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EDITORIAL 
(Submitted 01 – 03 - 2012) 

 
 

___________________________________________________________________________________________  

                

Physics Education begins an era of online 

publication with this issue. With this step we 

expect the journal to enlarge its reach among the 

Physics Community in our colleges and 

Universities more directly in a participatory mode. 

At present it will retain almost the same format as 

well as the frequency of publication as in the 

preceding volumes. In order to emphasize the 

continuity, we call this issue as the first number of 

Volume 28. Readers may be aware that Volume 

27, Issue 4 carried the date line Oct-Dec 2010. 

The Physics Education remained suspended 

during the year 2011 and the interval was used 

making the transition from print format to online 

format. We envisage online process for paper 

submission to the journal, peer review, editorial 

process and the subsequent publication. We have 

made the access to the journal completely free, so 

that there is a wider readership for the 

contributions of our authors. Please ask your 

librarian to add www.physedu.in to the List of 

online journals for ready access in your College or 

University.  

 

We expect that the teachers will make use of the 

computer as an important tool for pedagogy. There 

are many course-wares available at many sites. 

Quite many resources are available to freely 

download and adopt them to our needs. There is 

some trend that authors prefer to publish e-books 

and make them free for any genuine user. Physics 

Education readers, will bring them to the notice of 

all of us to benefit.    

 

The journal’s utility depends directly on the 

quality of its content and it is here that I must 

appeal to you. I invite you to use this medium to 

share with your colleagues all your successful 

ventures in Physics pedagogy at both under-

graduate and post-graduate levels. Taking 

advantage of this being an online venture, we have 

also enlarged the team of Editors to run the journal 

and thus we expect increased diversity in the 

content of the journal. It is only natural that other 

developments that are possible in the e-format will 

also take place soon. Pramod S Joag as the Chief 

Editor and R Ramachandran as the Consulting 

Editor look forward to an exciting future for 

Physics Education, as we welcome the new team 

of Editors to join us in this experiment. We also 

look forward to wise counsel from the eminent 

members of the Advisory Board.  Readers will 

share with us, we hope their feedback their 

comments on the articles published as well as 

make any suggestions for us to adopt in making 

the journal more useful for all of us.  

 

Pramod S Joag 
Chief Editor, Physics Education 

R Ramachandran  
Consulting Editor, Physics Education 

 
______________________________________________________________________________________ 
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Filament temperature of low power incandescent lamps: Stefan-Boltzmann law 

Imtiaz Ahmad, Sidra Khalid and Ehsan E. Khawaja 

School of Science and Technology, University of Management and Technology, 

C-II Johar Town, Lahore 54770, Pakistan 

(Submitted February 2009) 

 

Abstract 

An undergraduate experiment using commercially available low power incandescent lamps was 
performed. The results obtained, for higher temperature of the filament (say above 1000 K), were 
compared with those calculated using a simple model, based on transfer of electric power predominantly 
into Planck’s radiation channel through Stefan-Boltzmann law. The agreement between the results and the 
theory was quite satisfactory. Measurement of filament temperature to confirm theoretical results, 
included in the present work, is expected to give a student more confidence in the theory.       
 
 

1. Introduction 

There are a number of methods for 

estimating the temperature of the filament of 

incandescent lamps [1-5]. These methods are for 

example  (i) the power law between the resistance, 

R, and temperature, T, of tungsten filament, (ii) 

the transfer of the input electric power 

predominantly into Planck’s radiative channel 

through Stefan’s law, (iii) exploits the fact that the 

lifetime of the lamp filament is mostly governed 

by the rate of thermal evaporation of the metal, 

(iv) analyses of the radiation emitted by the 

filament at two well defined wavelengths and (v) 

study of hysteresis in the current-voltage 

characteristics in filament lamp.     

Incandescent light bulbs, in addition to 

providing illumination, are useful in the context of 

teaching physics [2,4]. In the present work two 

sets of measurement were made on commercially 

available low power lamps. These measurements 

were made on lamp filament: (a) resistance (R) – 

voltage (V) and (b) temperature (T) – voltage. An 

attempt is made to relate these results to those 

derived on the basis of transfer of the electrical 

power predominantly into Planck’s radiation 

channel through Stefan-Boltzmann law. 

2.       Experimental 

In the present work three 12-V operated low 

power (rated at 10-W, 25-W and 35-W) commercial 

lamps were studied. Current (I) – voltage 

measurements were performed using a variable dc 

power supply. Multimeters were used to measure the 

voltage across the filament and current in the series 

circuit. The resistance of the filament was obtained 

using R = V/I. The temperature of the filament at 

different voltage was measured using a Minolta-Land 

infrared optical pyrometer Cyclops 52. The 

temperatures were measured for different setting of 

emissivity, such as 0.3, 0.35, and 0.4. The average 

value of the emissivity for tungsten filament lamp is 

close to 0.35 [2]. Therefore, in this work e = 0.35 was 

used. However, the measured temperature values were 

larger (by less than 2.5%) for e = 0.3 and smaller (by 

less than 1.5%) for e = 0.4 when both compared with 

those obtained for e = 0.35.       

3.          Modeling 

At a given voltage across the filament of 

the lamp, a steady state is reached when the 

current (I) passing through the filament is 
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stabilized. In the steady state it is expected that the 

electrical power input to the lamp is equal to the 

power lost by the filament through conductive, 

convective, and radiative processes, such that [2] 

 

V
2
 / R = K (T – T0) + e σ As (T

4
 – T0

4
)   (1) 

 

where K represents conductive and convective 

properties of the system. T and T0 are the 

temperatures in Kelvin for the filament and the 

ambient, respectively. e and As are the emissivity 

and surface area of the filament, respectively, and 

σ is the Stefan-Boltzmann constant.  

For higher temperature of the filament (say 

above 1000 K), it is reasonable to assume that T
4
 

>> T0
4
. Moreover, for low power bulbs [2], such 

as those used in the present work, the literature 

indicates that convection and conduction losses 

are negligible. Hence equation (1) may be 

rewritten as 

   

 V
2
 = e σ As T

4
 R       (2) 

 

Metal resistance increases with temperature. The 

temperature of tungsten in the range 300 K to 

3655 K, can be given in terms of its resistivity (ρ) 

by the empirical relation, valid in SI units [7] 

 

T = 3.05 × 10
8
 ρ

0.83
   (3) 

 

A power relation similar to this is also given in 

Ref. [3, 8]. Equation (3) may be written as 

 

          T = 3.05 × 10
8
 [ (Ac R) / L ]

0.83
  (4) 

 

where Ac and L are the area of cross section and 

length, respectively, of the filament wire. 

Substituting this value of T in equation (2), we 

have 

 

V
2
 = e σ As R {3.05 × 10

8
 [ (Ac R) / L ]

0.83
}

4
  (5) 

 

Also, As = 2πrL and Ac = πr
2
, where r is the radius 

of the filament wire. The value of e = 0.35 

(following Clauss et al [2]) and σ = 5.67 × 10
-8

 

Wm
-2

 K
-4 

were used in the present work. Thus, 

equation (5) becomes  

 

R =  B1 V
p    

(6) 

where,  

           B1 = 2.1 × 10
-7

 L
0.54

 r
-1.8

  (6a)  

and       

           p = 0.46    (6b) 

 

The resistance of the filament at room temperature 

(RRT) is given by  

 

RRT = ρRT (L / πr
2
)   (6c)  

 

where ρRT is the resistivity of tungsten at room 

temperature, given by equation (3).  

Similarly by eliminating R from equations (2) and 

(5), we obtain an expression relating T with V, 

such as  

 

T = B2 V
q    

(7) 

Where 

           B2 = 2.4 ×10
3
 r

0.19
 L 

–0.38               
(7a)  

and        

            q = 0.38    (7b) 

 

In the present work we have measured R and T 

both as functions of V.   
 

4. Results and discussion 

Three unbranded 12–V operated low power lamps 

were acquired from the local market. The cost of 

each of the three lamps is given in table 1. The 

values of the resistance (RRT) of the filaments of 

the three lamps measured at room temperature are 

listed in table 1. These were measured using 

Wheatstone bridge method. 
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Rated 

power of 

lamp (W) 

Cost 

($) 

*RRT 

(Ω) 

**Measured B1 

(Ω-V-0.46 ) 

**Exponent p ***Δp  Length of 

filament wire 

L (cm) 

Radius of 

the 

filament 

wire r 

(μm) 

10 0.08 1.8 5.8 0.45 2% 9.5 32 

25 0.15 0.68 2.0 0.49 7% 17 69 

35 0.50 0.50 1.7 0.48 5% 12 68 

Table 1 Various parameters of the lamp filaments: Study of R as a function of V. 
* RRT is the filament resistance at room temperature, measured by Wheatstone bridge method. 

** Determined from plot of log R versus log V (figure 2). 
*** Δp = { * 0.46 – p ] / 0.46 } × 100 

 

The results of the measurement of R as a function of V for the lamps are shown in figure 1. Using the data of 

figure 1, log R versus log V is plotted in figure 2. 

The dots in figure 2 represent experimental 

results while straight line is the result of computer 

generated least square fit to the data. The slope 

and y-intercept of a straight line (figure 2) give, 

respectively, the power p of V and log B1 (see 

equation 6). The values of the exponent p and B1 

thus obtained from figure 2, are listed in table 1. 

These values of p are close (within 7%) to the 

theoretical value of p = 0.46 (equation 6b). For the 

measured values of B1 and RRT (table 1), and the 

value of ρRT obtained from equation (3), equations 

(6a) and (6c) could be solved simultaneously to 

obtain the values of L (length) and r (radius) of the 

filament wire. These parameters for the three 

lamps are listed in table 1. The results of the 

measurement of filament temperature, T, as a 

function of V for the three lamps may be used to 

provide data of log T versus log V plotted in 

figure 3. The dots in figure 3 represent 

experimental results while straight line is the 

result of computer generated least square fit to the 

data. The slope and y-intercept of a straight line 

give, respectively, the power q of V and log B2 

(see equation 7). The values of the exponent q and 

B2 thus obtained from figure 3, are listed in table 

2. These values of q are within 16% to the 

theoretical value of q = 0.38 (equation 7b). Using 

the values of the parameters L and r (table 1), B2 

were calculated from equation (7a). These are also 

listed in table 2. The difference between the 

calculated and measured values of B2 was found to 

be as large as 22% (see table 2). Simple model 

used in the present work was based on some 

assumptions which may introduce errors. The 

filament was assumed to be uniform cylinder of 

cross-sectional area Ac and length L. The 

assumption of uniformity neglects the possibility 

that a real filament has thin regions due to 

mechanical processing needed to form the coil as 

well as evaporation during using which effectively 

limits the useful lifetime of the lamp [2]. The 

assumption of a cylinder instead of a coil will 

overestimate the effective radiating area [6], since 

the regions on the inside of a coil radiate back and 

forth, trapping some of the energy and resulting in 

higher filament temperatures than would be 
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obtained with a straight cylinder. This is more 

obvious in the 25-W lamp since measured 

temperature (at given voltage) is larger than that 

calculated (Table 2). On the contrary the measured 

temperatures were smaller than those calculated 

for 10–W and 35–W lamps. On examining lamp 

filaments under a magnifying glass it was 

observed that spacing between the turns was much 

smaller in case of 25–W lamp as compared with 

the corresponding for the 10–W or 35–W lamps. 

The volumetric thermal expansion of the filament 

only provides a correction of less than 2 % [5]. 

Chemical impurities in the tungsten wire may be 

another factor that have contributions to the 

observed differences in the measured and 

calculated values of various parameters (tables 1 

and 2).       

                       
Figure 1 Resistance versus voltage curves 

obtained with 10 W, 25 W and 35 W 
incandescent lamps. 

 
 
 

Figure 2 Log R versus log V curves (based 
on the data of figure 1). The dots represent 

experimental data and the straight line 
represents least square fit to the data 

generated by a computer. 

 

It was reported [5] that emissivity of the 

filament depends on its temperature. When 

emissivity of the filament is assumed to be 

independent of temperature, then we have electric 

power is proportional to T
4
, and this would give   

R proportional to V
p
,
 
where p = 0.46(Eq. 6) and T 

proportional to V
q
,
 
where q = 0.38

 
(Eq. 7)          
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Figure 3 Log T versus log V curves (based on the data of figure 3). The dots represent 

experimental data and the straight line represents least square fit to the data generated by a computer 

Rated power 

of lamp (W) 

*Exponent q **Δq *Measured B2 

(Ω-K-V-0.38 ) 

***Calculated B2 

(Ω-K-V-0.38 ) 

****ΔB2 

10 0.32 16% 8.7 × 102 8.2 × 102 6% 

25 0.35 8% 9.3 × 102 7.6 × 102 22% 

35 0.35 8% 9.1 × 102 8.7 × 102 5% 

Table 2 Various parameters of the lamp filaments: Study of T as a function of V 

* Determined from plot of log T versus log V (figure 4). 
**Δq = { * 0.38 – q ] / 0.38 } × 100. 

*** Calculated from equation (7a) using the values of L and r from Table 1. 
**** ΔB2 = [(Calculated B2 – Measured B2) / Calculated B2] × 100. 

 

If we take emissivity to be proportional to T (as in 

Ref. [5]), then we have electric power proportional 

to T
5
, and this would give  

       R proportional to V
0.39   

and        T proportional to V
0.32 

The average value of the exponent, p, is 0.47 

(table 1) and this is closer to 0.46 (for emissivity 

being independent of T) rather than 0.39 (the 

value for emissivity being dependent on T). 

Following above this value of p suggests that the 

emissivity may not depend significantly on 

temperature. The average value of exponent q = 

0.34 (T versus V
q
, table 2). This suggests that the 

emissivity may depend on temperature, though not 

necessarily a linear dependence. However, the 

results of R versus V are less affected as compared 

with the results of T versus V, by the uncertainties 

(outlined above) involved in this work. Therefore, 

we may suggest that emissivity of the filament is 

nearly independent of temperature in the present 

case. It was concluded in Ref. [5] that for tungsten 

filament whose surface is oxidized its emissivity is 

independent of temperature. May be this is the 

case in the present work. 

5. Conclusions 

An experiment using low-power 
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incandescent lamps for the verification of Stefan-

Boltzmann law was carried out. Two separate sets 

of measurements were made on the lamps. These 

included filament resistance versus applied 

voltage and filament temperature versus applied 

voltage. The results were compared with those 

calculated using a simple model. Overall, 

satisfactory results were obtained.    

Such an experiment may be a good 

addition in student laboratory. Measurement of 

filament temperature to confirm theoretical results 

is expected to give a student some confidence in 

theory. Most of the equipment used is readily 

available in the laboratory or can be easily 

acquired from a local market. Some effort is 

needed to acquire a pyrometer for measuring the 

filament temperature. 
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S. Chandrasekhar : White Dwarfs, H
− ion,.., Black holes, Gravitational waves

Patrick Das Gupta
Department of Physics and Astrophysics, University of Delhi, Delhi - 110 007 (India)∗

This is a concise review of S. Chandrasekhar’s research contributions to astrophysics, ranging

from his early studies on white dwarfs using relativistic quantum statistics to topics as diverse as

dynamical friction, negative hydrogen ion, fluid dynamical instabilities, black holes and gravitational

waves. The exposition is based on simple physical explanations in the context of observational

astronomy, addressed primarily to the undergraduate students. Black holes and their role as central

engines of active, compact, high energy sources have been discussed in some details.

I INTRODUCTION

The impactful research journey of Subrahmanyan
Chandrasekhar began on July 31, 1930, from Bombay
port on a ship. The 19 year old Chandra was on his way
to England for higher studies. Armed with his under-
standing of Fowler′s work on white dwarfs 1, Chandra
was immersed in the mathematical equations describing
these dense objects, during that voyage. He had real-
ized that Fowler’s theory needed modification, since for
sufficiently massive white dwarfs, particle number den-
sities could be so high that a large fraction of electrons
would be occupying very high energy levels, moving with
relativistic velocities.

At this point, a quick summary of stellar evolution
theory is in store. In main sequence stars (like Sun),
nuclear fusion of hydrogen to helium supplies the required
thermal energy to stall gravitational contraction of a star,
enabling it to attain a quasi-hydrostatic equilibrium. As
the star advances in age, a further sequence of nuclear
fusion reactions gets activated in its core - helium burning
to carbon and oxygen, carbon burning to sodium and
magnesium and so on, if the star is massive enough, till
the formation of iron-rich core. Iron nucleus being the
most stable one, subsequent nuclear burning cease to take
place. As the core cools, it collapses under its own weight,
till the electron density becomes so high that electron
degeneracy pressure prevents further contraction.

Degeneracy pressure is a consequence of quantum
statistics in extremely dense matter. Pauli exclusion
principle (PEP) states that no two identical fermions can
have the same state. Electrons, protons, neutrons, neu-
trinos, etc., being spin half particles, are fermions. Ac-
cording to PEP, in a gravitationally bound system like
the iron-rich core of an evolved star, all the electrons
cannot occupy the lowest energy level (unlike, what hap-
pens to identical bosons in Bose-Einstein condensates,
e.g. He-4 superfluid). So, the energy levels are filled up
with two electrons (one with spin up state and the other
with spin down) per orbital, as demanded by the PEP.
Hence, more the density of electrons, higher is the energy
level that gets to be occupied.

Gravitational shrinking of such a dense core leads to
an increase in electron density, thereby facing a resis-

tance since the contraction implies putting electrons at
higher energy levels. Therefore, in such a degenerate
system, gravitational collapse instead of lowering the
energy of the star tends to increase it. The resulting
pressure against shrinking, arising out of PEP in such
electron-rich dense matter is called electron degeneracy
pressure (EDP). A white dwarf is a star that is in hydro-
static equilibrium not because of thermal pressure but
due to the EDP that counteracts gravitational contrac-
tion. Fowler had assumed that electrons are moving non-
relativistically inside the core and had shown that the
EDP of a white dwarf is proportional to ρ5/3, where ρ is
the density of the core1.

II CHANDRASEKHAR LIMIT AND COMPACT

OBJECTS

In his investigations, Chandra incorporated special rel-
ativity in the analysis of white dwarfs, and found that the
EDP is proportional to ρ4/3 instead, demonstrating that
the relativistic degeneracy pressure does not increase as
rapidly as in Fowler’s case. Performing an accurate study
of the relativistic problem of a dense star ruled by a poly-
tropic equation of state, in which gravity is countered
by the EDP, he arrived at the celebrated Chandrasekhar
mass limit 2,

MCh =
0.2

(mpµe)2

(

h̄c

G

)3/2

, (1)

where h̄, G, c, mp and µe are the reduced Planck′s con-
stant, Newton′s gravitational constant, speed of light,
mass of a proton and mean molecular weight per elec-
tron, respectively. It is remarkable that such a significant
result concerning stars should be expressible in terms of
fundamental quantities (except for µe). In white dwarfs,
the value of µe is about 2, so that from eq.(1) one finds
the limit to be MCh ≈ 1.4 M⊙, where M⊙ = 2× 1030 kg
is the Sun′s mass.

Chandra was unaware initially that Anderson in 1929
and Stoner in 1930 had independently applied special rel-
ativity to obtain mass limits for a degenerate, dense star
of uniform density without taking into account the con-
dition of hydrostatic equilibrium 3,4,7. Fowler pointed
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this out to him when Chandra reached Cambridge, and
he added these references to his papers on relativistic de-
generacy in white dwarf stars 5. Landau too had arrived
at a mass limit independently in 1931, which appeared
in print one year later 6.

The Chandrasekhar mass limit implies that no white
dwarf with mass greater than this limit can hold out
against gravitational collapse. So far, all the white dwarfs
discovered (e.g. Sirius B, the companion star to Sirius) in
the cosmos, have mass less than MCh. For masses beyond
this limit, two prescient ideas were put forward indepen-
dently, that played important roles later - one of Landau
6, before the discovery of neutrons by Chadwick in 1932
and the other by Baade and Zwicky 8,9, after the discov-
ery. Landau had speculated that for stellar cores whose
mass exceeded MCh, the density would become so large
due to shrinking that the atomic nuclei in the core would
come in contact with each other - the whole core turning
into a giant nucleus 6. Baade and Zwicky, while attribut-
ing the origin of cosmic rays to stellar explosions called
supernovae, correctly identified the energy liberated due
to sudden decrease in the gravitational potential energy
(as the core collapses rapidly to form a neutron star of
radius ∼ 10 km) as the one that powers supernova ex-
plosion 8,9. A core with mass Mc, shrinking from a large
size to a radius Rc, has to give up an energy,

Eexp ∼
GM2

c

Rc
, (2)

since its gravitational potential energy decreases to ∼

−Eexp. For a 1.4 M⊙ core collapsing to form a neutron
star of radius Rc ≈ 10 km, the energy Eexp available for
explosion is as high as ∼ 1053 ergs.

Why does the core become neutron-rich? As the core
shrinks, its density rises till it reaches nucleonic values
∼ 1012 - 1014 gm/cm3, when protons in the core trans-
form into neutrons by capturing electrons and emitting
neutrinos 10. Neutrinos, being weakly interacting par-
ticles, escape from the core. While in the neutron-rich
core, the neutron degeneracy pressure (arising from PEP,
as neutrons too are spin half particles) prevents further
gravitational contraction, resulting in the formation of a
neutron star.

With the detection of periodic emission of radio-pulses
from a source by Jocelyn Bell and Anthony Hewish in
1967, existence of neutron stars as pulsars was estab-
lished. Pulsars are rapidly spinning neutron stars with
rotation period ranging from about few milli-seconds to
few seconds. The observed pulses are due to electromag-
netic radiation from accelerated charge particles moving
along strong magnetic field lines inclined with respect to
the rotation axis (The polar magnetic field strengths vary
from ∼ 1010 to ∼ 1014 gauss). Recently, a milli-second
pulsar was found to have a mass of ≈ 2 M⊙, determined
using a general relativistic effect called Shapiro delay in

which radiation grazing past a compact, massive object,
arrives at the observer with a time lag because of the
strongly curved space-time geometry it encounters near
the massive star 11.

As long as the core is lighter than about 2 − 3 M⊙,
it can survive as a neutron star (The mass limit in this
case is uncertain as it depends crucially on the equation
of state for nuclear matter which, for such huge densi-
ties existing inside neutron stars, is unknown 11,12). The
released neutrinos, after travelling long distances, even-
tually lose their energy to the stellar envelope, causing
the latter to be blown apart, giving rise to a Type II
supernova. Measurements concerning detected neutrinos
from the supernova SN 1987A indicate that these ultra-
light, weakly interacting particles carry away 99% of the
gravitational binding energy released from the collapsing
core, lending credence to the neutrino driven explosion
models 10.

The observed masses for neutron stars do not appear
to exceed ∼ 3 M⊙

11,12, suggesting that a massive star
whose core is heaver than this limit, would certainly col-
lapse to form a black hole. The long duration gamma
ray burst sources that exhibit prompt gamma emissions
with photons having energy predominantly in 0.1 - 1 MeV
range, and lasting for about 2 - 1000 s are likely to be col-
lapsing massive cores 13. Eddington had found the idea
of a star shrinking gravitationally to a point absurd 14.
Three decades later, Penrose and Hawking, employing
Raychaudhuri equation, proved the remarkable singular-
ity theorems, according to which gravitational collapse
of normal matter generically lead to formation of point
singularities, namely, the black holes 15−17.

III DYNAMICAL FRICTION

Chandra played a significant role in the research area
of stellar dynamics from 1939 to 1944 that culminated
in the publication of his celebrated papers on dynamical
friction18,19. Cosmos is filled with gravitationally bound
systems of massive objects like globular clusters, galax-
ies, clusters of galaxies, etc. Objects that make up these
bound systems, apart from moving in gravitational po-
tential wells, also suffer two-body gravitational encoun-
ters, resulting in exchange of energy and momentum. It
was Chandra who showed for the first time that a mas-
sive body in motion, surrounded by a swarm of other less
massive objects, suffers deceleration that is proportional
to its mass 18.

Dynamical friction arises out of cumulative gravita-
tional encounters that the massive body experiences due
to the presence of other objects in the background. The
physical origin of dynamical friction can be intuitively
understood by going to the reference frame in which the
body is at rest. In this frame, the swarm of background
objects while moving past the massive body get grav-
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itationally focused behind the body, forming a wake of
higher mass density. Now, switching back to the frame in
which the massive body is moving, we find that the mass
density of the wake behind is greater than the density
ahead. Consequently, because of a greater gravitational
pull from behind, the massive body suffers a gravitational
drag force whose magnitude is proportional to the square
of its mass and inversely proportional to the square of its
speed 20,21.

Observational consequences of dynamical friction in-
clude sinking of globular clusters towards the central re-
gions of galaxies and galactic cannibalism in which the
orbit of a satellite galaxy decays, leading eventually to
its merger with the bigger galaxy 21,22.

IV NEGATIVE HYDROGEN ION

Around the same time, Chandra was also involved with
the quantum theory of negative hydrogen ion. Can a pro-
ton capture two electrons to form a charged bound state?
How is it relevant to astrophysics? The first issue had
been settled by Bethe in 1929 who showed that quantum
mechanics indeed predicts formation of H− ions 23. As
to the second question, it has been found over the years
that H− is a weakly bound system with a binding energy
of ≈ 0.75 eV. Since it takes only about 0.75 eV to knock
off the extra electron from H−, its life-time under terres-
trial conditions is small but in thin and tenuous plasma
where the collision frequency is low, one expects negative
hydrogen ions to survive for longer duration.

Early on, Wildt had foreseen that because of the pres-
ence of hydrogen atoms and electrons, in large numbers,
in the upper atmosphere of Sun, H− would form. He
had also realized that photo-detachment of H− would
contribute greatly to solar opacity, since radiation from
Sun would be attenuated as they photo-ionize H− ions
on their way out24−26.

At this juncture, Chandra and his collaborators played
an important role in calculating H− photo-absorption
matrix element, so crucial for estimating the quantum
probability (and, therefore, the cross-section) of photo-
ionization of H− 27−33. The opacity or the optical depth
is proportional to the photo-absorption cross-section σ as
well as n, the number density of H−. This is because, the
number of photo-ionizations per photon per unit time is
c n σ, so that the mean free path length for photons is
simply,

l =
1

n σ
.

The optical depth essentially is the ratio of the geomet-
rical path length traversed by the radiation to mean free
path length l (i.e., it is the number of absorptions suffered
by the photons on an average).

The negative hydrogen ion has only the ground state as
a bound state, with no singly excited states. As a result,
photons with energy above 0.75 eV, executing random
walks out of Sun due to multiple scatterings, would be
absorbed by H− ions after detaching their extra electrons
to the continuum. This is the dominant cause for solar
opacity in the infra-red to visible range of the electro-
magnetic spectrum.

In 1943, Chandrasekhar and Krogdahl drew attention
to the fact that dominant contribution to this matrix
element comes from the wavefunction at large distances
(several times the Bohr radius), and therefore an accurate
knowledge of electronic wavefunction of H− was required
27.

Chandra and his collaborators made seminal contribu-
tions towards calculating the continuous absorption coef-
ficient κλ of H− as a function of the photon wavelength λ,
incorporating dipole-length and dipole-velocity formulae,
that provided a solid theoretical foundation for the char-
acteristic κλ - λ plot which exhibits a rise in the range
4000 to 9000 angstroms and then drops to a minimum at
16000 angstroms, with a subsequent rise 34.

The charged hydrogen ion has also played an important
role in cyclotrons and particle accelerators 35. The ad-
vantages in making use of H− arise out of the possibility
of accelerating them by applying electric fields and ob-
taining hot neutral beams in Tokamaks (like in ITER)36.
This is because of the relative ease in detaching its extra
electron when H− ion is present in the gas cells.

V MAGNETOHYDRODYNAMICS

Astrophysical entities are usually permeated with mag-
netic fields, be it planets like earth, Jupiter, etc., Sun,
sunspots, stars, flares, spiral arms of Milky Way, galax-
ies, and so on. Magnetic field in a conducting medium
like metal or plasma decays due to Ohmic dissipation.
So, how does terrestrial magnetic field, generated by the
electric currents flowing in the molten, conducting and
rotating core of Earth, prevent itself from Ohmic decay?

Dynamo theories involving differential rotation and
convection in conducting fluids are invoked to solve this
conundrum. However, Cowling had proved that magne-
tohydrodynamical flows with axisymmetric geometry will
always entail a decaying magnetic field 37. About two
decades later, Backus and Chandra generalized Cowling′s
theorem 38. In this context, Chandra studied the possi-
bility of lengthening the decay duration so that an ax-
isymmetric dynamo provides a feasible explanation for
geomagnetism 39. It was immediately followed by a paper
in which Backus showed that the increase was not large
enough to be of geophysical interest 40. Chandra stud-
ied several fluid dynamical stability problems employing
variational methods that have interesting consequences
41,42.
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An evolved binary system, consisting of a Roche lobe20

filling star, spewing out gaseous matter, and a massive
compact object (MCO) like a neutron star or a black hole
(BH), both going around the common centre of mass,
very often acts as a luminous source of high energy pho-
tons. In such a binary system, gas leaking out from the
bloated star cannot radially fall on the MCO as it has
angular momentum. Instead, it spirals inwards, form-
ing an accretion disc around the MCO so that each tiny
gaseous volume element of the disc moves along a circular
Keplerian orbit 43.

For a thin disc with a total mass much less than the
mass M of the MCO, the Keplerian speed v(r) of a fluid
element at a distance r is given by,

v(r) =

√

GM

r
, (3)

Eq.(3) implies that the fluid elements of the accretion
disc rotate differentially. Farther the element from the
MCO, lower is its circular speed. Differential rotation
leads to viscous rubbing of neighbouring fluid elements at
varying distances, causing the accretion disc to heat up.
If the disc is sufficiently hot, it emits copious amount of
electromagnetic radiation with a spectrum ranging from
visible wavelengths to UV photons and X-rays.

There are strong observational evidences that the
rapidly time varying, intense X-ray sources, like Cygnus
X-1, are accreting black holes (see section VII). Essen-
tially, the gravitational potential energy of the gas spi-
ralling in, gets converted into radiative energy at the rate
corresponding to a luminosity of,

L = ǫ
GMṁ

rmin
, (4)

where ṁ, rmin and ǫ are the rate of mass accretion, min-
imum distance reached by the infalling gas and an effi-
ciency factor for the conversion of gravitational energy to
radiation, respectively. The importance of accretion on
to compact objects is evident from eq.(4), since source
luminosity is larger for smaller values of rmin. Similarly,
a luminous source requires larger rates of accretion and
higher conversion efficiency.

For the efficiency factor ǫ to be large, the accretion disc
is required to have a high viscosity. The physics of the
mechanism responsible for large viscosities in the disc is
an active area of research. Interestingly, as shown by Bal-
bus and Hawley in 1991, the Chandrasekhar instability
might be the key to the origin of accretion disc viscosity
44. Chandra had pointed out that a differentially rotat-
ing, conducting and magnetized incompressible fluid in
a cylindrical configuration, is unstable with respect to
oscillating axisymmetric perturbations 41.

While investigating Rayleigh-Benard convection in
conducting and viscous fluids threaded with magnetic
field, Chandra studied the onset of convection and its de-
pendence on a dimensionless number Q, representing the

square of the ratio of magnetic force to viscous force 41.
Today, this number Q is referred to as Chandrasekhar
number (or, also as the square of Hartmann number).
Chandra made several other contributions in the field of
plasma physics and magnetohydrodynamics that had far
reaching consequences 45.

VI CHANDRASEKHAR-FRIEDMAN-SCHUTZ

INSTABILITY

While studying self-gravitating and rotating fluid con-
figurations, Chandra showed that a uniformly dense and
uniformly rotating incompressible spheroid is unstable
because of non-radial perturbations, causing emission of
gravitational radiation 46. According to Einstein’s gen-
eral relativity, the curvature of space-time geometry man-
ifests as gravitational force. Gravitational radiations are
wave-like perturbations in the space-time geometry that
propagate with speed of light, general relativity being a
relativistic theory of gravitation. Gravitional waves are
radiated whenever the quadrupole moment of the mass
distribution in a source changes with time. Friedman and
Schutz extended Chandra’s findings in 1978, and demon-
strated the existence of gravitational wave driven insta-
bility in the general case of rotating and self-gravitating
stars made of perfect fluid 47.

A physically intuitive way to understand this
Chandrasekhar-Friedman-Schutz (CFS) instability is to
look at a perturbation mode in a rotating star that is ret-
rograde, i.e. moving in the backward sense relative to the
fluid element going around. According to general relativ-
ity, the space-time geometry around a rotating body is
such that inertial frames are dragged along the direction
of rotation (This has been recently verified by the Gravity
Probe B satellite-borne experiment 48). The frame drag-
ging, therefore, would make the retrograde mode appear
prograde to an inertial observer far away from the star.
Gravitational waves emitted by this mode will carry pos-
itive angular momentum (i.e. having the same sense as
the angular momentum of the fluid element) as measured
in the distant inertial frame. Since, the total angular
momentum is conserved, gravitational radiation carrying
away positive angular momentum from the mode, would
make the retrograde mode go around more rapidly in the
opposite direction, leading to an instability.

Andersson in 1998 showed that a class of toroidal per-
turbations (the so called r-modes) in a rotating star are
generically unstable because of the gravitational wave
driven CFS instability 49. Close on heels, it was demon-
strated that the r-mode instability would put brakes on
the rotation of a newly born and rapidly spinning neutron
star 50,51. Consequently, as the neutron star spins down,
a substantial amount of its rotational energy is radiated
away as gravitational waves, making it a likely candidate
for future detection by the laser interferometric gravita-

Volume 28, Number 1, Article Number 2 www.physedu.in



Physics Education 5 Jan-March, 2012

tional wave detectors, namely, the LIGOs 52,53. The CFS
instability may soon be put to experimental tests.

VII BLACK HOLES AND GRAVITATIONAL

WAVES

In his book on black holes (BHs), Chandra called the
astrophysical BHs the most perfect macroscopic objects
54. Things macroscopic - like chairs, books, computers,
etc. around us, require an astronomically large num-
ber of characteristics each for their description. For in-
stance, just to specify a suger cube would need not only
its mass, density, temperature, but also amount and na-
ture of trace compounds present, the manner in which
sugar molecules are stacked, porosity, surface granular-
ities, etc . On the other hand, a BH is characterized
by just three physical quantities - its mass, charge and
angular momentum.

Schwarzschild BHs do not possess charge or angular
momentum, while Kerr BHs rotate but have no charge.
On the other hand, Reissner-Nordstrom BHs have charge
but do not rotate. Kerr-Newman BHs are theoretically
the most general ones, as they possess non-zero mass,
charge and angular momentum. Astrophysical black
holes are all likely to be Kerr BHs since charge of a
BH would get neutralized by the capture of oppositely
charged particles present in the cosmic rays and other
ambient matter, and since most cosmic objects possess
angular momentum. Chandra was particularly fascinated
by the stationary, axisymmetric vacuum solutions of Ein-
stein equations that described the Kerr BHs.

BHs are characterized by a fictitious spherical surface
called the event horizon centred around the point sin-
gularity created by the collapse of matter. Nothing can
escape from regions enclosed within the event horizon.
For a Schwarzschild BH of mass M , the radius of the
event horizon is given by the Schwarzschild radius,

Rs =
2GM

c2
= 3 × 106

(

M

106 M⊙

)

km . (5)

But do BHs exist? Classical BHs by themselves do
not radiate. Hawking radiation, which is of quantum
mechanical origin, from astrophysical BHs, is too minis-
cule in amount to be of any observational significance
55. So, how does one find BHs in nature? In conven-
tional astronomy, their detection relies on the presence
of gas or stars in their vicinity and the ensuing stellar or
dissipative gas dynamics around an accreting MCO. As
discussed in section V, if the MCO has an accretion disc
around it like in galactic X-ray sources, quasars, blazars
or radio-galaxies, the swirling and inward spiralling gas
gets heated up, emitting radio, optical, UV and X-ray
photons, often accompanied by large scale jets 56.

If gas can spiral down to a distance rmin = α Rs from
the central BH, then according to eqs. (4) and (5) the

radiation luminosity is given by,

L =
0.5ǫ

α
ṁc2 . (6)

The real parameter α quantifies the proximity to the cen-
tral BH. Eq.(6) tells us that accretion taking place close
to the event-horizon can convert an appreciable fraction
of rest energy mc2 of the inflowing gas. Higher the accre-
tion rate ṁ, larger is the luminosity L. (Provided that
fluid viscosities in the disc are large enough, as discussed
in section V.)

The central engine for a quasar or a blazar is, in all
likelihood, an accreting supermassive BH with M lying
in the range 107- 109 M⊙

56. Invoking eq.(6) with suffi-
ciently large accretion rates for blazars, one can theoret-
ically explain high luminosities (at times, exceeding 1048

erg/s) observed in these sources.
Quasars and blazars also exhibit fluctuating X-ray lu-

minosities on time scales of only few hours. One can
derive an upper limit for the size of the central engine
from causality arguments. If the observed time scale over
which the luminosity varies accreciably is ∆t, the size of
the source participating in emission of photons cannot
be larger than c∆t. This is because, firstly, every part
of the entire region must be causally connected to each
other and, secondly, special relativity tells us that parts
of the region can physically communicate with each other
(to remain in causal touch) only with speeds ≤ c. X-ray
variability on time scales of an hour corresponds to a
causal size ≤ 109 km. Now, from eq.(5), a BH of mass
3×108 M⊙ has a Schwarzschild radius of about 109 km.
Short time fluctuations and central engines involving gas
dynamics close to the event horizon of BHs, fit together
neatly.

Observational evidence for accreting super-massive
BHs comes not only from short time variability of X-ray
fluxes but also from the details of the continuum spectra
(e.g. presence of the big blue bump in quasar spectra)
observed in these active sources. Hence, quasars, blazars
and powerful radio-galaxies are most probably distant
galaxies housing acccreting supermassive BHs with mass
in excess of 106 M⊙ in their central regions 56.

Similarly, by monitoring stellar dynamics around the
central region of Milky Way for decades, one infers that
the Galactic nucleus contains a heavy and compact ob-
ject, most likely to be a supermassive BH with a mass
of about 4 × 106 M⊙, within a radius of 1013 km from
the Galactic Centre 57. It is interesting to note that the
Chandra X-ray observatory (launched on July 23, 1999,
and named after S. Chandrasekhar) revealed the presence
of a X-ray source as well as hot gas with high pressure
and strong magnetic field in the vicinity of the Galactic
Centre.

However, these are indirect detections, implying
strictly speaking the presence of a very compact, mas-
sive central object. Inference of an astrophysical BH,
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although very likely, relies on theoretical interpretation.
What happens when a BH is perturbed by incident grav-
itational waves or electromagnetic radiation or Dirac
waves describing electrons or neutrinos? Does a per-
turbed BH have a signature emission like a ‘ringing′,
analogous to the case of a struck bell? To answer such
questions, Chandra devoted himself to studying BH per-
turbations from 1970s onwards 54,60−67.

When a BH is perturbed, the curved space-time ge-
ometry around the BH will be subjected to metric fluc-
tuations. For sufficiently small perturbations, a linear
analysis of the metric fluctuations can be carried out
in terms of normal modes except that dissipation due
to both emission of gravitational waves as well as their
absorption by the BH make the mode frequencies com-
plex, with the decay reflected in the imaginary parts.
In the case of a perturbed BH, such quasi-normal modes
(QNMs) correspond to a characteristic ringing that even-
tually decays due to dissipation.

QNMs were discovered by Vishveshwara 58 and Press
59 while studying gravitational wave perturbations of
BHs. Chandra and Detweiler suggested for the first time
numerical methods for calculating the QNM frequencies
62 . Such investigations throw light on methods for di-
rect detection of BHs. For example, matter falling into
a Schwarzschild BH would lead to excitation of QNMs,
resulting in emission of gravitational waves with a char-
acteristic frequency that is inversely proportional to the
BH mass.

One can understand this dependence from simple di-
mensional analysis. QNMs would involve perturbations
of the event horizon characterized by the Schwarzscild
radius Rs (eq.(5)). So, the oscillation wavelengths would
be typically of a size proportional to Rs, making the fre-
quencies depend inversely on the BH mass. A supermas-
sive BH with mass 106 M⊙ would ring with a frequency
of about 10−2 Hz. Because of seismic noise, LIGOs can-
not detect gravitational waves having such low frequen-
cies. Only a space-based gravitational wave detector like
LISA (Laser Interferometer Space Antenna) can pick up
such low frequency signals from supermassive BHs 53,70.

Chandra developed innovative techniques to study BH
perturbations, and showed that radial and angular vari-
ables could be decoupled to obtain separable solutions for
Dirac equation in Kerr background, corresponding to a
massive particle (like an electron) 62. Using similar tech-
niques, Don Page extended the separation of variables for
massive Dirac equation to the Kerr-Newman case 68. In
1973, Teukolsky had separated the Dirac equation for two
component massless neutrinos in the Kerr background 69.
It will be interesting to investigate if Chandra′s technique
can succeed in separating the Dirac equation for massive
neutrinos (with flavour mixing and massive right-handed
components included) in the Kerr or Kerr-Newman back-
ground.

Kerr BHs possess ergosphere, a region surrounding the

event-horizon where test particles with negative angular
momenta (i.e. with reverse sense of rotation relative to
BH rotation) can have negative energy (as measured by
a distant inertial observer) orbits. Penrose, in 1969, had
shown an ingenious way to extract rotation energy of a
Kerr BH that involved sending an object that breaks up
into two in the ergosphere, with one of the parts going
into a negative energy trajectory, while the other escap-
ing with an energy greater than the initial energy (since
energy is conserved) 71.

The wave analogue of Penrose process is superradi-
ance wherein impinging scalar, electromagnetic or gravi-
tational waves emerge out with greater energy after scat-
tering off Kerr BHs. Zel′dovich was the first to show the
existence of superradiance in 1970 72. Chandra and De-
tweiler undertook a thorough investigation of scattering
of electromagnetic, gravitational and neutrino waves in
the Kerr background, and showed that neutrinos do not
exhibit superradiance 73. Absence of neutrino superradi-
ance is most likely due to PEP 73−76.

Exact solutions of two plane gravitational waves col-
liding with each other were obtained for the first time
by Szekeres 77 as well as Khan and Penrose 78. Their
work showed that due to mutual gravitational focusing,
the collision leads to curvature singularity where grav-
ity becomes infinite. Chandra, along with Valeria Ferrari
and Xanthopoulos, showed that the mathematical theory
of colliding gravitational waves can be cast in the form
of mathematical theory of BHs, and that the formation
of curvature singularity due to gravitational focusing is
generic 79−82.

In the later years, Chandra and Valeria Ferrari stud-
ied non-radial oscillations of rotating stars taking into
account general relativistic effects 83−85. They showed
that the oscillations could be described in terms of pure
metric perturbations, reducing the problem to scatter-
ing of gravitational waves in curved space-time geometry.
For strongly gravitating objects like neutron stars, such
gravitational waves may get trapped inside due to deep
gravitational potential well, leading to trapped modes
that survive for long durations.

In 1983, Chandra was awarded the Nobel prize in
Physics. His method of studying diverse astrophysical
topics involved applying physical theories that had been
corroborated experimentally, and then subjecting the rel-
evant equations to rigorous and innovative mathematical
analysis. No wonder that most of the new results he
obtained were later confirmed by observations.
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Abstract 

Time plays a peculiar role in quantum mechanics. What makes this concept so interesting is the question 

"what can quantum mechanics tell us the about the nature and role of time?" and conversely, "what can 

time tell us about the structure of quantum theory?" In standard quantum mechanics probabilities are 

assigned to measure the outcomes of a given observable at a given moment of time. Time enters the 

Schrodinger equation as an external parameter, and not a dynamical variable. It is not a standard quantum 

mechanical observable. But in concepts such as the time of arrival , the time-energy uncertainty relation , 

tunneling time , and time in quantum gravity , time can no longer be viewed as a mere parameter. This 

survey explores various attempts made in order to treat time as a dynamical variable (observable) and 

hence measure it. 

. 

 

 

I. Introduction 

What is time? This is a very old philosophical 
question. Even Einstein had a hard time answering 
this question, but in spite of that, we can measure 
time more accurately than any other quantity. 
Atomic clocks are the most accurate timepieces 
ever made, and are essential for such features of 
modern life as synchronization of high speed 
communication and the operation of the Global 
Positioning System (GPS) that guides aircraft, cars 
and so on."  

 
The role of time is a source of confusion and 
controversy in quantum mechanics [1]. In the 
Schrodinger equation time represents a classical 
external parameter, not a dynamical variable. The 
time measured in experiments, however, does not 
correspond to an external parameter; it is actually 
an intrinsic property of the system under 
consideration, which represents the duration of a 
physical process; the life time of unstable particles 
is a well-known example. Quantum mechanics 

was initially formulated as a theory of quantum 
micro-systems interacting with classical macro 
systems [2]. Quantum mechanics allows the 
calculation of dynamical variables of systems at 
specified instants in time using the Schrodinger 
equation [3]. The theory also deals with 
probability distributions of measurable quantities 
at definite instants in time [4]. The time of an 
event does not correspond to a standard 
observable in quantum mechanics [5].  
 
Asking the question of when a given situation 
occurs, time is no longer an external parameter. 
Time, in such a situation, becomes dynamical. 
However, such a time observable does not have 
the properties of a "standard" quantum mechanical 
observable. This research is dedicated to exploring 
various attempts made in order to treat time as a 
dynamical variable (observable). All attempts use 
essentially one of two approaches, namely those of 
direct and indirect the measurement of time. 
Direct approaches use theoretical toy model 
experiments while indirect approaches are of 
mathematical nature. The controversy of time 
arises in the time of arrival concept, the search for 
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a time operator, the time-energy uncertainty 
relation and the tunneling time. A very important 
issue as well is the role of time in the context of 
quantum gravity. The problem of time in quantum 
gravity also opens the door to the ever-lasting 
question: what is time?  
 

To determine the time of arrival or the tunneling 
time, the measurement of the required quantities 
must always be done, directly or indirectly. The 
notion of measurement emerges from 
interpretations of quantum mechanics, however 
the time problem arises in all of them. The 
interaction of a quantum Microsystems with a 
classical macro system is described in terms of 
quantum measurements [2]. As time is treated as 
an external parameter in standard quantum theory, 
quantum observation theory talks about 
observations made at given instants in time [3]. 
The system in standard quantum theory interacts 
with a measuring device through the time 

dependent interaction Hamiltonian. Quantum 
mechanics is actually designed to answer the 
question "where is a particle at time t?" In 
standard quantum mechanics, the probability 
corresponds to a measurement result of a particle 
being at a given location at one specific time. The 
above mentioned micro-system is taken to be in a 
superposition of states of its variables. Suppose 
the macro-system interacts with one of the micro-
system's variables, then the macro-system only 
sees one of the many possible values of the 
variable [2]. The interaction itself projects the 
state of the micro-system into a state with the 
given value. In terms of wave-functions, the 
interaction (act of measurement) causes the wave-
function of the Microsystems (a superposition of 
states) to "collapse" into one state with a specific 
value (eigenvalue). Dirac mentioned that the 
superposition is one of two most important 
concepts in quantum mechanics; the other one is 
Schrodinger equation [6].    Even though several 
alternative interpretations have been devised 
(Bohm, many- worlds, etc.), they all have one 
problem in common: how can the exact time at 
which a measurement occurs be determined? 

Rovelli [2] illustrates how the problem of time 
arises in each interpretation. If a system is viewed 
as having a wave-function which collapses during 
a measurement, is the collapse immediate? If a 
system is viewed in terms of values of its 
dynamical variables which become definite when 
observed, how to determine exactly when this 
occurs in an experiment? If a system's wave-
function is taken a branch, when does this occur? 
If a wave-function does not branch and the 
observer selects one of its components and sticks 
with the choice, when does the selection occur? If 
there exists probability for sequences of events to 
happen, when does such an event occur? The 
above questions indicates the universality and 
challenging concept of time. In section II, The 
concept of time of arrival, in the context of 
quantum mechanics is discussed. The issue of time 
arises also in Heisenberg's time-energy uncertainty 
relation (section III). This relation has direct 
consequences to defining a time operator. Another 
important concept is tunneling time (section IV). It 
is purely quantum mechanical phenomenon with 
no classical analogue. Many of the ideas president 
in the context of the time arrival can be carried 
over to tunneling time. In section V, we review 
some attempts to set up the time operators. Last 
but not least the, problem of time in quantum 
gravity is outlined, where time, if it is a 
fundamental variable, must also be a dynamical 
variable. Quantum gravity has the interesting 
feature that the philosophical question of what 
time actually is raised (section VI). If one would 
know what time is fundamentally, then perhaps 
the problems encounter in determining time in 
quantum mechanics could be solved, as one would 
then know what one is actually looking for. In 
what follow, we only highlight the subjects, and to 
understand more each part needs to be explored in 
details. Another approach to the time problem is 
the decoherent histories approach to quantum 
mechanics [7, 8, 9, 10]. This formalism makes use 
of the fact that what one considers to be a closed 
quantum system, is never completely closed, as 
there always is an interaction present with the 
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environment. The Brownian motion model is the 
main idea presented in this context [7].  

II. Time of Arrival (TOA)  

II. 1. Time of Arrival in Classical Mechanics  

The basic question to answer is, can the exact time 
be measured at which a particle arrives at a 
specified point? Taking a beam of free particles, a 
measurement needs to be done to find the time of 
arrival at the specified point x = x1. An experiment 
can be constructed which involves a clock 
positioned at the point x = x1 This clock will turn 
itself off when a particle reaches x1. In classical 
mechanics the time of arrival can be measured in 
this way with extreme accuracy, as the non-
vanishing interaction between the particle and the 
clock is very small. The time of arrival can also be 
measured indirectly in classical mechanics. The 
equation of motion of the particle is inverted to get 
time as a function of location x and momentum p:  
 

T1 ( x (t ) , p (t ) , x1 )                        (1) 

This can be evaluated at any time t by measuring 
p(t) and x(t) simultaneously. Classically direct and 
indirect measurements are completely equivalent. 
Both methods give exactly the same result [11]. 
Muga et al [12] give an example of a particle 
moving in one dimension with position q and 
momentum p. The particle's trajectory might cross 
a given point X only once if no reflection 
mechanism is present. If a potential barrier is 
introduced, it can reflect the particle's trajectory 
and cause it to cross the point X more than once. 
The first passage time is defined as the first 
crossing of the trajectory of the point X. 
Considering ensembles of non-interacting 
particles, Muga et al state that a distribution of 
times is associated with the nth passage given by 
the nth crossing. A phase space distribution 
F(q,p,t) can be used to describe an ensemble of 
free moving, non-interacting particles. The 
distribution is normalised to one and is defined 
such that it only considers particles moving 
towards the right: F (q, p � 0) = 0. The particle 
trajectories cross the point X only once and a 

current density J(X, t) at X and time t (probability 
flux) gives the distribution of the first passage 
arrival times. Let J(X, t) dt be the fraction of 
particles which cross X between t and t+dt. 
Defining  

J(X,t) = � ��
��  (X,p,t)

�
� 	
                     (2) 

and the trajectory equation q(t) = q0 + 
��
�  , the 

average time for free motion is given by  

�
��, ���	� � �����, 
, 0� �� � ����
� 	��	
 

The integral is well-defined if F cancels the 

singularity. 

  

II.2. Time of Arrival in Quantum Mechanics  

The time of arrival problem in quantum mechanics 
arises by turning around the question: "at what 
time is the particle at a specified location?" 
Attempts to answer this question raise several 
problems which lead to ambiguous answers. The 
best way to illustrate this is through a simple 
example [5]:  

Consider a N-particle ensemble. The aim is to 
measure the time at which a particle is located at 
the point x. A simple way of doing this would be 
to consider a detection process where the detector 
is switched on by each particle only at a given 
time t=T. Then this process is repeated on a 
second ensemble at t = T1 and so on. The 
probability of finding the particle 

 
2

( , )x t Tψ =
 
and   

2
( . Tx T N nψ =

      
(4) 

 
is the average number of particles found at 
position x at time t =T. Unfortunately, (4) does not 
represent a probability as it is not normalised 
properly. To overcome this problem consider  

2

21 1

( .

( .

x t

x t dt

ψ

ψ∫
                                      (5) 

However, to be able to use this equation, the state 
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ψ (x,t) must be known at all times in the past and 
in the future. The reason for the problem is that 
the particle could be at the point x at several times. 
For example, if the particle is found at point x at 
time tl with probability one, it is not possible to 
say that the particle was not at x at all other times.  
To try to overcome the above mentioned difficulty 
the measurement of the time of arrival of a particle 
at a given point seems a good candidate, as a 
particle can arrive only once at a given location. 
To measure the time of arrival of a particle, it 
must be possible to be able to detect it at a given 
point, as well as knowing that is was not there 
before the measurement takes place. This requires 
a continuous monitoring of the point of arrival. 
Now the problem arises that the probability of 
detecting a particle at a time t = tl is not 
independent of detecting it at t = t2. In 
mathematical terms the projections onto the arrival 
position x, denoted by the projection operator Px, 
at given times tl and t2 will not commute:  

����t��, ���t�� ! 0 

This means that the measurements that are done at 
different times do not commute and disturb one 
another. This also means that (5) is not a 
probability distribution in time.  

III. Uncertainty Principles  
 
III.1. Introduction  

In trying to change time, as the classical external 
parameter, into an observable, one cannot deduce 
the time-energy uncertainty relation:  

2
t E∆ ∆ ≥ h

;                                           (7) 

where     t = time     ,   E = energy from 
kinematical point of view, as time does not belong 
to the algebra of observables [12]. In spite of this, 
(7) is generally regarded as being true. The 
relation (7), unlike other canonical pairs, is not the 
consequence of fundamental quantum in-
complementarity of two canonical variables. The 
time-energy uncertainty relation is very different 
to the standard quantum uncertainty relation, such 

as the position momentum one. The precise 
meaning of the time-energy relation is still not 
exactly known. The problem lies in the fact that 
one cannot give the precise meaning to the 
quantity t . This is because time is not a standard 
quantum mechanical observable associated with 
an Hermitian operator. If such an operator 
canonically conjugate to the Hamiltonian did 
exist, then, t could be defined conventionally and 
the uncertainty principle could be applied to the 
physical quantity corresponding to the time 
operator.  

III.2. Quantum Mechanical Uncertainty  

In classical mechanics any quantity can be 
measured to an arbitrary precision In quantum 
mechanics the same is possible by preparing a 
quantum system in a well defined state of position 
and hence perform a measurement which reveals 
where the particle is located very accurately. The 
difference from classical mechanics arises when 
the values of two different observables are desired 
to be determined. In classical mechanics there is 
no reason why two quantities cannot be measured 
with high precision. In quantum mechanics only 
compatible (commuting) observables can be 
measured simultaneously. In general the 
uncertainties in measurements of two observables 
obey the uncertainty relation, which creates a 
lower bound on the product of the individual 
uncertainties, which is not equal to zero. For any 
two observables "# and $%  , their uncertainties                                

 
∆�% = '〈�%�〉 � 〈�%〉�*1/2 

are used to derive the uncertainty relation [13 ]: 

∆"#∆$% + |〈�	.%,/% 〉|
�                        (8) 

An important fact that should be noted is that the 
uncertainty.	∆�% of an observable �% is an intrinsic 
property of any quantum state .  
 
III.3. Heisenberg's Uncertainty Principle  

 The uncertainty principle expresses the physical 
content of quantum theory in a qualitative way 
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[13]. The uncertainty principle was first proposed 
by Heisenberg in 1927. It basically states that is 
not possible to specify exactly and simultaneously 
the values of both members of a pair of physical 
variables which describe the behavior of an atomic 
system. In a sense the principle can also be seen as 
a type of constraint. The members of a pair are 
canonically conjugate to each other in a 
Hamiltonian way. The most well known example 
is the coordinate x of a particle (position in one 
dimension) and its corresponding momentum 
component Px:  

∆0∆
1	 + h

2 																				�9� 
Another example is the angular momentum 
component Jz of a particle and the angular position 
4 in the perpendicular (x,y) plane: 

∆4∆56 + h                    (10) 

 In classical mechanics these extreme situations 
complement each other and both variables can be 
determined simultaneously. Both variables are 
needed to fully describe the system under 
consideration. In quantum theory, Eqn. (9) states 
that one cannot precisely determine a component 
of momentum of a particle without loosing all 
information of the corresponding position 
component at a specific time. If the in- between 
extremes case is considered, the product of the 
uncertainty in position and the uncertainty in the 
corresponding momentum must numerically be 
equal to, at least, h /2 

  To understand the physical meaning of the 
uncertainty principle, Bohr in 1928 stated the 
complementary principle. This principle shows the 
fundamental limits on the classical concept that a 
system's behaviour can be described 
independently of the observation procedure. The 
complementary principle states that "atomic 
phenomena cannot be described with the 
completeness demanded by classical dynamics" 
[13]. Basically the principle states that 
experimental apparatus cannot be used to 
determine a measurement more precisely than the 
limit given by the uncertainty principle. In a sense 

when a measurement is done to determine the 
value of one of a pair of canonically conjugate 
variables, the second variable experiences a shift 
in value. This shift cannot be calculated exactly 
without interfering with the measurement of the 
first variable  
 
III.4. The Relation of the Uncertainty Principle to 

a Time Operator 

 Bohr also realized that the two uncertainty 
principles (9) and (7) can be interpreted in two 
different ways; the first is as limitations on the 
accuracy of a measurement and  the second is as 
statistical laws referring to a large sequence of 
measurements. The difficulty in giving meaning to 
the relation (7) is due to the quantity	∆�. In the 
way it is interpreted above, the uncertainty relation 
(7) implies the existence of a self-adjoint operator, 
canonically conjugate to the Hamiltonian 78 , 
which itself is self-adjoint. If this time operator 9%  
exists, then the quantity Dt can be interpreted in 
the same way as Dx or Dpx and the uncertainty 
principle can be applied to the physical 
observable corresponding to T. To obtain the 
uncertainty relation for energy and time, the 
commutator of the Hamiltonian and the time 
operator is assumed to be of the form:  

[78,9% ]= i h                                             (11) 

The form of (11) is such that 9%  and 78  are 
canonically conjugate to each other. It also implies 
that both operators have a continuous spectrum. 
This in turn means that neither of the two can be a 
Hamiltonian, as such an operator is defined to 
have a semi- bounded spectrum. From this line of 
reasoning the supposed time operator 9%  cannot 
exist. This problem is encountered when one uses 
(11) to derive the uncertainty relation (7) in the 
same way as (9) is derived from [0:, 
̂] = i h  [14]. 

IV. Tunneling Time 

In quantum tunneling, a part of a particle's wav-
function has a significant probability of being 
transmitted a potential barrier, even if its energy is 



Physics Education                                                                                                                                       Jan-Mar 2012 

 

Volume 28, No.1 Article Number : 3.                                                                                                  www.physedu.in  

less than the energy of the top of the barrier [15]. 
This is not true classically, hence tunneling is a 
purely quantum phenomenon where a particle has 
the probability of moving through classically 
forbidden regions. The transmission probability of 
a particle's wav eigenfunction is calculated from 
the time-independent Schrodinger equation. The 
problems arise when time dependence is required. 
The root of the problem of time dependence lies in 
the uncertainty relation. However, the 
fundamental problem is that in quantum 
mechanics, there exist no real physical paths along 
which a particle moves. This problem seems a 
logical basis to employ the method of Feynman 
path integrals, which are virtual paths in 
configuration space [16]. The path integral 
approach to the tunneling time , yielding a 
complex time, is due to Sokolovski and Baskin 
[17] . 

The question "how long does a particle spend a 
potential barrier?" has been controversial for many 
years [18] (for an extensive review see [19]. Part 
of the controversy lies in the fact that in tunneling 
processes only a particles tunnel, so one cannot 
discuss the entire ensemble. Over the years there 
have been many different approaches to calculate 
tunneling time; among them are  the path integral 
approach, physical clock gedanken experiments, 
and consistent (decoherent) histories approach. 
There have also been attempts to use interactions 
of wave-packets with the barrier [15]. Yamada 
[16] studies the tunneling time problem using the 
decoherent histories approach to quantum 
mechanics to define the probabilities for histories. 
To minimize the interference, such that 
probabilities can be assigned to histories, Yamada 
uses the weak de coherence condition, where only 
the real part of the decoherence functional is 
required to vanish. Along with the decoherence 
condition, he [20] imposes that the initial 
condition satisfies the decoherernce condition as 
well. 
Attempts to construct a Time Operator   

Standard quantum theory, as proposed by Pauli 
[21], requires that measurable quantities 

(observables) are represented by self-adjoint 
operators, which act on the Hilbert space of 
physical states [4]. The probability distribution of 
the measurement outcomes of an observable are 
obtained as "an orthogonal spectral decomposition 
of the corresponding self-adjoint operator" [4]. 
The indirect measurement of time basically is the 
quest of finding a self-adjoint operator whose 
eigenstates are orthogonal. As the time operator is 
one of the canonically conjugate pair of time and 
energy, the time operator must be defined in such 
a way as to preserve the semi bounded spectrum 
of the Hamiltonian. Pauli pointed out [2 L] that the 
existence of a self-adjoint time operator is 
incompatible with the semi-bounded character of 
the Hamiltonian spectrum. By using a different 
argument based on the time-translation property of 
the arrival time concept, Allcock has found the 
same negative conclusion [22-24]. The negative 
conclusion can also be traced back to the semi-
infinite nature of the Hamiltonian spectrum. 

  Kijowski [25] tried different approaches to find a 
time operator. He chose to (interpret the 
uncertainty relation (11) in a statistical way. 

Grot, Rovelli and Tate [26] construct a time of 
arrival operator as the solution to the problem of 
calculating the probability for the TOA of a 
particle at a given point. They argue, using the 
principle of superposition, that a time operator T 
can be defined, whose probability density can be 
calculated from the spectral decomposition of the 
wave-function l. y(x) into eigenstates of 	9%  (in the 
usual way). They found an uncertainty relation 
which approaches (11) to arbitrary accuracy. 
Oppenheim, Reznik and Unruh [27] follow the 
method by Grot at al. They used coherent states to 
create a positive operator valued measure 
(POVM).          The standard method to find an 
operator is by using the correspondence principle, 
which states that the corresponding classical 
equations are quantized using specific 
quantization rules. Taking the Hamiltonian of a 
classical system H(p,q) where p and q are 
canonical variables (H,T), where H is the 
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Hamiltonian and T is its conjugate variable. These 
variable satisfy Hamilton's equation:  
 

<=
<� � >7, 9? � 1                            (12) 

where T is the interval of time and the curly 
brackets denote a Poisson bracket. This relation 
can be translated to quantum mechanics through 
canonical quantization. This is a procedure where 
classical expressions remain valid in the quantum 
picture by effectively substituting Poisson 
brackets by commutators:  
 

>7, 9? � �
Ah 	�78, 9%	                              (13) 

In the Heisenberg picture H and T are hence 
interpreted as self-adjoint operators. Further it 
seems natural to require that the time operator 
satisfies an eigenvalue equation in the usual way: 
 

9%���B�.〉 � �.C�.〉					                             (14) 

In all of physics, except in General Relativity, 
physical systems are supposed to be situated in a 
three-dimensional Euclidean space. The points of 
this space will be given by cartesian coordinated r 
= (x, y, z). Together with the time parameter t, 
they from the coordinates of a continuous space - 
time background. The (3 + 1) dimensional space-
time must be distinguished from the 2N- 
dimensional phase space of the system, and space-
time coordinates (r, t) must be distinguished from 
the dynamical variables (qk, Pk) characterizing 
material systems in space-time.  

A point particle is a material system having a 
mass, a velocity and acceleration, while r is the 
coordinate of a fixed point of empty space. It is 
assumed that three dimensional space is isotropic 
(rotation symmetric) and homogeneous 
(translation symmetric) and that there is 
translation symmetry in time. In special relativity 
the space-time symmetry is enlarged by Lorentz 
transformations which mix x and t, transforming 
them as the components of a four-vector.  
The generators of translation in space and time are 
the total momentum P and the total energy H, 

respectively. The generator of space rotations is 
the total angular momentum J. 

It is worth noting that the universal time 
coordinate t should not be mixed with dynamical 
position variables. The important question to ask 
is: Do physical systems exist that have a 
dynamical variable which resembles the time 
coordinate t in the same - way as the position 
variable q of a point particle resembles the space 
coordinate x? The answer is yes! Such systems are 
clocks. A clock stands, ideally, in the same simple 
relation to the universal time coordinate t as a 
point particle stands to the universal space 
coordinate x. We may generally define an ideal 
clock as a physical system which has a dynamical 
variable which behaves under time translations in 
the same way as the time coordinate t. Such a 
variable, which we shall call a "clockvariable" or, 
more generally, a "time-variable", may be a 
pointer position or an angle or even a momentum. 
Just as a position-variable indicates the position of 
a system in space, a clock-variable indicates the 
'position' of a system in time t. In quantum 
mechanics the situation is essentially not different. 
The theory supposes a fixed, unquantized space-
time background, the points of which are given by 
c-number coordinates x, t. The space time 
symmetry transformations are expressed in terms 
of these coordinates.  

Dynamical variables of physical systems, on the 
other hand, are quantized: they  are replaced by 
self-adjoint operators on Hilbert space. All 
formulas of the preceding section remain valid if 
the poisson-brackets are replaced by commulators 
according to 

{,} → �Eh ���	�	,  . 
So, the idea, that t can be seen as the canonical 
variable conjugate to the Hamiltonian, leads one to 
expect t to obey the canonical commutation 
relation [t,H]= ih . But if t is the universal time 
operator it should have continuous eigenvalues 
running from - ∞ to + ∞ and, from this, the same 
would follow for the eigenvalues of any H. But we 
know that discrete eigenvalues of H may occur. 
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From this Pauli concluded [21]: ... that the 
introduction of an operator t is basically forbidden 
and the time must necessary be considered as an 
ordinary number ("c-number"). Thus, the 
'unsolvable' problem of time in quantum 
mechanics has arisen. Note that it is crucial for 
this argument that t is supposed to be a universal 
operator, valid for all systems: according to Pauli 
the introduction of such an operator is basically 
forbidden because some systems have discrete 
energy eigenvalues. From our previous discussion 
it should be clear that the universal time 
coordinate t is the partner of the space coordinates 
x. Neither the space coordinates nor is the time 
coordinate quantized in standard quantum 
mechanics. So, the above problem simply doesn't 
exist! If one is to look for a time operator in 
quantum mechanics one should not try to quantize 
the universal time coordinate but consider time-
like (in the literal sense) dynamical variable of 
specific physical system, i.e. clocks. Since a 
clock-variable is an ordinary dynamical variable 
quantization should not, in principle, be especially 
problematic. One must, however, be prepared to 
encounter the well-known quantum effects 
mentioned above: a dynamical system may have a 
continuous time-variable, or a discrete one or no 
time-variable at all. Recently, some efforts have 
been advanced to overcome Pauli's argument [28]. 
The proposed time operator is canonically 
conjugate to i ∂h rather than to H, therefore Pauli's 
theorem no longer applies. It is argued that "the 
reasons for choosing time as a parameter lie not so 
much in ontology as in methodology and 
epistemology. The time operator idea needs to be 
more explored in an accurate way.  
 

VI. The problem of Time in Quantum 

Gravity 
 VI. l. The basic problem 

 The problem of time is a fundamental concept 
that needs to be considered in quest for a 
consistent theory of quantum gravity [29]. The 
main issue contributing to the problem of time is 
the invariance of classical general relativity under 

space-time diffiomorphism. This means that the 
invariance contradicts the Newtonian image of a 
fixed, absolute time parameter. This situation is 
encountered in all theories, which have a 
classically invariant, reparametrization of time 
[30]. This leads to time disappearing when 
quantizing the theory. This situation comes out to 
the question of what to make of the classical 
Hamiltonian constraint in the quantum version of 
the theory. Basically, if time is a fundamental 
concept, then it must be a dynamical variable of 
the theory. 

As stated above, when quantizing general 
relativity in a canonical way, time seems to have 
no fundamental notion. Isham [29] summarizes 
the key points in four statements: 1. How should 
time re-enter quantum gravity theory? 2. Should 
time be defined classically before quantization? Or 
3. Should it be defined after quantization? 4. If 
time is not the fundamental quantity, which it is 
said to be, how relevant is quantum mechanics 
when dealing with time? The definition of time 
also has a direct effect in quantum cosmology, 
The main problem is the Newtonian concept of 
time, which is replaced by the concept of an 
internal time in many approaches of problem of 
time in quantum gravity. 

The problem of time in quantum gravity arises 
when one wants to quantize general relativity. The 
canonical quantization method involves 
expressing general relativity in Hamiltonian from, 
to then apply a quantization scheme. General 
relativity is a theory with constraints, which 
generate asymmetry. Such theories are invariant 
under the reparametrization of time. The action of 
such a system is invariant under canonical 
transformations. 

 One can proceed to quantize general relativity in 
Hamiltonian from using Dirac's proposal and 
functional Schrodinger quantization to find all the 
information contained in the constraints. Using the 
metric representation of the wave-function, one 
obtains the Wheeler- DeWitt equation. This 
equation shows the absence of time. One way to 
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interpret this is to consider that as general 
relativity is a parametrized theory, physical time is 
already contained amongst the dynamical 
variables. All such theories have H = 0. 
Alternatively, there exists a geometric 
interpretation.  
 
VII. Conclusion and further comments  

This survey explores various ways of defining 
time in standard quantum mechanics and some 
different ways of measuring it. The approaches of 
measuring time yield a whole spectrum of results 
along with a range with a range of difficulties 
encountered. All methods yield results which have 
a strict limit on their accuracy and generality. This 
reflects the quantum nature of the problem.  

The main difficulty in defining a quantum time 
operator lies in non-existence, in general, of a self-
adjoint operator conjugate to the Hamiltonian, a 
problem which can be traced back to the semi-
bounded nature of the energy spectrum. In turn, 
the lack of a self-adjoint time operator implies the 
lack of a properly and unambiguously defined 
probability distribution of arrival time. There are 
two possibilities to overcome the problem. If one 
decides that any proper time operator must be 
strictly conjugate to the Hamiltonian, then one has 
to perform the search for a self-adjoint operator. 
If, on the contrary, one imposes self-adjoint 
property as a desirable requirement for any 
observable, then one necessarily has to give up the 
requirement that such an operator be conjugate to 
the Hamiltonian. The two main equations of 
motion, the Schrödinger and wheeler- Dewitt 
equation, reflect two different presupposed natures 
of time: in the schrödinger equation, time 
corresponds to an external parameter and in the 
Wheeler-deWitt equation there is no time. This 
research explores the concept of trying to tum a 
time parameter into an observable, a dynamical 
variable. Why was time in quantum mechanics 
represented by a parameter in the first place? A 
possible answer is that it is due to our perception. 
It is meaningful, for us, to talk about events 
happening at a certain time. This lets us put events 

into a chronological order in our minds. We do not 
think about an event happening to us. Another 
question is, why does one want time to be an 
observable? One major reason is our notion of 
change: we seem to perceive that time changes. 
Another motivation for the study of time in 
quantum mechanics is the problem of time in 
quantum gravity. Quantum cosmology represents 
an analogy to closed quantum systems, as both 
cosmology and closed quantum systems are 
describing the same type of situation, the 
difference being the size scale. . Saunders states: 
"quantum cosmology is the most clear-cut and 
important failing of the Copenhagen 
interpretation" [31]. Perhaps the lack of 
understanding of time in quantum gravity is due to 
a fundamental reason, based on the two quantum 
gravity components: quantum mechanics and 
general relativity. The problem does not lie in 
general relativity however, so it must be rooted in 
the formulation of quantum mechanics.  

Quantum theory of measurement is based on 
measurements occurring at given instants of time. 
A measurement corresponds to a classical event. 
Dirac said "the aim of quantum mechanic was to 
account for the observables: behavior in the 
simplest possible ways" [6]. Kant [32] held 
Newtonian absolute space and space- time for an 
"idea of reason". Saunders states" In particular, we 
need a global time coordinate' which enters in to 
the fundamental equations; it is no good if this 
involves ad hoc or ill-defined approximations, 
available at only certain length scales or 
cosmological epochs" [33]. His idea of a universal 
definition of time sounds very appealing. Does 
this universal concept of time require the 
reformulation of quantum mechanics? Tunneling 
time might .also be a candidate to shed some light 
on to the mystery of time. Quantum mechanical 
tunneling is "one of the most mysterious 
phenomena of quantum mechanics" and at the 
same time it is one of the basic and important 
processes in Nature, party responsible for our 
existence [34]. The question of the duration of a 
tunneling process is an open problem. 
Experiments to record the tunneling time were 
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motivated by the many different theories trying to 
describe this phenomenon. Questions arise such 
as, "is tunneling instantaneous?","is it subluminal 
or superluminal (faster than the speed of light)?" 
Chiao published a paper with experimental 
evidence that tunneling is superluminal [34]. If 
this is true, what implications does superluminal 
tunneling have on our understanding of the nature 
of . time? What does it mean to say that something 
happens faster than instantaneously?  

Does time undergo a change in nature when it 
"enters" a classical forbidden region? If so, what is 
it and what does it change to?  

In quantum gravity, the evolution of the 
gravitational field does not correspond to 
evolution in physical time. The internal time on a 
manifold i~ not ':l:~ absolute quantity. Barbour 
[35] claims that an instant in time corresponds to a 
configuration and Deutsch, in his interpretation of 
quantum mechanics, claims that a change in time 
corresponds to a change in his interpretation of 
quantum mechanics, claims that a change in time 
corresponds to a change in the number of Deutsch 
worlds [37]. Is it possible that the notion of 
absolute time be a hint towards timelessness? If 
time does not exist then the various different 
formulations of the nature of time only appear 
through our perception and we cannot follow these 
back to a universal truth. Perhaps there does exist 
a universal concept of time, which is far too 
abstract to grasp. Whatever time may be, the time 
discussed in this overview raise various questions, 
which perhaps are trying to point us into .a certain 
direction. Trying to answer questions about the 
concepts of the time of arrival, the time-energy 
uncertainty relation, tunneling time and time in 
quantum gravity show us that perhaps nothing is 
more important than to first of all understand the 
basic building block-time-without which no 
structure can be perfectly built. The problem of 
time still stands to be resolved, the quest for this 
research still continues.  
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I. INTRODUCTION  
 

School teachers teach the Faraday’s and Lenz’s 

theory of electromagnetic induction using equa-

tions, graphs, diagrams, examples and numerical. 

Many students face considerable difficulties in 

understandings the phenomenon using equations. 

Student use equations to calculate some variables 

and numbers as a solution. It is very difficult for 

students to see the importance of each variable and 

constants in a given equations. However physical 

equations have deeper meanings. Equations repre-

sent the relation between various observations and 

measurements. By using simulation based experi-

ments; student can see the important of each vari-

able of equation. Such simulation based teaching 

changes the students view about equations.   Stu-

dents can imagine lot of things just from equa-

tions. Simulation base teaching enhances the visu-

alizations power of students for physical phenom-

enon. Student can solve the practical problems af-

ter simulation based teaching. In this work we in-

vestigate the effectiveness of a role of web based 

computer simulation teaching in electromagnetic 

induction [1, 2, 3].  

 

 

 

http://phet.colorado.edu/
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II. METHOD 

 

The student sample: Sample for this study in-

cluded the 30 students of plane science of higher 

secondary level.  All students are of same rank. 

Simulation based teaching is new thing for them 

[4, 5, 6]. 

Treatments:  Theory based lecture on the fara-

day’s law of electromagnetic induction and its ap-

plications was given to students for six hours; one 

hour daily for six days. Lecture contents are given 

in Appendix A. During lecture care was taken that 

on student should remain absent in any of six lec-

tures. On the seventh day multiple choice question 

tests was taken to check their understanding of 

theory of EMI. Questions were selected from vari-

ous section text books [7]. Test includes total 30 

questions.  It includes equal number of theory, 

conceptual, application based questions. Time al-

lotted to each question is of 2 minutes. After test 

Question papers were collected back from stu-

dents. Students response to this test is given in fol-

lowing table I and response is shown in the figure 

I  

 

 

TABLE I.  Student’s response in the form of write 

and wrong answers before Faraday’s simulation 

lab work 

 

Question type Answers given by all 30 stu-

dents 

Write  

answers 

Wrong  

answers 

Theory based 247 53 

Concept based  198 102 

Application 

based 

168 132 

Total Answers 613 287 

 

 

 
 

FIGURE I.  

      
     

On the same day Faradays lab simulation is played 

on LCd projector in classroom. The information 

about each experiment of simulation was given to 

the students. Demonstration of every experiment 

was given to the students. After it students were 

divided into five groups and they were allowed to 

do the experiment with the faraday’s lab simula-

tion software in computer lab due to limited 

sources. Same multiple choice  question test was 

again taken just after faradays lab simulation ex-

periments. Now answers given by students were 
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evaluated and are given in following table II and response is shown in figure II. 

 

TABLE II Students response in the form of write and wrong answers after Faraday’s simulation lab work 

 

Question type Answers given by all 30 students 

Write answers Wrong answers 

Theory based 290 10 

Concept based 270 30 

Application based 281 19 

Total Answers 841 59 

 
FIGURE II 

 

 

III. FARADAY’S EMI LAB SIMULATION EXPERIMENTS 

Five experiments of EMI LAB SIM are performed by students using carefully design instructions. Snap shot 

of simulation is given in figure III.  

 

Figure III Snap shot of Faraday’s Lab Sim  
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The experiments are; 

III A   Bar magnet; compass and field meter 

experiment: It describes the strength, direction of 

magnetic field of bar magnet at different positions 

near it. This part of simulation is related with the 

following equations 

              

             and      

Instructions 

1. Here you will find a compass and a bar magnet. 

What do the two have in common? 

2. Slowly move the compass around the bar mag-

net. What observations do you make? How can 

you explain what you are witnessing? 

3. Increase and decrease the strength of the bar 

magnet (use slider) and continue to slowly move 

the compass around the bar magnet. What effect 

does changing the magnet’s field strength appear 

to have on the compass? 

4. Place the compass next to the South Pole of the 

bar magnet and press the Flip Polarity button. 

What happens to the magnet and the compass? 

5. Click See Inside Magnet. What do you see? 

6. Click Show Field Meter and move the meter 

around. In what position does B have the greatest 

magnitude? When does it get weaker? 

7. Where is Bx positive? Where is it negative?  

Where is By positive?  Where is it negative?  

8. Place the meter at a location to the left and un-

derneath the bar magnet. What are the Bx, By and 

B Values? Verify the mathematical relationship 

between the three. 

 

IIIB. Bar magnet coil experiment: It describes 

the Lenz’s Faraday’s law of EMI. It describes the 

equation  

  
d

  e
dt


   

Instructions 

1. Here you have a bar magnet and a coil of wire 

attached to an incandescent light bulb. Does the 

coil or the bar magnet appear to be creating the 

magnetic field? How can you verify this? 

2. Click the Show Electrons box off and back on. 

What does it do, visually? 

3. Move the bar magnet around the outside of the 

coil/bulb apparatus. What do you observe happen-

ing to the coil/bulb? 

4. What could possibly explain WHY this is oc-

curring? 

5. Now, move the bar magnet back and forth in-

side the coil of wire. Thoroughly describe and ex-

plain your observations. 

6. Increase and decrease the strength of the bar 

magnet (slider) and repeat. What effect does 

changing the magnet’s strength have? 

7. Set the bar magnet strength at 75% and continue 

to move the magnet. Decrease the number of loops 

to 1, and then increase it to 3. What effect does 

this have? 

8. Replace the incandescent bulb with the Voltage 

meter and return loop # to 3. What happens when 

you move the bar magnet back-n-forth through the 

loop?  Does this appear to be creating a Direct 

Current or an Alternating Current? How 

do you know? 

9. What effect does changing the bar magnet 

strength or the number of loops seem to have on 

the voltage? What combination gives you the 

greatest? 

IIIC Electromagnet experiment: It describes the 

Biot-Savart law and magnetic field produced by 

bar magnet. It is based upon the equation 

0
B NI  

Instructions: 

1. Here you will find a compass and a power sup-

ply (battery) connected to a coil of  wire. What 

effect does the battery appear to be having on the 

wire? 

2. How can you confirm that the battery is, indeed, 

a DC power supply…and not just trust the label by 

the picture? 
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3. What appears to be creating the magnetic field 

being represented here? How can moving the 

compass around confirm that? 

Why do you suppose the magnetic field surround-

ing the compass is not being represented by the 

simulation in this instance? 

4. Does changing the number of loops appear to 

have an effect on the rate of motion of the elec-

trons in the wire? Explain. 

5. Gradually decrease the voltage of the battery 

from 10 V to 5 V. What effects does that appear to 

have on things? 

6. What happens when the voltage is 0 V? 

7. You may have noticed that you can continue to 

slide the voltage bar to the left. What does that do? 

Explain. (Slide bar back-n-forth a couple times to 

confirm). 

8. Press the Show Field Meter button. Set the volt-

age to 10 V. What is the strength of the magnetic 

field inside the coil? 

9. Decrease the voltage to 5 V. What effect did 

that have on the field strength? What kind of rela-

tionship do the two appear to have? 

10. Replace the battery with an AC Current Sup-

ply. What effect does this have on the wire, the 

compass and the magnetic field meter? 

 

IIID. Transformer experiment: It is based upon 

principle of mutual induction and describes the 

following equations. 

 

 and   

 

    

Instructions: 

1. Connect the D.C. source in the first coil and 

fixed its voltage. Note whether emf get in-

duced in the secondary coil or not. Change the 

d.c. voltage continuously and note its effect on 

emf  induced in secondary coil. 

2. Replace DC supply of primary coil by AC 

source. Change the amplitude, frequency of 

AC source and observe its effect on the emf 

induced in secondary coil. 

3. Note the effect on induced emf  if  number of 

loops and area  of secondary coil is changed 

 

IIIE. AC generation experiment: In this simula-

tion rotating bar magnet induces emf  in the fixed 

coil. By changing the area, number of turns of coil 

and rotational speed of bar magnet student can 

change the magnitude of induce emf. It is based 

upon following equations. 

d
  e [n A B cos( t)] 

dt
   

Instructions: 

1. Here you will find a water faucet, a compass, a 

bar magnet on a wheel (turbine), and a coil of wire 

connected to an incandescent bulb. Move the 

compass around a little and determine what it is 

reacting to at this time. 

2. Turn the faucet on, just enough to get about 10 

RPM on the turbine. What effect does this have on 

the compass and the wire/bulb? 

3. Increase the rotation to about 20, 50, even 100 

RPM. What effect does that appear to have on the 

compass, the wire and the bulb? 

4. Increase and decrease the number of loops. 

What effect does this have? 

5. Increase and decrease the bar magnet’s strength. 

What effect does this have? 

6. Replace the bulb with a Voltage Meter. What 

effect does increasing the RPMs have on the 

amount of voltage? 

7. Does the rotating magnet appear to create a Di-

rect or Alternating Current? Explain. 

8. What effect does the number of loops appear to 

have on the voltage? 

9. The moving of this magnet has created an elec-

tric current in the coil, which is being utilized by 

the bulb! Do you know what we call such a de-

vice? What is it? 

10. If we could reverse this process, what would 

we call the device? What would one do to make 

that work? Can you get the simulation to do it? 
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Students can study the importance of each variable 

in every equation of EMI using above simulations 

and instructions.  

 

IV. OUTCOMES OF THE STUDY 

 

After faraday’s simulation lab exercise students 

thinking and approach towards conceptual and ap-

plication based question is changed. Maximum 

student had given correct answers to all questions 

which were not before. Response to theory based 

questions was near about same. This happens due 

to experiment performed by students using simula-

tion. It is possible to do the experiment easily, 

without any risk only due to simulations. Experi-

ments done by students had removed the under-

standing difficulties of the EMI theory.  

 

V.  CONCLUSIONS 

 

Physics lab simulations are effective tools to de-

scribe each difficult concept of physics. Faraday’s 

lab simulation is an easy way to enhance students 

understanding of faraday’s theory of electromag-

netic induction.  
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APPENDIX A  Lecture contents 

 

1. Introduction of EMI phenomenon using 

Magnet-coil and coil-coil experiment 

2. concept of Magnetic flux. Farady’s law of 

EMI And problem of conservation of En-

ergy. 

3. Lenz’s law of EMI. 

4. Proof of Lenz’s law of EMI. 

5. Eddy current 

6. Phenomenon of Self and Mutual induction. 

Concept of back emf. 

7. Transformer construction; working and 

power losses. 

8. AC generation by Rotating coil experiment 
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In this article we solve some quantum mechanics problems using the time-evolution operator
U(t) = e−iHt/~ for a time independent Hamiltonian H. We consider here the time evolution of a
particularly simple system - a two-state system.

We learn in an introductory course in quantum me-
chanics that any physical system (an electron, an atom,
a molecule etc.) has to be described by a state-vector
|ψ〉(t). The most familiar example of a state-vector is a
wave-function, such as that of an electron in a hydrogen
atom. We are also familiar with the state-vector that
describes the spin state of a particle. The simplest ex-
ample is the spin-state of a free electron (or any spin-1/2
particle). The state-vector |ψ〉 in this case is a column
vector of size 2. If this state-vector is known we can cal-
culate the probability of obtaining a result in any mea-
surement on the system, such as, the measurement of
energy or the spin component in a given direction. One
of the basic tasks in quantum mechanics is to determine
the state-vector of the system |ψ(t)〉 at a given instant
of time t, given the the state-vector of the system |ψ(0)〉
at a given instant of time t = 0. One way of doing it is

by solving the Schrödinger equation i~d|ψ(t)〉dt = H|ψ(t)〉.
Another equivalent way of doing this is by using the time-
evolution operator U(t) = e−iHt/~. This is physically
more intuitive because you can think of the change in
state-vector as caused by the action of an operator - you
take |ψ(0)〉 and operate U(t) on it, and you get |ψ〉(t),
that is, U(t)|ψ(0)〉 = |ψ(t)〉. In the following problems
we shall demonstrate this procedure.

The Hamiltonian for a two state system is given by (in
the standard basis {|1〉, |2〉})

H =

(
E0 −η
−η E0

)
E0 and η are not time-dependent.
Problem 1
Can E0 and η be complex numbers?
Solution
The Hamiltonian is the operator for the observable en-
ergy. The operators representing observables have to
Hermitian, that is to say, H† = H. Which is possible
only if all the main-diagonal elements are real, and op-
posing off-diagonal elements are complex-conjugates of
one another. In this case that means E0 is real, and
(−η)∗ = (−η) =⇒ η∗ = η, i.e. η is also real.
Problem 2
Find the eigenvalues and eigenvectors of H given in the
previous problem.

Solution
The characteristic equation and the solutions are (λ is
the eigenvalue)

|H − λI| = 0 =⇒ (E0 − λ)2 − η2 = 0 =⇒ λ = E0 ± η

where I is the 2 × 2 identity matrix. Let us call eigen-
vectors for the eigenvalues E1 = E0− η and E2 = E0 + η
respectively |V1〉 and |V2〉. We obtain the two eigenvec-
tors by solving two eigenvalue equations H|V1〉 = E1|V1〉
and H|V2〉 = E2|V2〉. The first one is worked out as fol-
lows. Let |V1〉 = ( x1

x2
) and we have to determine x1 and

x2. (
E0 −η
−η E0

)(
x1
x2

)
= (E0 − η)

(
x1
x2

)
which gives us two equations E0x1 − ηx2 = (E0 − η)x1
and −ηx1 + E0x2 = (E0 − η)x2. But these two equa-
tions are not independent - one can be obtained from
the other. So we have one linear equation to determine
two unknowns, which is impossible. But we can use this
equation to determine the ratio of x1 and x2, and then
apply normalization requirement to fix the values of x1
and x2.

Simplifying any one of the ‘two’ equations above we
get x2 = x1 = c say. Thus we have |V1〉 = ( cc ). And c
remains to be determined. But |V1〉 is a quantum state of
the system, and so must be normalized. Normalization
gives us c = 1/

√
2. Thus we finally have |V1〉 = 1√

2
( 1
1 ).

Note that we can multiply this vector by a factor eiφ,
where φ any real number, and it still remains normalized.
Thus the quantum states we obtain are always uncertain
within this overall phase factor. But it does not matter,
because no measurable property of a system depends on
the overall phase-factor of the state-vector. So for sim-
plicity we usually set φ = 0 so that the phase-factor is
unity.

Working in the same way, the reader can easily find
the second eigenvector as |V2〉 = 1√

2

(
1
−1
)
. At this point

it is important to do a check - we know that the eigenvec-
tors of a Hermitian matrix, for distinct eigenvalues, are
always mutually orthogonal. We can readily verify that
the inner-products 〈V1|V2〉 and 〈V2|V1〉 are both zero and
so everything is in order. One common practice in quan-
tum mechanics is to label the eigenvectors of a matrix
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by the respective eigenvalue. That is, we call |V1〉 and
|V2〉 above |E1〉 and |E2〉. Thus the eigenvalue equations
become simply H|E1〉 = E1|E1〉 and H|E1〉 = E1|E1〉.
This can be slightly confusing for a beginner, but once
you get used to it, it is very convenient when doing quan-
tum mechanics linear algebra. We shall use this notation
in the rest this article.
Problem 3
Consider a system described by the Hamiltonian H given
in problem 1. At t = 0 the system is in the state

|ψ(0)〉 =
|1〉+ i|2〉√

2

What are the probabilities that at time t = 0 the system
is found in the states |1〉 and |2〉 ? What are the proba-
bilities that the system is found in each of the two energy
eigenstates?
Solution
Here |1〉 = ( 1

0 ) and |2〉 = ( 0
1 ) (i.e.,standard basis vectors).

We know from one of the basic postulates of quantum me-
chanics that if at a given moment of time the system is
in the state |ψ〉, the probability that an observation will
find it in a state |φ〉 is (assuming both the state vectors
are normalized) |〈φ|ψ〉|2. Thus the probability that at
t = 0 the system is found in the state |1〉 is

|〈1|ψ(0)〉|2 =

∣∣∣∣〈1| [ 1√
2
|1〉+

i√
2
|2〉
]∣∣∣∣2

=

∣∣∣∣ 1√
2

[〈1|1〉+ i〈1|2〉]
∣∣∣∣2

=

∣∣∣∣ 1√
2

[1 + 0]

∣∣∣∣2
=

1

2

We have used above the orthonormality of the basis vec-
tors, i.e. 〈1|1〉 = 1 and 〈1|2〉 = 0. Similarly we get the
probability that at t = 0 the system is found in the state
|2〉 also 1

2 .
The probabilities for finding the system in energy

eigenstates |E1〉 and |E1〉 are respectively |〈E1|ψ(0)〉|2
and |〈E2|ψ(0)〉|2. Let us first evaluate the components
〈E1|ψ(0)〉 and 〈E2|ψ(0)〉. We have

|E1〉 =
1√
2

(
1
1

)
=

1√
2

(
1
0

)
+

1√
2

(
0
1

)
=

1√
2
|1〉+ 1√

2
|2〉

(1)
And

|E2〉 =
1√
2

(
1
1

)
=

1√
2
|1〉 − 1√

2
|2〉 (2)

And we are given

|ψ(0)〉 =
1√
2
|1〉+

i√
2
|1〉 (3)

From Eqs. (1) and (3) we get

〈E1|ψ(0)〉 =〈E1|
[
|1〉+ i|2〉√

2

]
=

[
〈1| 1√

2
+ 〈2| 1√

2

] [
|1〉+ i|2〉√

2

]
=

1

2
[〈1|1〉+ 〈2|1〉+ i〈1|2〉+ i〈2|2〉]

=
1

2
[1 + i] (4)

And from Eqs. (2) and (3) we get

〈E2|ψ(0)〉 =〈E1|
[
|1〉+ i|2〉√

2

]
=

1

2
[1− i] (5)

And from Eqs. (4) and (5) we immediately get
|〈E1|ψ(0)〉|2 = 1

2 and |〈E2|ψ(0)〉|2 = 1
2 .

Problem 4
Answer the questions in the previous problem for t > 0,
using the time-evolution operator.
Solution
We begin by expanding the state vector |ψ(0)〉 in the
{|E1〉, |E2〉} basis:

|ψ(0)〉 = |E1〉〈E1|ψ(0)〉+ |E2〉〈E2|ψ(0)〉 (6)

Using Eqs (4) and (5) in Eq. (6) we get

|ψ(0)〉 =
1

2
(1 + i)|E1〉+

1

2
(1− i)|E2〉 (7)

In Eq. (7) we have expressed the state vector |ψ(0)〉
in the energy eigenbasis. Now we can operate the time-
evolution operator for the time independent Hamiltonian,
U(t) = e−iHt/~, on this state vector and obtain the state
vector at time t, that is |ψ(t)〉 :

|ψ(t)〉 = U(t)|ψ(0)〉
= e−iHt/~|ψ(0)〉

= e−iHt/~
[

1

2
(1 + i)|E1〉+

1

2
(1− i)|E2〉

]
=

[
1

2
(1 + i)e−iHt/~|E1〉+

1

2
(1− i)e−iHt/~|E2〉

]
=

[
1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]
(8)

In the last step we have used the fact that when the time-
evolution operator e−iHt/~ (H being time-independent)
acts on an energy eigenstate |E〉, the eigenstate gets mul-
tiplied by the factor e−iEt/~, E being the energy eigen-
value for the state. Note that e−iEt/~ is a number (or
scalar).
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We are now ready to calculate the probabilities that at
time t, the system is in the states represented by vectors
|1〉 and |2〉. The probability that at time t the system is
found in the state |1〉 is :

P1(t) = |〈1|ψ(t)〉|2

=

∣∣∣∣〈1| [1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈1|E1〉+

1

2
(1− i)e−iE2t/~〈1|E2〉

]∣∣∣∣2
From Eqs. (1) and (2) we have 〈1|E1〉 = 1√

2
and 〈1|E2〉 =

1√
2
. Using this the last equation above we have

P1(t) =

∣∣∣∣[1

2
(1 + i)e−iE1t/~ 1√

2
+

1

2
(1− i)e−iE2t/~ 1√

2

]∣∣∣∣2
=

(
1

2
√

2

)2 ∣∣∣[(1 + i)e−iE1t/~ + (1− i)e−iE2t/~
]∣∣∣2

=
1

8

∣∣∣[(1 + i)e−iE1t/~ + (1− i)e−iE2t/~
]∣∣∣2

We can simplify the modulus-squared term in the last
expression above by noting that for a complex number

z, |z|2 = zz∗, and also eiθ − e−iθ = 2i sin θ. After a few
lines of simplification, we get

P1(t) =
1

2

[
1− sin

(
E2 − E1

~
t

)]
=

1

2

[
1− sin

(
2η

~
t

)]
In the last line we have used E2 − E1 = 2η. An almost
identical calculation gives the probability that at time t
the system is found in the state |2〉 :

P2(t) = |〈2|ψ(t)〉|2

=
1

2

[
1 + sin

(
2η

~
t

)]
Note that the two probabilities add to 1. This is because
this is a two-state system, and the states |1〉 and |2〉 are
mutually orthogonal. Thus is the system in not one state,
it must be in the other.

Similarly, the probability that at time t the system is
found in the energy eigenstate E1 is given by |〈E1|ψ(t)|2.
This we can calculate by using Eq. (1) in (8):

P (t, E = E1) = |〈E1|ψ(t)〉|2

=

∣∣∣∣〈E1|
[

1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈E1|E1〉+

1

2
(1− i)e−iE2t/~〈E1|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~ + 0

]∣∣∣∣2
=

1

2

In the above we have used the orthonormality of |E1〉 and
|E2〉 (i.e. 〈E1|E1〉 = 1, 〈E1|E2〉 = 0) and |e−iE1t/~|2 = 1.

In the same manner we get
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P (t, E = E2) = |〈E2|ψ(t)〉|2

=

∣∣∣∣〈E2|
[

1

2
(1 + i)e−iE1t/~|E1〉+

1

2
(1− i)e−iE2t/~|E2〉

]∣∣∣∣2
=

∣∣∣∣[1

2
(1 + i)e−iE1t/~〈E2|E1〉+

1

2
(1− i)e−iE2t/~〈E2|E2〉

]∣∣∣∣2
=

∣∣∣∣[0 +
1

2
(1 + i)e−iE2t/~

]∣∣∣∣2
=

1

2

Once again the two probabilities add up to 1, for the same
reason - the states |E1〉 and |E2〉 are mutually orthogonal
for a two-state system. Note that the probabilities of
finding the system in an energy eigenstates is independent
of time, that is, they are same as at time t = 0, as we have

seen in the previous problem. This is true in general when
the Hamiltonian is time independent. But we have also
seen that the probabilities of finding the system in some
arbitrary state, such as |1〉 and |2〉 considered above, in
general vary with time.
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We calculate the ground state energies of a system of electrons in one-dimensional

infinitely deep square well potentials. We analyze the cases when the wells are

regularly spaced and when they are clustered together to form one single large well.

These potentials are intended to physically describe the interaction of electrons and

nuclei in a continuum model. We investigate which potential yields the minimum

ground state energy using elements of interpolation potential in quantum mechanics

derived from first principles. We also mention models of crystalline formation that

are related to this problem.

PACS – 73.21.Fg, 73.22 Dj

I. INTRODUCTION

We study a system of electrons in infinitely deep square well potentials in two situations. In the first situation

the potential consists of M regularly spaced wells, each of them having the form

Vr(x) =





0 for (j − 1)(b + a) ≤ x ≤ j(b + a)− a

∞ for x = (j − 1)(b + a) and x = j(b + a)− a
(1)

for j = 1, 2, 3, ..., M .

In the second situation, the M wells are all clustered together forming one single large well. The corre-

sponding potential is

Vc(x) =





0 for 0 < x < M(b + a)− a

∞ for x = 0 and x = M(b + a)− a.
(2)

The potential (1) is intended to represent electrons bound to individual nuclei arranged in an orderly pattern,

whereas potential (2) is intended to represent electrons bound to the set of nuclei.

We are interested in the ground state of a system of N electrons in potentials (1) and (2), and we would like
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to compare the ground state energies in these potentials in order to determine whether the lowest ground

state energy corresponds to the configuration of potential (1) or of potential (1). The ordered arrangement

of potential (1) is interpreted as corresponding to crystallization or existence of a period ground state.

This is a very simplified version of a much broader problem of understanding crystallization in continuum

models and of determining whether crystallization is in any way induced by the discrete character of the

lattice models in which this phenomenon has been observed1,2. At low temperatures, matter displays a

crystalline structure. The particles of matter are arranged in an orderly pattern that is repeated throughout

the material. This arrangement is associated with a minimum energy of the system.

One of the lattice model of crystalline formation is the Falicov-Kimball model. This a lattice model in

which ions are fixed at the lattice sites and spinless electrons move about and interact with the ions only

when they both happen occupy the same site. There is no interaction between electrons. For certain values

of the ion-electron interaction and for certain values of the number of particles present, the ions display a

checkerboard pattern in the ground state of the model. This regular configuration of the ions is associated

with the existence of periodic ground states. See3 for details and further results on this model.

In the present case, the question is immediately raised whether it is legitimate to compare ground state

energies for two different potentials. It is clear that if we consider two energy states for the same potential,

then the state with lower energy is the ground state. We show that the comparison of ground state energies

in this case is meaningful. The key ingredient is a varying parameter that will provide a transition from

potential of Eq. (2) to that of Eq. (1) thus allowing for the comparison of ground state energies. This is

carried out in section II.

Next in section III we find that the ground state energy for potential (1) is always higher than that

for potential (2) and hence the minimum ground state energy does not correspond to the arrangement of

electrons in potential (1).

II. THE INTERPOLATION POTENTIAL

The comparison of energies for the different potentials of Eqs. (1) and (2) is meaningful because the potential

Vh shown in Fig. 1 interpolates between these two cases, with h →∞ being potential (1) and h → 0 being

potential (2).

For electrons on an interval [p, q], let H[p,q] be the Hilbert space of single-electron states. For spinless

electrons, H[p,q] = L2 ([p, q], dx). It follows that for finite h single-electron states under the potential of Fig.

1 lie on H[0,2b+a] = L2 ([0, 2b + a], dx), and a vector state of a system of N electrons will lie on the closed



3

h

2b+a

b a

φ
1

α φ
2

α

FIG. 1: This potential interpolates between potentials of Eqs. (1) and (2) when

M = 2 as the height h is sent to infinity or zero respectively.

antisymmetric subspace HN
[0,2b+a] of

HN
[0,2b+a] = H[0,2b+a] ⊗ · · · ⊗ H[0,2b+a]︸ ︷︷ ︸

N times

.

For N normalized single-electron states Ψαν
h ∈ H[0,2b+a] for ν = 1, 2, . . ., N the anti-symmetrization operator

A is given by

A (Ψα1
h ⊗ · · · ⊗ΨαN

h ) =
1√
N

∑
π∈SN

επΨ
απ(1)

h ⊗ · · · ⊗Ψ
απ(1)

h , (3)

where SN is the permutation group of N elements and επ equals±1 according to the parity of π. In coordinate

space the wave-function for a system of N electrons is given by the well-known Slater determinant

Ψα
h(x1, . . ., xN) =

1√
N

∑
π∈SN

επΨ
απ(1)

h (x1)⊗ · · · ⊗Ψ
απ(1)

h (xN) . (4)

If HN
h is the Hamiltonian of N non-interacting electrons under the potential of Fig. 1, then HN

h acts in the

antisymmetric subspace HN
[0, 2b+a] as

HN
h =

N∑
ν=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
ν−1 times

⊗Hh ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−ν times

,

where Hh is the single-electron Hamiltonian (without spin interactions)

Hh = − ~
2

2µ
∇2 + Vh , (5)

acting on H[0, 2b+a], with µ being the mass of the electron.
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What happens now when the limit h −→ ∞ is taken? If Ψα
h ∈ H[0, 2b+a] is a normalized wave-function of a

single electron under the potential Vh of Fig. 1 then, when h → ∞, due to exponential damping of Ψα
h on

the interval [b, b + a], one has

Ψα
h

h→∞−→ c1φ
α
1 + c2φ

α
2 (6)

where φα
i for i = 1, 2 are the normalized wave-functions defined in each of the potential wells obtained from

Fig. 1 after h goes to infinity.

According to our notation φα
1 lies on H[0, b] and φα

2 lies on H[b+a, 2b+a]. Due to the normalization condition

in (6), the coefficients satisfy |cα
1 |2 + |cα

2 |2 = 1. According to our notation, φα
1 lies on H[0,b] and φα

2 lies on

H[b,2b+a]. Both H[0,b] and H[b,2b+a] are closed orthogonal subspaces of H[0,2b+a] and the sums in (6) can be

interpreted as direct sums.

On the other hand, the single-electron Hamiltonian Hh in (5) converges, in the limit h −→ ∞, to a direct

sum Hh = H1 +H2 acting on H[0,b]⊕H[b,2b+a], where H1 and H2 are the single-electron Hamiltonians − ~2
2µ

d2

dx2

restricted, respectively, to the intervals [0, b] and [b, 2b + a].

The crucial observation to make is that if Ψα
h are normalized eigenstates of Hh, i.e. HhΨ

α
h = Eα

h Ψα
h , then

it is not necessarily true that the states φα
i in (6) are eigenstates of Hi. However, due to the exponential

damping of Ψα
h on the interval [b, b + a] that, in the limit h −→∞,

Eα
h = (Ψα

h , HhΨ
α
h) −→ |cα

1 |2 (φα
1H1φ

α
1 ) + |cα

2 |2 (φα
2H2φ

α
2 ) , (7)

where the right-hand side above is a convex linear combination of the expectation values (φα
1 H1φ

α
1 ) and

(φα
2 H2φ

α
2 ).

It now follows that in the resulting symmetric potential of Fig. 1 obtained after taking the limit h −→ ∞
we have Eα

1 = (φα
1 H1φ

α
1 ) = Eα

2 = (φα
2 H2φ

α
2 ) = Eα, so that

Eα
h = (Ψα

h , HhΨ
α
h) −→ (φα

i Hiφ
α
i ) = Eα. (8)

For the case of multi-particle states A (Ψα1
h ⊗ · · · ⊗ΨαN

h ), with Ψαν
h being eigenstates of Hh, the total energy

is
∑N

ν=1 Eαν
h . In this case, (7) now converges, as h →∞, to

N∑
ν=1

Eαν
h −→

N∑
ν=1

[
|cαν

1 |2 (φαν
1 , H1φ

αν
1 ) + |cαν

2 |2 (φαν
2 , H2φ

αν
2 )

]
.

The same observations made above about φα
i being eigenstates and the fact that the resulting potentials are

symmetric now lead, when h →∞, to

Eα
h =

N∑
ν=1

Eαν
h −→

N∑
ν=1

(φαν
1 , H1φ

αν
1 ) =

N∑
ν=1

Eαν . (9)
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The results (8) and (9) allow us to obtain a lower bound to Eα
h by taking respectively the minimum value

of Eα and Eαν in these expressions. The important point is that the minimum value of the right-hand

side of (9) is exactly the energy of the system of electrons which is obtained by successively filling up the

single-electron energy levels of potential of Eq. (1) from the lowest levels up in each infinite well (Section

III).

This lower bound to the energy of the system of electrons for the potential of Eq. (1) will be compared

with an upper bound to the energy of the system of electrons for the potential of Eq. (2) (the case h = 0)

to show that the energy of the electrons is minimized for the potential Vc. Since the parameter h provides

a smooth transition from the potential of Eq. (1) to the potential of Eq. (2) when it varies from zero to

infinity, we are justified in comparing system energies in the two different potentials.

III. THE GROUND STATE ENERGIES

The corresponding single-electron energies for the potential Eq. (1) are given by4

er =
( π

kb

)2

q2 (10)

for q = 1, 2, 3, . . ., where b is the length of each well, k2 = 2µ/~2, and µ is the mass of the electrons. The

ground state energy of a system of N electrons in potential (1) is the sum of the lowest energies in Eq. (10)

in each well. In this case, it is convenient to write the total number of electrons as N = nM +m for integers

n and m, where m (m < M) is the remaining number of electrons after each of the M wells have been filled

with n electrons.

The ground state energy is then

Er =
( π

kb

)2[
M

(n3

3
+

n2

2
+

n

6

)
+ m(n + 1)2

]
. (11)

Eq. (11) says that after n electrons have been distributed in the M wells, each of the remaining m electrons

will be placed on the next higher energy level.

The single-electron energies for the potential of Eq. (2) admit upper bounds given by

ec =
( π

Mkb

)2

q2 (12)

for q = 1, 2, 3, . . ..

The ground state energy of a system of N electrons is again the sum of the successive lowest energies in
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Eq. (12). We obtain

Ec =
∑

ec =
( π

Mkb

)2(N3

3
+

N2

2
+

N

6

)
. (13)

By substituting N = nM + m into the above equation, we write

Ec =
( π

kb

)2
{

M

3
n3 +

2m + 1

2
n2 +

1 + 6m + 6m2

6M
n +

m + 3m2 + 2m3

6M2

}
.

To compare the ground state energies, we calculate ∆E = Er − Ec and obtain

∆E =
( π

kb

)2[
M

(n3

3
+

n2

2
+

n

6

)
+ m(n + 1)2

]
−

( π

Mkb

)2(N3

3
+

N2

2
+

N

6

)

=
( π

kb

)2

(xn2 + yn + z), (14)

where

x =
1

2
(M − 1)

is always positive for M > 1,

y =
M

6
+ 2m− m2

M
− m

M
− 1

6M
=

M2 + 6m(M − 1) + 6m(M −m)− 1

6M
> 0

under the conditions M > 1 and m < M , and

z = m− m + 3m2 + 2m3

6M2
=

6mM2 − (2m3 + 3m2 + m)

6M2
>

m (M2 −m2)

M2
> 0

for M > 1 and m < M .

We thus conclude that ∆E in Eq. (14) is a positive quantity and the energy of the system for Eq. (2) is

always lower than for Eq. (1) for all values of the parameters n,M and m under the given conditions of the

problem.

The potentials studied here are of course too simple to answer the fundamental question of crystallization

in continuum models. Important interactions have been left out (this is also true of more elaborate models,

as the Falicov-Kimball model). But they do allow for a definite answer to the problem posed within the

simplified assumptions made.
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Abstract 

Abstract: In this article we work out the exact eigenvalues and eigenfunctions of a spin less charged particle placed in 

a uniform magnetic field that has azimuthal symmetry. The possible applications are mentioned. 

 

PACS: 03.65.Ge       Keywords: Bound states; Landau Levels; Uniform Magnetic field 

_______________________________________________________________________________________________ 

 

1. Introduction 

In non-relativistic quantum mechanics, for a spin 

less charged particle placed in a uniform magnetic 

field, one obtains the well-known Landau-levels 
[1]

. There are several applications of that result
 [2]

. 

In many instances, charged particles can have 

relativistic high velocities 
[3]

, necessitating 

relativistic correct expressions for Landau-levels.    

In  this  article  we deal  with a relativistic  spin 

less charged  particle  placed in a uniform  

magnetic  field. We work out the exact energy 

eigenvalues and eigenfunctions.  The formulae 

reproduce the Landau levels in the non-relativistic 

limit, as they should. Our result can find 

applications in astronomical bodies like white 

dwarfs and neutron stars. 

Klein-Gordon particle in a uniform magnetic 

field 
The modern theory of interaction of fields and 

particles demands the exact solutions that describe 

the quantum states of charged spin less particles in   

the external electromagnetic fields.  Such 

solutions are very much useful to analyze and 

characterize these particles in the external fields. 

The relativistic relation that connects energy and 

momentum of a free particle is given by   

�� � ���� �	���	 
where E includes rest mass energy mc

2
.  

Replacing E and P by their corresponding 

operators   

� → �ћ




�
  

and 

P→ - iћ ∇ 

 

 

and then operating  on a wave function	���, ��, we 

get 

ψψ
ψ 42222

2

2
2

cmc
t

+∇−=
∂

∂
−

r
hh                                          

     (1) 

The above equation is the well known Klein-

Gordon equation for a free particle. The Klein-

Gordon equation for a charged spin less particle 

placed in an electromagnetic field with potentials 












c

A
r

,φ  is obtained by using the minimum 

coupling rule 
[4]

 as: 
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( ) ( ) ( ) ( )trcmtrAecitre
t

i ,,, 422
2

rrrr
h

r
h ψψψφ +−∇−=





−

∂

∂

 
in the transmitted light composed of multiple 

degrees of elliptical polarization. 

For a uniform magnetic field H, which is chosen 

to be along z direction, we can choose the 

potentials as: 

 

2
,

2
,0,0,0

xH
A

yH
AAHH

yxzyx
=−=====φ

   (3) 

 

For a static magnetic field, 

0 div =A
r

 

 

Thus for a time-independent magnetic field the 
energy eigenvalues and eigenfunctions may be 

obtained by solving the following equation:  For 
two space dimensions, 

 

( ) ( ) ( )rcmyx
He

eHcLcrE z

r
h

r
ψψ 







+++−∇−= 4222

22
2222

4

   (4) 

 

In terms of cylindrical coordinates ( )zr ,,φ
r

 this 
equation simplifies to

 

( ) ( ) ( )

( ) ( )zrcmzrr
He

zrieHczr
zrr

r
rr

czrE

,,,,
4

,,,,
11

,,

422
22

2

2

2

2

2

222

φψφψ

φψ
φ

φψ
φ

φψ

rr

r
h

r
h

r

++

∂

∂
+









∂

∂
+

∂

∂
+









∂

∂

∂

∂
−=

 

                            

This equation could be solved by the method of 

separation of variables using ansatz 

 

      ( ) ( ) ( ) ( )zZrRzr φφψ Φ=,,
r

  (6) 

 

Taking   
φil

e~Φ  and  ( ) ikzezZ ~ ,   

 

 

clearly the motion along the z-direction, the 

direction of the magnetic field is that  of a free 
particle.  For simplicity, we can put k = 0 

without any loss of generality when we are 
considering the bound states. 

The equations for Φ��� and ���� will be: 

Φ−=
Φ 2

2

2

l
d

d

φ
  (7) 

( ) ( ) 02
1 22

2

2

22

422

2

2

=







+−−

−
+








+ rRalra

r

l

c

cmE
rR

dr

d

rdr

d

h
 

                                                         (8) 

where  

                     c

eH
a

h2
=    (9) 

l  has to be an integer due to periodic boundary 

condition ( ) ( )πφφ 2+Φ=Φ .  The radial 
equation can be reduced to the following 
convenient dimension less form by substitution

2ar=ρ  

0
442

2

2

2

=







−−








+++ R

ll

d

d

d

d

ρ

ρ
λ

ρρ
ρ  (10) 

Where 22

422

4 ca

cmE

h

−
=λ

                           
 (11) 

Using the asymptotic conditions of the radial 

function 

For large ρ equation (10) reduces to 

 

0
4

1
2

2

≅− R
d

Rd

ρ
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                           2~

ρ
±

± eR  

Only the negative power is acceptable from 

physical considerations.  

For small ρ equation (10) reduces to 

0
4

1
2

2

2

2

≅−+ R
l

d

dR

d

Rd

ρρρρ
              (12) 

Taking 
q

rR ~ ,  we find for q the following 

equation: 

0
4

2
2 ≅−

l
q  

Hence 

2

l
q ±=

                       (13)
 

 

Once again, from physical considerations only 

2

l
q =  is acceptable.  

Hence putting 

 

             
( ) ( )ρρρ

ρ

LeR 22
1 −

=  

We obtain the following equation for ( )ρL : 

 

( )[ ] 0
2

1
1

2

2

=





−++−++ Ll

d

dL
l

d

Ld
λ

ρ
ρ

ρ
ρ  

           (14) 

 

 

Power series solution of the following type for 
the above equation can be obtained: 

 

      

( ) ∑
∞

=

=
0ν

ν
ν ρρ aL           (15) 

The coefficients νa   satisfy the following 

recurrence relation 

     ( )( ) νν
νν

λν

a
l

l

a
11

2

1

1
+++









−−+

=+

      (16)

 

Unless the power series terminates for some 

finite value of ν we get a diverging solution for 

R (ρ), similar to the solution obtained for the 

Hydrogen atom problem. 

Let the highest value of ν that terminates the 

series be s, then 

           








+−=

2

1
lsλ

          (17)
 

Putting 

               s - l = n           (18)   

 

We get 

λ = (n+1/2)  (19) 

   

Where n is a positive integer. 

Substituting for λ from equation (11), we find 

the allowed energy eigenvalues as: 

2

1

42

2

1
2 
















++= ncHecmEn h  (20)  

These are the quantized energies of the 

charged particle.  

We may expand the expression for energy in 

powers of 2mc

Ωh
, where

mc

eH
=Ω  is the cyclotron 

frequency in the magnetic field. 

results have a good agreement with the theoretical 

predictions based on Eq. (1). 

Then 

....
2

1

2

1

2

1
2

2

22
2 +








+

Ω
−







+Ω+= n

mc
nmcE

n

h
h

                                 (21) 

While the first term is the rest energy, the 

second term is precisely the non- relativistic 

Landau term.   The third term may be taken as 

the relativistic correction to the Landau energy 

levels. 

The normalized eigenfunctions may be 

expressed as: 

( ) ( ) ( ) φφψ ill

ln

ar

nl earLearCzr
2

2
22

1
2

2

,, +

−

=
r

(22)

     

Results and discussion 

 

We have obtained exact expressions for the 
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energy eigenvalues and eigenfunctions for a 

relativistic spin less particle in a magnetic field. 

It  is possible to apply  our results  to  high-

speed  charged  particles  orbiting such  

astronomical  bodies  like white  dwarfs  and  

neutron  stars. Our results may find use in 

understanding degeneracy 
[5] 

of particles  of 

matter under relativistic  conditions. 
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Abstract 

We present a projectile motion experiment with the help of digital camera and PC for data acquisition and 

processing. In this experiment to study projectile motion with water stream, a photo of the water path is 

taken and the pixels coordinate of the photo is obtained to measure the length. This method is more 

effective and accurate than the traditional method. The experiment presents the idea of using digital 

camera and PC to measure distance and inspires students to look for new methods to solve problems. 

 

 

1. Introduction 

Water stream is commonly used for demonstrating 

trajectory of projectile motion in introductory-

level physics [1-2]. If the trajectory of a horizontal 

projectile is known, the free fall acceleration can 

be determined. This is also a method to measure 

free fall acceleration. The common way to 

experimentally determine the trajectory in school 

laboratories is to draw the water path on a piece of 

paper and measure the lengths using a ruler [2]. 

This method can impose big subjective errors and 

complexity in operation when drawing the water 

path. We employ a digital camera and a computer 

(PC) to perform this task more effectively and 

accurately. A photo of the water path is taken. One 

pixel on the photo represents a certain length. We 

then get the lengths by reading the pixels directly. 

The experiment presents the idea of using digital 

camera and PC to measure distance and inspires 

students to look for new methods to solve 

problems. 

The motion of a water drop is given by the 

equations below         

 

� � ��                        (1) 

� �
�

�
		
�                     (2) 

                 

where x and y are the displacements of the water 

drop along horizontal and vertical directions 

respectively (thus the coordinate of the trajectory), 

v is the initial speed of the water flow, g is the free 

fall acceleration and t is the time taken. By 

canceling t in eq, the equation for the trajectory is 

obtained to be 

            

� �
	

2��
	��																			�3�	

    

  Once the trajectory and the initial speed of the 

water fall are measured, the value of g can then be 

calculated. The traditional way to decide a few 

sets of (x, y) values in school laboratories is to 

draw the water path on a piece of paper and 

measure the lengths using a ruler. This method can 

impose big subjective errors when drawing the 

water path. We employ a digital camera and a PC 

to perform this task and to process data. A picture 

of the water path can be taken using the camera 

(Fig 1). Any simple image-processing application 
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(e g. Painter) can be used to determine the pixel 

coordinates ( ) directly, as shown in Fig 2.  

 

                                                                                   

 
 

   

Fig 1. Recorded water path trajectory while demonstrating in 

a physics class 

. 

 

 
 

 

 

Putting a ruler or something of known length (a 

credit card 85.6mm long in our case) in the plane 

of the water path and counting the number of 

pixels the side length occupies on the photo, the 

length represented by each pixel a is obtained. 

Then,  

                ,
x y

x n a y n a= =                 (4) 

Substituting eq. (4)  into eq (3) yields, 

            

	

       

Take a few data points from the water stream 

image, whose pixel coordinates can be directly 

read from the image processing application(for the 

case of Painter, it is in the bottom of the screen, as 

shown in Fig 2), and plot   graph using 

MS Office Excel. Then the slope of the graph is

22

ga

v
. The  graph for our experiment is 

shown in Fig 3. We can see that the graph can be 

well fitted to a straight line, which indicates that 

the trajectory of a projectile motion is a parabolic 

curve. The slope 22

ga

v
 is found to be 0.000663 

 

 

 

 

 
 

Fig 3. Line of best fit for ( )2~
y x

n n   

 

The initial speed of the water flow v can be 

determined by measuring the time taken t∆  for a 

small amount of water (volume V) to flow out the 

pipe with diameter d. The diameter of the pipe d 

can also be decided by using pixels coordinates 
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(so a vernier calipers is not needed) too. The speed 

is given by the equation              

� �
�

���/2��	
1

∆�
																	�6�	

         

The free fall acceleration can then be calculated. 

In our case the value is 9.3ms
-2

, which is close to 

the know value 9.8ms
-2

. 

 

3. Summary 

This is a quite interesting experiment or classroom 

demonstration. It doesn’t need any special 

measurement apparatus such as vernier and it’s 

very easy to perform. The students were also 

encouraged to do it at home. The experiment can 

help students get an intuitive understanding of 

horizontal projection and inspire students to work 

out convenient methods to solve problems. The 

idea of using digital camera and PC to measure 

distance can also be applied to other similar 

experiments. 
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A first introduction to basic features of renormalisation group applied to critical phenomena is
presented. As an illustration, 1D Ising model and Gaussian model are considered .Understanding
of universality and scheme to compute critical exponents are also given.

I INTRODUCTION

Developments in Science owes itself to a miracle:
miracle being phenomena in different length scales
decouple.Without this feature, science would not have
even taken off.

Let us understand this statement by taking fluids as
illustration. Fluids have properties like viscosity, surface
tension, and all of these features of fluids have been
well studied. Now consider the description of fluids at
different length scales. At 1m distance, description is as
a continuous medium in terms of density and velocity
and obeying Euler equations. At 10−5m description
will be as granular material.At 10−10m it is described
by atoms/molecules following quantum mechanics.At
10−15 description is in terms of nucleus applying strong
interaction physics.At still smaller distance of 10−34m,
laws of still unknown quantum gravity effects will show
up.

Fortunately to study fluids at 1m scale we do not have
to know,the still to be discovered quantum gravity laws
at 10−34m.If that were so, even Newton might have to
wait for quantum gravity to be solved ,to understand
basic properties of matter.This is the miracle alluded
to above: phenomena at different scales decouple, and
each can be studied independently.Physics at each
short distance scale only contributes to the values of
the parameters in the succeeding larger scale.If those
parameters are taken from experiments, then they can
be studied independently. In the example above, strong
interaction effects provide nuclear parameters, atomic
physics provide atomic and molecular parameters.The
molecular parameters provide macroscopic parameters
of properties of matter like viscosity.

Difficulty arises when different length scales do not
decouple.This happens close to critical point in contin-
uous (or second order)phase transition.1In this transi-
tion order parameter increases from zero at Tc contin-
uously to its maximum value at T = 0 as temperature
is reduced.Recall that near TC there are fluctuations in
the order parameters in length scale given by correlation
length ξ.Correlation length is the maximum distance to
which spins are correlated.This means that fluctuations
in the order parameter are from distance 0 to ξ.At TC ,

since the correlation length diverges, the fluctuations are
from 0 to all the way up to infinity.The degrees of freedom
at different fluctuation length scale are entangled.Thus
degree of freedoms associated with all length scales have
to be taken into account.

This feature is also seen well in fluid system at
criticality. The order parameter in this case is the
density difference between liquid and vapour.Near Tc

the fluctuations of all length scale shows up by the
presence of liquid drops and vapor bubbles of varying
sizes, all mingled within each other.Fluid has not made
up its mind whether to condense or not.This density
fluctuations is experimentally seen in scattering of
light.When the fluid is scattered by light,it looses its
transparent nature and there will be a white milkish
patch ,due to scattering of wavelengths of order few
thousand Angstrom. Since this is much larger than
lattice spacing, lattice cannot be the cause.It happens
only at critical temperature.Hence the large fluctuations
are the culprits causing it. This is known as critical
opalescence. Mathematically this is due to divergence
in the density-density correlation function, equivalently
compressibility, at critical point.

Similar feature also occurs in quantum field the-
ory.Virtual particles of arbitrary energy scales are emit-
ted and absorbed owing to uncertanity principle.There
is fluctuation in energy in all scales contributing to the
loop diagram.

The problems of these kind needs renormalisation
group (RG) method to handle.This procedure, to handle
these kinds of problem was developed by K.G.Wilson,
who was awarded the Nobel prize for this contribution2.
The method is to systematically eliminate the degree of
freedoms at short distances and obtain effective theory
for long distance.This will, as we will see, provide rela-
tion between parameters of theory at one length scale to
another scale. More broadly speaking , Wilson scheme
provides long distance effective description, wherein,
short distance effects have been taken care of by suit-
able redefinition of the parameters valid for long distance.

How is this problem avoided in most of the system?For
most of the systems, the correlation length is only a small
number and whole system is superposition of small sys-
tems with very small correlation length. Since the de-
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grees of freedom within the correlation length is small ,
approximation methods works.
In the following ,first we illustrate the RG procedure

for 1d Ising model, followed by Gaussian model(defined
below).Then the general procedure of RG will be ab-
stracted, explaining Scaling and Universality. Finally we
conclude how RG has given a new vantage point to under-
stand quantum field theory.Some earlier reviews on RG
are 3,4,5. There are several excellent books on Renormal-
isation group and critical phenomena.A few recent ones
include,6,7

II REAL SPACE RG OF 1D ISING MODEL

The 1D Ising model is defined by the Hamiltonian

H = −J
∑
i

sisi+1 +
H

2
(si + si+1) (1)

whose partition function is

Z =
∑
s1

∑
s2

..
∏
i

exp ksisi+1 −
h

2
(si + si+1) (2)

where k = βJ, h = Hβ The above equation(2) can be
written as

Z =
∑
si

∏
i

K(si, si+1) (3)

whereK(si, si+1) = exp(ksisi+1 − h
2 (si + si+1)) Note the

parameters of the model are temperature T, Magnetic
field H. Instead of summing over spins at all sites at one
go, the spirit of RG is to first sum spin degrees at all even
sites only.8

∑
s2=±

K(s1, s2)K(s2, s3) (4)

The above will be a function only of s1, s3. It is

= exp{k(s1 + s3)− (h/2)(s1 + s3 + 2)}
+exp{−k(s1 + s3)− (h/2)(s1 + s3 − 2) ≡ K̃(s1) (5)

The other even sites elimination by summing over it
will also have similar structure. Next we demand that
equation(3) to have the same structure as the original
Ising model but for a different set of parameters k′, h′.

K(s1.s3) = exp k′(s1s3)− h′/2(s1 + s3) (6)

Similar structure follows for all other even site spins.
Next we get an explicit relation between old parameters
(before even site spins were eliminated) and new ones
(after they eliminated ). K̃(s1, s3) is a 2X2 symmetric
matrix with s1, s3 taking ± value.

K̃(+1,+1) = exp(2k − 2h) + exp−2k (7)

K̃(+1,−1) = K(−1,+1) = exp−h+ exph (8)

K̃(−1,−1) = exp(−2k) + exp(2k + 2h) (9)

Similarly matrix elements of the symmetric 2X2 ma-
trix equation(6) are

K(+1,+1) = exp(k′ − h′) (10)

K(+1,−1) = exp−k′ (11)

K(−1,−1) = exp(k′ + h′) (12)

By equating equations(7) and (10) we get the relation
between primed parameters and unprimed ones:

exp(−2h′) = exp(−2h)
cosh(2k − h)

cosh(2k + h)

exp(4k′) =
cosh(2k − h)cosh(2k + h)

cosh2h
(13)

Thus there is a reduction of degrees of free-
dom(elimination of N/2 even spins) and concomitant
change in parameters.

The second step is to rescale the distance in units of lat-
tice spacings to bring it back to the original system.With
even site spins eliminated the lattice spacing between the
remaining spins is twice the original spacing.To compare
with the original system , we must rescale the distance
by half so that the lattice spacing is the same.Though in
general scaling may require scaling spin degrees also , in
this example there is no necessity for it. This process can
be repeated with parameters changing under each itera-
tion. Next we find the fixed point of the transformation.

It is convenient to define x = exp(−4k) and y =
exp(2h) then equation(13) is

x′ = f(x, y) = x
(1 + y)2

(1 + yx)(y + x)

y′ = g(x, y) = y
x+ y

1 + xy
(14)

These equations provide the recurrence relations be-
tween the parameters. Next we have to identify the fixed
point of the transformation.These are the solutions of the
equation :x′ = x, y′ = y i.e,

x = x
(1 + y)2

(1 + yx)(y + x)

y = y
x+ y

1 + xy
(15)

The solutions are
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1.

x = 1, y (16)

which is T → ∞, describing paramagnetic phase
and has zero correlation length and hence not a
critical point.

2.

x = 0, y = 1 (17)

This is T = 0,H = 0, which is a critical point and
has infinite correlation length.This critical fixed
point is what we will be interested in.

We will study the behavior of the fixed point of criti-
cal point.Taylor expand the recurrence relation equation
(14)around critical fixed point x⋆ = 0, y⋆ = 1.

x′ = x⋆ +
∂f

∂x
δx+

∂f

∂y
δy (18)

y′ = y⋆ +
∂g

∂x
δx+

∂g

∂y
δy (19)

Where δx = x−x⋆ and δy = y⋆−y, similarly for δx′ and
δy′. This gives using equation(15)

δx′ = 4δx (20)

δy′ = 2δy (21)

This gives the deviation from fixed point after each it-
eration.Since ,by summing over all even sites spins, we
have effectively increased the distance by 2 the above is
actually

δx′ = 22δx (22)

δy′ = 2δy (23)

In general if b units were scaled for a variable A,then we
have δA′ = blAδA
For Ising model this gives lt = 2 and lh = 1.As we shall

see this can be used to calculate the critical exponents.
As the RG transformations were done on spins on a

lattice sites in 1d coordinate space, this is real space RG.
Next we consider RG in momentum space as opposed to
real space.

III MOMENTUM SPACE RG OF GAUSSIAN
MODEL

Gaussian model is defined by the Hamiltonian

βH =

∫
ddx

1

2
[▽ϕ.▽ ϕ+ r0ϕ.ϕ] (24)

Note the fields appear quadratically in the Hamiltonian,
hence the name Gaussian.5 In momentum space ,this
Hamiltonian is

βH =
1

2

∫
ddk

[2π]d
(k2 + r0)ϕ(k)ϕ(k)

∗ (25)

Z =

∫ ∏
k

dϕ(k) exp(−βH) where 0 < k < Λ (26)

Divide k into two regions 0 < k < Λ/s and Λ/s < Λ
Note this is a sharp division of wave vectors into two
divisions. Divide the field ϕ(k) = ϕ′(k) + σ(k) where
ϕ(k) = ϕ′(k) 0 < k < Λ/s
ϕ′(k) = 0 Λ/s < k < Λ
σ(k) = 0 0 < k < Λ/s
ϕ(k) = σ(k) Λ/s < k < Λ
Also

∫
dkϕ′(k)σ(k) = 0 since there is no overlap in non

vanishing region .Define d̄k = ddk
(2π)d

βH =
1

2

∫
d̄k|ϕ′ + σ|2(k2 + r0) (27)

=
1

2

∫
d̄k(ϕ′ϕ′ + σσ)(k2 + r0) (28)

Z =

∫
dϕ′e−

∫
d̄k 1

2 (k
2+r0)|ϕ′|2

∫
dσe−

∫
d̄k 1

2 (k
2+r0)|σ(k)|2(29)

Observe there is no interference between low and high
wave vector modes and they factorize as we have only
Gaussian model.If interaction like ϕ4 is added, this fea-
ture will fail.

Denote by Z>(Z<) contribution of σ(k)(ϕ′) field. We
are after the long wave vector modes.The contribution
of Z> is only for the free energy and not for the recur-
sion relation between parameter r0 .Hence we can ignore
them.

Z = Z>

∫ Λ/s∏
k=0

exp−
∫

d̄k
1

2
(k2 + r0)|ϕ′|2 (30)

The next part of the recipe of RG is to rescale k such
that it goes over to the same range i.e, between 0&Λ. k
scales as k → sk so that rescaled k ranges from 0to Λ.
The third part of RG is, ϕ′ has to be scaled correspond-
ingly so that the k2 coefficient remains 1

2 .

ϕ′(k) → ϕ(k) = (1/z)′ϕ(k) (31)

Scaling k → k′ = sk, we regain the same range for k′ ie;
0 → Λ.This scales H to

d̄′ks−d(k′2s−2 + r0)z
2ϕ′(′k) (32)

Keeping the coefficient of kinetic energy term (without
dimensional parameter) invariant gives

k′2ϕ′s−d−2z2 = k′2ϕ′ (33)

gives z = s
d
2+1 (34)

r0 → r′0 = s−dz2 = s−d+d+2r0 = s2r0 ≡ r(s) (35)
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This equation(35) relates the (only) parameter in the the-
ory at different scales.For infinitismal change of momen-
tum scale

r(s+ ds) = (s+ ds)2r0

r(s) +
dr

ds
ds+ .. = s2r0 + 2sr0ds+ ..

dr(s)

ds
= 2sr0

s
dr

ds
= 2s2r0

s
dr

ds
= 2r(s)

dr

d ln s
= 2r(s)

This equation represents ′flow ′of the r0 under RG
transformation.
The fixed point of the transformation is solution

of dr
d ln s = 0.ie r ≡ r∗ = 0 This fixed point is Gaus-

sian fixed point.Once the RG transformation reaches this
point , r will remain stay put-ie;fixed.
Two remarks are in order
1)In Gaussian model no new terms are generated un-

der RG transformation. In this case it is similar to 1d
Ising model. In general, new terms will be generated,
with coefficients dependent on wave vectors too.
2)When we refer as coupling constant, the word constant
makes us take them to be a universal number like Plancks
constant or π.But thats not correct, as the extension
’constant’ is a misnomer.It is more a coupling function
, whose value depends on the length scale at which it is
measured.The recursion relation provides the change in
the value of the so called constant as we change the scale
at which we observe.Electrons charge, as listed in tables,
is related to the coupling constant at zero k .

IV GENERAL FEATURES

GENERAL FEATURES

The issues RG tries to explain include:a) Universality
of critical exponents b)calculation scheme for calculating
exponents.

Recipe for RG

Ingredients Required:
a)Hamiltonian with an order parameter ( or field)
b) a method for introducing cut-off (there is no unique
choice: for real space , it is lattice, for momentum space,
it can be sharp cut-off, like theta function, or smooth
cut-off
c) a scheme for taking degrees of freedom associated with

short distances/large wave-vectors.If the scheme has a
controlled approximation it is better.
Procedure:
Take the given Hamiltonian with the chosen cut-off
method. Integrate the short distance degrees of freedom
by applying the scheme chosen: this can be ,in real space
by majority rule/avarage spin for the block spin, in k-
space perturbatively integrate over the high momentum
modes of the field. Let the momenta integrated by be-
tween Λ > k > Λ/s. The resulting Hamiltonian contains
fields for modes of momenta of only k < Λ/s.But we
cannot compare this with the starting system , as they
are defined in reduced range of k-space.To bring them
back to their original range, scale momentum /coordi-
nate. This ,in general, needs rescaling of field, ie change
in the magnitude of the field. The net result of these
three operations is that the original Hamiltonian,with a
given set of couplings, transforms to a Hamiltonian with
different coupling constant and ( in general)new set of
couplings .This provides the relationship between the two
set of parameters.Take the relationship between the orig-
inal set of couplings and new set of couplings.
Serve it hot for consumption!

Classification of Scaling variables

Given an order parameter field and a symmetry ,
we can consider the most general Hamiltonian involving
them consistent with the symmetry.Each term will have a
coupling parameter.Note here though the coefficients are
referred to as ’coupling constants’, it is better to regard
them as parameters in the theory.Define a Hamiltonian
space , which is the space of coupling constants.If one
wishes to call Hamiltonians with different couplings as
different theories,then this space is a ’theory space’.For
eg; scalar order parameter case,

H = | ▽ ϕ|2 + rϕ2 + uϕ4 + g1ϕ
6 + g2| ▽ ϕ|2ϕ2 + ... (36)

Thus in general it has infinite number of couplings.To
make it better to handle, we will consider a sub-
space , which is m dimensional, with couplings Kα =
{K1,K2, ..Km}.This set of values ofK can be represented
as a point in m−dimensional space. Under RG transfor-
mation, the set of couplings will change to another value,
which can be pictured as a point in theory space moving
to a different space.

Kα → K ′
α = Rα(K1, ..Km) (37)

Thus, by repeated RG transformation K → K ′ → K ′′..
The transformation is said to reach a fixed point if
K → K∗ → K∗. ie point in theory space stops moving
further under RG flow.K∗

α are the couplings at the fixed
point. The correlation length scales under RG transfor-
mation, since one of the action of RG is to scale the
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distances/momenta. Correlation length in extrinsic unit
like cm is invariant.But in units of intrinsic length scale
changes.ξ(K) → ξ′(K ′).At fixed point,ξ(K∗) → ξ(K∗) =
l(−d)ξ(K∗). ξ under scaling must remain invariant.No
finite number will be invariant.Only 0,∞ will remain
so.Hence fixed point physics must correspond to these
two values of ξ.The value 0 correspond to stable bulk
phase as in that phase, degrees of freedom have only
short range correlation.ξ = ∞ case represents the (un-
stable) critical phase.
Given the fixed point,the couplings are expanded about

it.

K ′
α = Rα(K) (38)

K∗
α + δK ′

a = Rα(K
∗ + δK) (39)

= Rα(K
∗) +

dRα

dKβ
δKβ (40)

= K∗ +
dRα

dKβ
δKβ (41)

define
dRα

δKβ
≡ Mαβ(l) (42)

δK∗ = M(l)δK (43)

Note Mαβ is m × m matrix and is not assured to be
symmetric.Let V (σ), lσ(l) be the right eigenvector and
corresponding eigen value.σ = 1, ..m.
Expanding K. in terms of the eigenvectors

δKα = a
(σ)
αβ V

(σ)
β

δK ′
α = a

′(σ)
αβ V

(σ)
β (44)

a′(σ) = l(σ)(l)a(σ) (45)

Now what can we say about lσ,eigenvalues of M? The
RG transformation obeys three axioms of group: a) ex-
istence of identity-l = 1 gives M = I
b)Existence of product rule .If represents Matrices as-
sociated with integrating momentas Λ → Λ/l1 →
Λ/l2which can be achieved directly Λ → Λ/(l1l2). Hence
M(l1)M(l2) = M(l1l2)
c)Ofcourse associativity is satisfied as it is a matrix. Im-
portantly inverse does not exist.Once we trace out some
degrees of freedom , we cannot uniquely fix the original
configuration.This is like given a matrix we can tell its
trace, but if I give you trace of a matrix, can you tell me
a unique matrix which has this trace?
Hence the transformation does not form a group in the

precise sense.It is sometimes referred to as semi-group.
These three properties of the group restricts the

eigenvalue lσ(l) = ldσ The eigenvalue is given by dσ.
The eigenvector V σ is called Relevent if the associated
eigenvalue dσ > 0, Irrelevant if ds < 0, Margininal
if dσ = 0 Why are they called so?By repeated RG
transformation , for relevent eigenvector its contribution
to couplings Kα will go on increasing as dσ > 0.Hence

they are relavent. Similarly contribution of irrelevent
eigenvectors will be decreasing.Hence it is irrelevent.
Marginal variable does not contribute at linear order and
hence to look at it contribution one should go beyond
linear order.
Let K1,K2..Kn(n < m) be the couplings which are
relevant and the remaining irrelevant. For simplicity we
consider there is no marginal variable. This classification
of relevant,irrelevant and marginal will turn out to be
important to understand universality and calculation of
exponents.These definitions are with respect to a fixed
point.The same variable with respect to a different fixed
point can change their relevancy.

Universality

1. To understand, how systems with different TC and
different microscopics share the same exponents
near criticality.

2. Definition:critical surface : In the m dimensional
theory space, critical surface is a subspace, defined
by setting all relevent couplings to zero.This is like
in 3d space we can define a 2d surface,xy plane,
by setting z = 0.The main feature of the Critical
surface is the fixed point is contained in it. Since
relevant parameters are zero and the effect of irrel-
evant ones will die down ,any point on the critical
surface will flow under RG to the fixed point.This is
the importance of the critical surface. The dimen-
sion of the critical surface is m− n.The number of
conditions required to define this critical surface is
known as co-dimension, which is n here.In the case
of magnetic system, we will see that the relevant
variables are temperature and the magnetic field,
and hence the codimension of the critical surface is
two.

3. On the theory space we are going to define two
kinds of transformation: one a physical transforma-
tion ,which can be done in principle by a ”knob”in
experiment.This transformation will bring the sys-
tem to its critical point. The second is a mathemat-
ical RG transformation, which cannot be achieved
by experimentalists by tuning ”knobs” of appara-
tus, but it exits only as theorists construction.

4. Consider a line piercing the critical surface at
a point P .This change is effected by physical
transformation, and the system is tuned to be
at the point P .For eg in magnetic system this
physical transformation is achieved by tuning the
system to be at its T = TC H = 0 .Similarly
a different system will be piercing the critical
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surface at a different point Q. The critical surface
contains fixed point.Hence both the points P,Q
which are on the critical surface, and are at their
respective critical point, under RG flow to the
fixed point.(fig-1)
What happens if the system is slightly off the
critical surface? This is done by the physical
transformation by tuning the system close to the
critical point. Under RG transformation this
point p′ will flow close to the fixed point.Since
the system is not exactly on critical surface, the
relevant variable is not exactly zero, but close to
it.Near the fixed point , due to their relevance ,
RG effects amplify their effect, and the trajectory
moves away from the fixed point.Similar behavior
is expected for the system Q′ which represent the
system Q slightly away from the critical point. For
eg; these two points can represent elements Ni and
iron.(fig-2) In fact for all points slightly off the
critical surface will undergo similar behavior.

This explains that all points on the critical surface
will have universal behavior as their long distance
effective description will be governed by the same
fixed point.The critical exponents are provided by
the eigenvalues of relevant variable of this fixed
point. This has been seen in earlier examples.
To summarise: all systems on the critical surface,ie
Hamiltonians having these m − n irrelevant cou-
plings will all share the same exponents and have
the same long distance behavior.The microscopic
parameters which distinguish the different systems
sharing the same universal class, are irrelevant in
the RG sense, explaining universality. It explains
the universality by staying close to TC , it is the
long distance ”cooperative behavior” and not short
distance dirty details that are dominating.

SCALING

1. At criticality there are fluctuations of order param-
eter at all length scales.Hence there is no specific
length scale which shows up. To whatever length
scale we zoom in the system will appear the same.
The scale invariance shows up in this way.

2. Mathematically it shows up in correlation function
G(x,y). Correlation function must be decreasing
function of the distance between the points.It can
be exponentially falling or power law dependance.
But exponential functions are not scale invariant.

exp(λx) ̸= λ exp(x) (46)

But power law functions have this property.

1

(λx)p
= λ−p 1

xp
(47)

This means there is self-similarity as the distances
are scaled. Correlation function at criticality is a
power law function.Mathematically ,this is seen as

G(x,y) ∼ 1

|x− y|d−2+η
(48)

Here η is a critical exponent which characterizes the
power law behavior. It is zero for Gaussian model
as different modes of the field decouple. When it
is non-zero, a)it shows how fluctuation at lattice
level( or at momentum cut-off)gets coupled with
long distance fluctuation and b)it reflects in failure
of naive dimensional analysis of fields .Fields then
have dimensions different from the engineering di-
mension;they get ”anomalous dimension”. Physi-
cally the power law behavior is seen as the pres-
ence of clusters of up and down spins of all sizes
or in fluid system as drops of liquid and bubbles of
gas of all sizes. This behavior is also similar to the
structure of some naturally occurring objects like:
clouds, river basin,..There is self similarity of struc-
ture at all length scales.These are known as fractal
structure.
Thus there is a deep connection between scale
invariance-power law behavior-criticality.

3. Singular part of free energy close to criticality
has scaling form.This follows from RG point of
view.Consider ,1d Ising model as illustration. Free
energy per unit site (which, incidentally is an in-
tensive quantity)is f ∝ 1

N lnZN

Under RG first note that ZN (K) is invariant, where
K denote couplings. Let us split the N degrees of
freedoms into N ′ and N ′′. Out of N sites N ′ has
been first traced.

f(K) =
1

N
ln[TrNe−H(K)] (49)

=
1

N
· N

′

N ′ lnZN ′(K ′) =
N ′

N
f(K ′) (50)

Since
N ′

N
= b−d. (51)

(52)

Thus f has the required scaling behavior.After bd

degrees of freedoms have been summed out ,K →
Kb, where Kb is given in terms of K by RG equa-
tion.

f(K) = b−df(Kb) (53)
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For specific case of couplings being
temperaturetand magnetic field h, (which are
relevant parameters in Ising model)

f(t, h) = (b−d)lf(tl, hl) (54)

calculation of exponents

1. Recall that from the linear analysis of the RG
transformation for parameter, say K, about
the fixed point , we got Kb = byK . Hence
tb = byt , hb = byh .The quantities yt, yh are calcula-
ble from RG transformation and are > 0 as they
are relevant . We will see that the exponents are
given in terms of them ,using scaling form of free
energy.

From the scaling form of the free energy

f(t, h) = b−df(bytt, byhh)

Choose b such that b = t−1/yt

f(t, h) = td/ytΦ(t−yh/yth) (55)

As illustration few of critical exponents are calcu-
lated below:

2. Exponent β.

m(t, h) ≡ ∂f

∂h
= td/ytΦ′ t−yh/yt

m(t, 0) ∼ td/yt−yh/yt

β =
d− yh
yt

(56)

3. Exponent γ

χ ≡ ∂m

∂h

= t
d−yh

yt Φ′′ t−yh/yt

χ(t, 0) ∼ t
d−2yh

yt

γ =
d− 2yh

yt
(57)

4. Exponent δ
Exponent δis defined by M ∼ h1/δ at t = 0. con-
sider

M =
∂f

∂h
(58)

= td/ytΦ′ t−yh/yt .

We cannot put t = 0, h ̸= 0 in the above as M itself
vanishes,which is not correct.As x → 0 Φ′(x) →

xq with q to be determined such that M is finite.
As t → 0

M = t(d−yh)/yt(
hq

tqyh/yt
)

= t(d−yh)/yt−qyh/ythq (59)

demanding power of t = 0 q =
d− yh
yh

hence δ−1 =
d− yh
yh

(60)

Conclusion

RG is a framework to understand the long distance be-
havior of a system.The theory valid at long distance is
obtained by systematically eliminating the short distance
effects and incorporating them as change in the parame-
ters defining the theory. Thus the seemingly insurmount-
able difficult problem of all length scales coupled,is won
by diving into smallest length scale and conquering them
one by one: divide and conquer is the policy! .
RG has also shed light on quantum field theory.In the
olden days ,in quantum field theory,‘good’(ie renormal-
isable) theories were expected to be valid for all length
scales upto zero diatance.A cut-off was introduced more
as a convenient intermediary to absorb certain infini-
ties. But RG has provided a vantage point to understand
some of the behavior.Now cut-off is considered as a neces-
sity, above which the theory is not defined. Some times
it is possible to lump the effects of short distances as
change in finite number of parameters.They are, in older
language ’good’ theories.In such theories their region of
validity will be decided by experiments.Sometimes it is
not possible and it may require infinite number of pa-
rameters.These were considered earlier as ”bad” (non-
renormalizable)theories. But even these theories can
have a predictive power to an arbitrary level of accu-
racy.This insensitiveness of the long distance phenom-
ena to short distance behavior (which is is universality in
critical phenomena) is presently seen as renormalisablity
feature in quantum field theory.
RG is a broad framework and it can be considered as giv-
ing a theory of writing theories.Its application to more
areas ,one can say,is in beginning stages.
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Abstract 
A simple experimental configuration for the demonstration of interference of polarized light is presented 

in this paper. Using the wedge depolarizer, a nice and direct demonstration of interference of polarized 
light is realized, which would help to impress on students the phenomena of interference of polarized light 
intuitively. Moreover, this experiment can be easily implemented in the undergraduate/postgraduate 
optics laboratory because of its simple setup, and there is no need for expensive equipment. 
 
 

1. Introduction 
For some applications, the polarization-sensitive 

devices may cause considerable errors or degrade 

the performance of the systems when the incident 

light is not completely unpolarized. For example, 

the polarization-sensitive detector will result in 

errors and noise in the optical sensing and 

spectrum measurement systems; the polarization-

dependent effects in optical fiber communication 

system may reduce its performance. Therefore, 

completely unpolarized light is desirable for some 

cases. Under this requirement, the term 

depolarization and the corresponding device 

depolarizer (which couple the polarized light into 

the unpolarized one) occur. As we know, it is easy 

to get the polarized light via unpolarized one (e.g. 

using a polarizer). Contrarily, it is more or less 

difficult to depolarize the polarized light. Thanks 

to the development of depolarizers, the 

equivalently unpolarized light can be realized at 

present. Besides these, I have casually found that 

the commercially available wedge-type 

depolarizer can be employed to demonstrate the 

interference of polarized light easily and nicely in 

our optics laboratory. The underlying physical 

principle is fundamental for 

undergraduate/postgraduate students, but the 

interference patterns are splendid, which may be 

impressive for students. This article first gives a 

brief introduction to the present depolarizers and 

the theory of interference of polarized light. Then 

the wedge depolarizer is chosen to demonstrate 

the interference of polarized light. With the wedge 

depolarizer, versatile and obvious interference 

patterns are observed experimentally. 

 

2. Depolarizers and interference of 

polarized light 
Strictly speaking, the present depolarizers in fact 

are wavelength-dependent
1,2

 or temporal
3
/spatial

4
 

pseudo-depolarizers according to the mechanisms 

of depolarization. The transmitted light of the 

currently used depolarizers are not genuine 

unpolarized light, but compose of much light with 

various wavelength-dependent states of 

polarization or various states of polarization 

temporally/spatially. The collective effects of the 

transmitted light equal those of the unpolarized 

light. So the current depolarizers are pseudo-

depolarizers in nature. According to their 

structures, the typical pseudodepolarizers can be 

classified into two kinds: Lyot depolarizers and 

wedge depolarizers. The Lyot depolarizer consists 

of two crystalline plates of thickness ratio 2:1, 
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whose optical axes lie in the planes of the plates 

and are oriented at 45
o
 to one another.

5,6
 It creates 

various degrees of elliptical polarization as a 

function of wavelength, therefore it is a 

wavelength-dependent depolarizer and not suitable 

for the monochromatic light application. The 

wedge depolarizer consists of a wedge birefringent 

crystal, whose optical axis lies in the plane of the 

wedge and usually at 45
o
 to the input polarization 

for the maximum performance of depolarization. 

Consequently, it is sensitive to the input 

polarization direction. Fig. 1 schematically draws 

the structure of the wedge depolarizer. Because of 

the varying thickness of crystal at different loci of 

the wedge, the phase retardation between the 

ordinary and extraordinary light (depending on the 

thickness) is diversified. This results in the 

transmitted light composed of multiple degrees of 

elliptical polarization. 

The typical experimental setup for investigating 

the interference of polarized light is shown in Fig. 

2. A linearly polarized incident light impinges on 

the retardation sheet, and then passes through an 

analyzer. The interference of polarized light can 

be observed on the screen. If the intensity of the 

linearly polarized incident light is 
0

I , the intensity 

of the transmitted light on the screen is given as 

follows (according to Malus’s law), 

2 2 2 2

0
(cos cos sin sin 2cos cos sin sin cos )I I             

      =  
2 0

0
cos ( ) sin 2 sin 2 (1 cos )

2

I
I        ,                                                      (1) 

where  /   are the included angles between the 

transmission axes of the polarizer/analyzer and the 

electric vector of the extraordinary (or ordinary) 

light in the retardation sheet (see Fig. 2),   is the 

phase retardation of the transmitted light, which 

depends on the relative orientation of the linearly 

polarized light and the parameters of the 

retardation sheet (also depends on wavelength for 

polychromatic light). By changing ,   or , the 

intensity or patterns on the screen can be changed 

according to Eq. (1). This will demonstrate the 

interference of polarized light. 

                          

Figure 1. Schematic structure of the wedge depolarizer. 

 

Figure 2. Experimental setup for investigating the 
interference of polarized light. 

 
3. Experiment 
As the wedge depolarizer is a birefringent crystal 

with varying thickness and commercially 

available, it is a good candidate device for 

demonstrating the interference of polarized light. 

When the retardation sheet in Fig. 2 is replaced 

with a wedge depolarizer, wonderful interference 

patterns of the polarized light can be observed. 

From Eq. (1), the following results are easily 

obtained and the corresponding experimental 
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interference patterns are photographed by a digital 

CCD camera and shown in Figs. 3-6, respectively. 

The spatial configurations of the optical 

components are schematically depicted in the right 

panels of the corresponding figures. 

When  =0
o
 and  =90

o
 (or  =90

o
 and  =0

o
), 

I =0, viz dark field happens on the screen, which 

can be seen in Fig. 3. 

When  =0
o
 (or 90

o
), 2

0
cosI I   (or 

2

0
sinI  ), namely the intensity on the screen are 

uniform spatially and only depend on the value of 

  [see Figs. 4(a) and (b) for  =30
o
 and 45

o
, 

respectively]. From Fig. 4, the intensities of the 

interference patterns are almost uniform 

everywhere. The brightness in Fig. 4(b) is slightly 

weaker than that in Fig. 4(a), which is due to 
2

cos
o

45 < 2
cos

o
30 . 

When  =0
o
 (or 90

o
), 2

0
cosI I   (or 

2

0
sinI  ). This is very similar to Case 2 (Fig. 4) 

and the experimental interference patterns are not 

shown here in. 

 

Figure 3. Interference pattern for  =0
o
 and  =90

o
. Dark 

field happens on the screen. 

 

Figure4. Interference patterns for  =0
o
, (a)  =30

o
 and (b) 

 =45
o
. Intensities of the interference patterns are almost 

uniform spatially. 

For the above cases, the second term on the 

right hand side of Eq. (1) is always equal to zero. 

On the other hand, it will have various values 

when   0
o
/90

o
 and   0

o
/90

o
. For the fixed 

values of   and  , the intensity on the screen 

only depends on the phase retardation  , i.e. the 

thickness of the retardation sheet (considering 

monochromatic light). As the wedge depolarizer 

has a varying thickness spatially, the spatial 

distribution of the intensity on the screen I  must 

be periodic like the variation of the thickness of 

the depolarizer. This periodic distribution of 

intensity constitutes the interference fringes and 

their orientation coincides with the direction of the 

arris of the wedge depolarizer (viz the isopachous 

lines of the wedge). Under this situation, the first 

term on the right hand side of Eq. (1) influences 

the visibility of the fringe patterns. And then the 

phenomena of the interference can be classified 

into two cases (maintaining   0
o
/90

o
 and  

0
o
/90

o
). 

When   =90
o
 (or 270

o
), the intensity of the 

dark regions of the interference fringe patterns 

equals zero [because the first term on the right 

hand side of Eq. (1) equals zero], which results in 
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the maximum visibility of the fringe patterns. (a) 

Maximum intensity of the bright fringe happens 

for  =  =45
o
 [see Fig. 5(a)]. (b) Reduced 

intensity of the bright fringe happens for other 

values of   and  , for instance,  =30
o
 and 

=60
o
 [see Fig. 5(b)]. From Fig. 5, it is revealed 

that there is almost no light in the dark areas of the 

interference patterns. Comparing with that in Fig. 

5(a) (  =  =45
o
), the reduced intensity of the 

bright fringe in Fig. 5(b) ( =30
o
 and  =60

o
) is 

not obvious, but can be noticed by careful 

observation of the two photographs. 

 

 

Figure 5. Interference patterns for (a)  =  =45
o
 and (b) 

=30
o
,  =60

o
 ( +  =90

o
 for both situations). Maximum 

visibility of the fringe patterns happens. 
 

When    90
o
 (or 270

o
), the visibility of the 

patterns will be degraded contributed to the 

nonzero value of the first term on the right hand 

side of Eq. (1). Figs. 6(a) and (b) display the 

experimental interference patterns for  =  =30
o
 

and  =30
o
 and  =45

o
, respectively. It is 

apparent that the intensity of the dark regions of 

the interference patterns is nonzero, which is 

different from Fig. 5. Consequently, the visibility 

of the interference patterns weaken to some extent 

compared with those in Fig. 5. 

 

 

Figure 6. Interference patterns for (a)  =  =30o 

and (b)  =30o,  =45o (  +  90o for both 

situations). The visibility of the fringe patterns is 
degraded relatively. 
 

  Figs. 5 and 6 show that the orientation of the 

interference fringes always coincides with the 

optical axis of the wedge depolarizer and is 

independent of the positions of the transmission 

axes of the polarizer and analyzer. This confirms 

the forementioned theoretical analysis. Further 

experiments have readily found that the 

orientation of the interference fringes can be 

changed by rotating the wedge depolarizer about 

the propagation direction of the light beam, i.e. its 

optical axis. In short, the above experimental 

results have a good agreement with the theoretical 

predictions based on Eq. (1). 

4. Conclusions   
Experiments indicate that the commercially 

available wedge depolarizer is a useful tool for the 

easy and impressive demonstration of the 

interference of polarized light. It may help 

students better understand the nature of polarized 
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light. In addition, the method presented in this 

paper is cost-effective to equip the corresponding 

undergraduate/postgraduate optics laboratory with 

wedge depolarizers to investigate the interference 

of polarized light. 
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