in
the following language.

“I will now describe the ponderomotive
action of a moving point charge on an-

other moving point charge. Let us imag-
ine the world line of second point elec-
tron of the charge e1, passing through
the world-point P1. We define P, Q,
r as before, then construct the centre
M of the hyperbola of curvature at P,
and finally the normal MN from M to
a straight line imagined through P par-
allel to QP1. With P as starting point
we now determine a system of reference
as follows:- The axis of t in the direction
PQ, the axis of x in direction QP1, the
axis of y in direction MN, whereby finally
the axis of z is also defined as normal
to the axes of t, x, y. Let the accelera-
tion vector at P be ẍ, ÿ, z̈, ẗ, the velocity
vector at P1 be ẋ1, ẏ1, ż1, ṫ1. The motive
force vector exerted at P1 by the first
moving electron e on the second moving
electron e1 now takes the form

−ee1
(
ṫ1 −

ẋ1
c

)−→
R, (88)

where the components Rx,Ry,Rz,Rt of

the vector
−→
R satisfy the three relations

cRt −Rx =
1

r2
, Ry =

ÿ

c2r
, Rz = 0,

(89)
and where, fourthly, this vector is normal
to the velocity vector at P1, and through
this circumstance alone stands in depen-
dence on the latter velocity vector.”

We shall make our work simpler by assum-
ing that (a) the charge e is moving along a
straight line which is also identified with the
Y axis, (b) its acceleration is constant, equal
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Figure 17: Charged particles on arbitrary trajectories

to a, so that the path is a hyperbola, and that
(c) the second particle e1 is also moving on
the XY plane. We shall take the time axis in
the direction of the instantaneous 4-velocity
−→v of e at the event P. We have shown this
configuration in Fig. 17(b). The front cone
with apex at P1 intersects the XY plane in a
circle of radius R. In the present case r = R.
The retarded event P lies on this circle.

M is the centre of the hyperbola of curva-
ture, which, for this special one dimensional
constant acceleration motion is same as the
hyperbola we have already drawn, and lies on
the Y axis, at the intersection of the asymp-
totes.

We shall now set up a new frame of ref-
erence S ′ according to Minkowski’s prescrip-
tion. The axes of this new frame will be desig-
nated as x, y, z, t, the z axis being suppressed.

The new t axis is taken parallel to the T axis.
From the field event P1 we drop a “normal”

P1Q to the t axis. Then
−−→
QP1 lies parallel to

the XY plane, and equals
−→
PF, and has length

r = R. From M we drop a normal MN to the
straight line FP, both these lines being on the
XY plane. The new x axis is along PF, the

new y axis is parallel to
−−→
MN, so that the x−y

axes lie on the XY plane.

We shall now obtain an expression for
−→
F .

The scalar and vector potentials for the field
created by the moving charge e was writ-
ten in Eqs. (87). The (E,B) fields are
now obtained by performing the differentia-
tions indicated in Eqs. (78a,b). These dif-
ferentiations are tricky and involved because
the potentials involve “retarded” variables
[R(t′), t′]t′=tr , whereas the differentiations are
to be carried out with respect to the field vari-

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 48 Apr-Jun 2013

ables x, y, z, t. These two sets of variables are
connected through Eqs. (79).
We shall not perform these differentiations.

Instead we shall quote the resulting (E,B)
fields from Jackson[11].

E (r, t) = e
[

n−β

Γ 2(1−β·n)3R2

]
ret

+ e
c

[
n×{(n−β)×β′}

(1−β·n)3R

]
ret
.

B (r, t) = [n× E (r, t)]ret .

(90)

Here we have used the prime symbol ′ to mean
derivative with respect to coordinate time t,
i.e., β′ = dβ

dt
= a/c, the subscript “ret” in-

dicates that the quantities within the square
brackets are to be evaluated at the “retarded
event” P, and n is a unit vector in E3 from
the source point P to the field point F.

The motive force
−→
F is now given by

Eq. (60a), where F is the Lorentz force on
the point charge e1, given as

F = e1[E+ β1 ×B], (91)

(E,B) being the electromagnetic field expe-
rienced by the point charge e1, and v1 = cβ1

is its velocity, all at the field event P1.
In the present case the new frame of ref-

erence is an instantaneous rest frame of the

source particle, so that β = 0. Also n =
i, Γ = 1, R = r. Hence from (90),

E(P1) =
e

r2
i+

e

cr
[i× (i× β′)] . (92)

Since Γ = 1, it follows from Eq. (50) that

cβ′ = a =
d2r

dt2
=
d2r

dτ 2
= r̈. (93)

Therefore,

i× β′ =
1

c
[i× (ẍi+ ÿj)] =

ÿ

c
k. (94)

Hence,

E(P1) =
e

r2
i− eÿ

c2r
j,

B(P1) = i× E(P1) = − eÿ

c2r
k.

(95)

We shall divide the force on e1, given in
(91) into an electric part Fe = e1E and a
magnetic part Fm = e1β1 ×B, for easier cal-
culation. From (50),

−̇→r 1 =
d−→r 1

dτ
= cΓ1β1 = cṫ1β1. (96)

Hence,

Fe = ee1

[
i

r2
− ÿ

c2r
j

]
. Fm =

ee1ÿ

c3rṫ1
[ẋ1j− ẏ1i] .

F = Fe + Fm = ee1

[{
1

r2
− ÿẏ1
c3t1r

}
i+

{
− ÿ

c2r
+

ÿẋ1

c3rṫ1

}
j

]
.

(97)
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We shall use Eq. (63), set Γ1 = ṫ1, and
write the motive force 4-vector on the particle

e1 as

−→
F = Γ1(F, β1 · F) = Γ1(F, β1 · Fe). (98)

We shall now obtain the time component of
−→
F :

Ft = Γ1β1 · F) = Γ1β1 · Fe = Γ1
ṙ1

ṫ1
· Fe =

ee1
c2

{
ẋ1
r2

− ẏ1ÿ

c2r

}
, (99)

and its space components:

Fx = ee1

(
1

r2
− ÿẏ1
c3t1r

)
;Fy = ee1

(
− ÿ

c2r
+

ÿẋ1

c3rṫ1

)
. (100)

It is now seen that

Ft −Fx = −ee1
r2

(
ṫ1 −

ẋ1
c

)
. (101)

Therefore, if we write

−→
F = −ee1

(
ṫ1 −

ẋ1
c

)−→
R, (102)

then

Rt −Rx =
1

r2
; Ry =

ÿ

c2r
. (103)

We now have to establish that
−→
R is a 4-

vector.

Proof: v1(P1) = (ẋ1, ẏ1, cṫ1); r1(P1) =
(r, 0, 0, r). Hence, v1(P1) · r1(P1) = r(ẋ1 −
cṫ1).

It follows that
−→
F = ee1

cr
[v1(P1) · r1(P1)]

−→
R.

The distance r is not a coordinate diatance
between two events. It is a distance defined
in the rest frame of e (like the proper time

which is defined in the rest frame of a parti-

cle.) Hence,
−→
F = scalar×−→

R. The left hand

side is a 4-vector. Therefore
−→
R is a 4-vector.

Q.E.D.
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eines Körpers von seinem Energiegehalt
abhängig ?, Annalen der Physik, 17,
(1905),”
reproduced in The Principle of Relativ-
ity, Collection of Original Papers in Rel-
ativity, H. A. Lorentz, A. Einstein, H.

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 50 Apr-Jun 2013

Minkowski and H. Weyl; , tr. by W. Per-
ret and G. B. Jeffrey, Dover, New York
(1952). See pp. 37-71.

[2] A. Einstein, “On the Influence of Grav-
itation on Propagation of Light”, Trans-
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