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EDITORIAL 

 

Farewell to Department of Physics 

Savitribai Phule Pune University 

 

  

This is the last issue of Physics Education getting 
published from Department of Physics, Savitribai 
Phule Pune University. Next issue onwards, 
Physics Education will be published from Indian 
Institute of Science Education and Research 
(IISER) Pune. This is also the last issue of which I 
am the Chief Editor. Dr. M. S. Santhanam (IISER 
Pune) will take over as the Chief Editor of Physics 
Education from the next issue. As IISER is the 
national initiative on science education, it is quite 
natural that IISER takes over the reins of Physics 
Education and develops it into a platform for new 
ideas and experiments in learning and teaching 
physics. Especially we may look forward to the 
promotion of multimedia inputs and also the 
integration of this journal into the national 
endeavor on science education. I am sure that 
Physics Education will continue to promote 
interests of undergraduate students and teachers in 
physics.  

If may not be out of place here to put on record a 
brief history of this journal. Physics Education 
was started in 1975 as a part of the science 
education initiative by UGC along with three other 
journals, with similar names, dealing with 
Chemistry, Mathematics and Biology.  Right from 

its inception, Physics Education was published 
from Department of Physics, erstwhile University 
of Pune. Unfortunately, other three journals started 
by UGC ceased to publish in a short while, but 
Physics Education continued as an independent 
international journal and is contributing in its own 
way to physics pedagogy. This would not have 
been possible without the devotion and the 
meaningful efforts by all the previous editors, 
Professors A.S. Nigavekar, A. W. Joshi, A. S. 
Parasnis, S. V. Lawande, P. V. Panat and R. 
Ramachandran, despite all odds. In the last five 
years we have made this journal totally web-based 
and have automated the processing of all the 
contributed articles, including their allocation to 
various editors, processing of referee reports, 
communication with authors and the preparation 
of each issue in its final form. Only the selection 
of referees is the prerogative of the editors. This 
prepares the journal for multimedia inputs and for 
initiating various forums for interactive 
contribution by student and other readers. In the 
last 4/5 years the journal has seen significant 
increase in contributions from Europe, middle-
east, Africa, USA and far east.  
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Finally, I take this opportunity to express my 
gratitude towards Prof. R. Ramachandran for his 
active interest and valuable advice throughout my 
tenure and the distinguished panel of editors and 
all the referees who have contributed towards the 
quality of this journal. I also wish to thank my 
colleagues from the Physics of Department, 
Savitribai Phule Pune University for their help and 
cooperation.   

I am sure that under the auspices of IISER, 
Physics Education will continue to scale new 

heights and become an instrument of 
transformation in the area of physics education.      

Finally I wish you a very happy reading!  

                                Pramod S. Joag. 

                                         Chief Editor, Physics Education                       

Chief-editor@physedu.in, 

pramod@physics.unipune.ac.in 

 

_______________________________________________________________________________________________  
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Functional differential equations.
5: Time travel and life

C. K. Raju

ckr@ckraju.net
(Submitted xx-xx-2015)

Abstract

Physics must be non-mechanistic to account for everyday experience. Existing physics
becomes non-mechanistic if advanced interactions exist. Advanced interactions are usually
eliminated on metaphysical grounds of “causality”, but we explain why that is not valid.
Admitting advanced interactions involves no hypothesis, but only an acceptance of the most
general formulation of physics, using mixed-type FDEs. If advanced interactions are rare,
the resulting physics remains approximately mechanistic. The mixed-type FDE model
readily resolve various paradoxes of time travel. Specifically, time machines are impossible,
since realistic time travel implies spontaneity (different from chance). The novel features of
this model can be expected to be especially prominent at the microphysical level of
biological macromolecules and single particles.

1 Introduction

The twentieth century was marked by two
great revolutions in physics: relativity and
quantum mechanics. It is common to glorify
these revolutions, but our objective is to un-
derstand them. To that end, we need to ask:
what defects in the old physics led to these
revolutions?

1.1 Relativity and time
measurement

The relativity revolution concerned time, as
we saw in the previous article in this series.[1]
There was a conceptual error about time mea-
surement in Newtonian physics. It did not
define equal intervals of time, and hence had
no “correct” way to measure time. Conse-
quently, even Newton’s first law, by itself, is
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not meaningful. Relativity corrected that er-
ror and provided a definition of equal intervals
of time.

The advantage of trying to understand de-
fects in the old physics is clear: it led to a
new theory of gravitation—retarded gravita-
tion theory—which uses FDEs, even in grav-
itation. This new theory suggested a new
way to resolve the problem of galactic rota-
tion curves without the need for either dark
matter or ad hoc modifications to Newtonian
physics. Newtonian gravity remains a first ap-
proximation limited to the solar system. But
even within the solar system, tiny departures
from it would be observable as in the NASA
flyby anomaly attributable to the novel gravi-
tational effects of the rotation of the earth.

1.2 FDEs and time asymmetry

However, there is a second fundamental diffi-
culty with time in the old physics: the diffi-
culty with time asymmetry or the “arrow” of
time. Actually, however, the difficulty with
time asymmetry is part of an even more fun-
damental difficulty.

Even a child can distinguish between liv-
ing organism and non-living things, but the
equations of the old physics make no such
distinction. Hence, those equations ought to
apply equally to both: living and non-living.1

That is, physics must be compatible with bi-
ology, and mundane human experience. But
is it?

1Indeed, since the old physics provides no way to
separate living from non-living, it gives us no way
even to articulate any claim that “physics does not
apply to living organisms”.

Irreversible aging is our most basic expe-
rience from birth to death. This observed
irreversibility is contrary to the old physics,
which was time reversible. If the equations
of physics are written down using only ODEs
and PDEs, the transformation t → −t does
not change those equations. But, on mundane
experience, it is impossible to reverse aging,
and turn an old man into a baby! Science must
be compatible with observation: if physics dis-
agrees with widespread experience, we should
correct physics, not dismiss the experience as
an illusion.

Retarded FDEs partly correct this error
in the old physics, for they model an irre-
versible physics. Recall that [2, 3] retarded
FDEs arise in classical electrodynamics sim-
ply by doing the math correctly. That is, we
(a) take into account the neglected coupling
of ODEs and PDEs, required for the many
body problem, and (b) use retarded propaga-
tors for the solution of PDEs (as in retarded
Lienard-Wiechert potentials). Similarly, re-
tarded FDEs are used in the new theory of
gravitation explained in the previous article.
But why use only retarded propagators?

1.3 Mundane time

Thus, an asymmetry between past and future
only partly describes our mundane experience
of time. For, on our mundane experience, re-
peated thousands of time each day, our actions
often successfully create or “bring about” (a
tiny part of) the future cosmos. All the plans
we make for the future (including applications
for research grants) are premised on this belief
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that our actions now contribute in deciding
the future outcome.

This human creativity (in general, the cre-
ativity of all living organisms) is possible only
if future is not fully determined from past by
physics. That is, apart from the two problems
of time measurement and time asymmetry,
there is a third problem about time in the
old physics: physics is mechanistic and that
needs to be corrected.

However, any sort of indeterminism is not
acceptable: just as there are many determin-
istic models, there could be many varieties
of indeterminism. This is clarified by the
chocolate-ice-cream machine.[4, chp. 8] The
machine indeterministically selects a choco-
late or ice cream, and slams its choice down
our throats. What we will eat is not deter-
mined, but that is not the same as choosing
between chocolates and ice cream in mundane
life.

One way to formalise the difference between
mundane time and the time of the old physics
is to speak of the topology (or structure) of
time, in the sense of temporal logic.[4, chp. 8]
The time of daily experience is linear towards
the past (we believe we cannot change the
past), but branches towards the future (we
believe the future is NOT already determined
by the past but is influenced by our choices
and efforts).

This past-linear future-branching mundane
time is not the same as the time of physics
which is usually assumed to be superlinear
(i.e., to have the topology of the real line).
That belief arose for a peculiar reason: be-
cause of a wrong way of doing calculus, as
currently taught in universities. That requires

time to be like the real line just to be able
to make sense of the differential equations of
physics.

Can we make physics compatible with the
observed mundane creativity of living organ-
isms? Minimal compatibility with every-
day observations requires that we reformulate
physics in a non-mechanistic way so that the
entire past does not fully determine future.
FDEs provide an easy way to do that pro-
vided we admit also advanced propagators
instead of discarding them as “unphysical”.
This amounts to a minimal change in existing
physics. If advanced interactions are rare, and
retarded interactions predominate, the model
remains time irreversible.

1.4 Causality

Why were advanced propagators excluded as
“unphysical”? Physics texts typically justify
this on the metaphysical grounds of “the prin-
ciple of causality”. That is problematic for
various reasons. First, it is confusing, as meta-
physics often is.

Thus, the word “causality” is commonly
used in diametrically opposite senses. One
sense is that of mechanistic causality: that
the future is determined by the past, just
as initial data determines the solution of an
ODE, or past data determines the solution
of a retarded FDE. The second sense is that
of mundane causality that human actions are
partly responsible for the future: we believe
a thief is the cause of a theft. In both cases,
future events have an antecedent cause. How-
ever, in the case of the thief we believe his
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actions were not fully determined by his past,
hence we punish the thief (not his past!).

That is, the single word “causality” has two
opposite meanings: (1) that the future is fully
determined by the past (hence we exclude
advanced propagators) and (2) that human
actions, not fully determined by the past, are
partly responsible for the future (hence we
punish thieves). It is an elementary princi-
ple of classical logic that from contradictory
premises any desired conclusion may be drawn.
Hence, the word “causality” with its diamet-
rically opposite meanings is a rich source of
confusion, for it can be used to conclude any-
thing we want!

What complicates matters further is that
both the above contradictory senses of causal-
ity are related to deep-rooted religious dogmas.
Thus, Aquinas maintained that God rules the
world with eternal laws of nature (determin-
ism). On the other hand, the church has long
maintained, since Augustine, that God pun-
ishes evil-doers in hell. Why should a person
be punished (or rewarded) if the future is al-
ready determined and hence entirely beyond
his control?

Such questions bring out the manifest in-
coherence in these dogmas about “causality”.
To “manage” the contradictions, and incoher-
ence, and “save” those dogmas from rejection,
there is a vast and confusing discourse on the
theology of “free will”, which invariably creeps
into discussions about time in physics.[5]

However, the very use of the term “free
will” should warn us that the discussion has
strayed from physics to theology. The issue at
hand is whether physics agrees with everyday
experience, as it must. Why should theology

be essential to mediate a conflict between
physics and everyday experience?

To reiterate, if scientific theory does not
agree with mundane experience, we should
construct a better scientific theory more in
accord with experience.

1.5 The tilt in the arrow of
time

As already noted, a simple way to do that is
to admit both retarded and advanced propa-
gators, though in different proportions. That
is, we use a convex combination of the two
propagators, with weights α and 1−α, where
α, the coefficient of the advanced component,
is a small number (say, α ≈ 10−10). This
situation has been described as a “tilt in the
arrow of time”: most physical interactions
travel from past to future, but in some rare
cases interactions travel from future to past.
A “tilt” also raises the interesting possibility
of “time travel”, in some sense.

Note that a “tilt” does not involve any
new physical hypothesis. On the contrary, we
just dropped the hypothesis of (mechanistic)
“causality” used to reject advanced propaga-
tors. A convex combination of advanced and
retarded propagators just gives us the most
general form of classical electrodynamics and
post-relativity physics (including gravitation).
We should first study this general form and
then compare the results of such a study with
observations. If the comparison with obser-
vations so requires it we can put α = 0, to
recover (mechanistic) “causality”. This ap-
proach is obviously better than proceeding
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on metaphysical guesswork influenced by reli-
gious dogmas.

The immediate mathematical consequence
of a “tilt” is this: the resulting equations
of motion (of a charged or neutral particle)
are mixed-type FDEs. The time asymmetry
provided by mixed-type FDEs differs from the
time asymmetry provided by retarded FDEs.

2 Advanced FDEs

To understand the difference, let us first con-
sider the fully advanced case α = 1. The
simplest advanced FDE is of the form

ẏ(t) = y(t+ τ) (1)

where τ > 0 is constant. An advanced FDE
such as (1) models a situation where the
present state of a system y(t) depends upon
its future state y(t+ τ).

This equation cannot be solved just by pre-
scribing “initial” data y(0): we can see this by
repeating the reasoning used in the retarded
case.

However, an advanced FDE cannot be
solved even by providing past data. An ad-
vanced FDE is the exact time reverse of a
retarded FDE: from the theory of retarded
FDEs we can obtain the theory of advanced
FDEs just by interchanging past and future.
That is, to solve (1), we need to prescribe
future data y(t), t ≥ 0. We can use this fu-
ture data to obtain a unique past solution,
y(t), t ≤ 0.

We saw that a retarded FDE can be solved
forward in time but cannot, in general, be
solved backward in time. Symmetrically, an

advanced FDE can be solved backward in time
but cannot, in general, be solved forward in
time. We can see this by slightly modifying
the earlier example used for retarded FDEs.

2.1 An example

Consider the FDE

y′(t) = a(t)y(t+ 1), (2)

where a is a continuous function which van-
ishes outside [0, 1], and satisfies∫ ∞

−∞
a(t) dt =

∫ 1

0

a(t) dt = 1. (3)

For example,

a(t) =


0 t ≤ 0,

1− cos 2πt 0 ≤ t ≤ 1,

0 t ≥ 1.

(4)

For t ≥ 1, the FDE (2) reduces to the ODE
y′(t) = 0 , so that, for t ≥ 1, y(t) = k for
some constant k (= y(1)).

Now, for t ∈ [0, 1],

y(t) = y(1)−
∫ 1

t

y′(s)ds

= y(1)−
∫ 1

t

a(s)y(s− 1)ds

= y(1)− y(1)

∫ 1

t

a(s)ds, (5)

since y(s−1) ≡ k = y(1) for s ∈ [0, 1]. Hence,
using (3), y(0) = 0, no matter what k was.
However, since a(t) = 0 for t ≤ 0, the FDE
(2) again reduces to the ODE y′(t) = 0, for
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t ≤ 0, so that y(0) = 0 implies y(t) = 0 for
all t ≤ 0.

Hence, the future of a system modeled by
(2) cannot be predicted from a knowledge of
the entire past; for if the past data (i.e., values
for all past times t ≤ 0) are prescribed using a
function φ that is different from 0 on [−∞, 0],
then (2) admits no forward solutions for t ≥
1. If, on the other hand, φ ≡ 0 on [1, ∞],
then there are an infinity of distinct forward
solutions. Fig. 1 shows three such solutions.
In either case, knowledge of the entire past
furnishes no information about the future.

Figure 1: Asymmetry of advanced FDEs: Three
different solutions of an advanced FDE with the same
past have different futures, so that advanced FDEs
cannot be solved forward in time. That is, future
cannot be inferred from knowledge of past.

With advanced FDEs, multiple futures may
collapse to a single past, a situation which may
be better described by saying that solutions
of advanced FDEs branch towards the future.

2.2 Popper’s pond paradox

Even this basic knowledge about advanced
FDEs easily resolves the pond paradox which
so confused Karl Popper. Thus, the retarded
solutions of the wave equation correspond to
the ripples that spread out when a stone is
dropped into a pond. The advanced solutions
are the time reverse: they correspond to rip-
ples that spontaneously converge from the
edge of the pond. We normally observe the
former but not the latter solution.

But suppose someone were to observe this
rare occurrence and video record it. A physi-
cist might suspect that the record has been
faked; that someone actually video recorded
the ripples spreading outward, and then recap-
tured the video playing it backward. He then
falsely claimed that he has actually observed
one of those rare events corresponding to ad-
vanced waves. How to discriminate between
the two possibilities?

In a series of articles in the journal Nature
long ago [6, 7, 8, 9] Popper suggested that the
physicist should ask: by what process can one
make this (converging ripples) happen? He
used Huygens’ principle to argue that ripples
which arise spontaneously at the edge of the
pond could build up into a converging wave
only if they were coherent. This coherence
basically requires a single source; it could hap-
pen if we have a perfectly circular pond and
the ripples originate from the centre and are
reflected back at the edge. Popper opined that
coherence could not arise in any other way, ex-
cept by chance. Further, Popper argued, the
probability of coherence happening by chance,
across multiple sources, is negligible.
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2.3 Resolution of the pond
paradox

If we think about it a little, Popper’s con-
clusion is strange because he used metaphys-
ical reasoning to limit physical phenomena.
Whether or not advanced interactions exist
is a matter of physics, for it should be deter-
mined by empirical observations. How did
Popper manage to exclude them without ref-
erence to physics?

The above understanding of advanced FDEs
brings out the error in Popper’s reasoning.
Phenomena modeled by advanced FDEs can-
not be explained causally (from the past) just
as phenomena modeled by retarded FDEs can-
not be explained teleologically (from the fu-
ture). No “cause” (past data) can explain the
spontaneous convergence of advanced waves
any more than a “purpose” (future data) can
explain a divergent ripple.

Popper’s error was the metaphysical stipula-
tion that all phenomena must admit a causal
explanation, so that there must be a way to
make the future happen mechanistically. This
is just a disguised and more confusing version
of the same old argument for rejecting ad-
vanced interactions by invoking causality. (Re-
call that mechanistic causality was Aquinas’
theological dogma, but is now masquerading
as an argument about physics in a high-impact
journal.)

Popper admitted that my arguments were
“strong”[10]; he said he would respond in more
detail later, but died before he could do so. In
fact, there is no answer to the argument: the
existence of advanced interactions must be de-

cided empirically, not by appeal to confusing
metaphysics.

Incidentally, we derive the following valu-
able conclusion from the simple example
above. If advanced interactions exist, em-
pirical proof of that would be the existence
of some “spontaneous” phenomena which do
not admit mechanistic explanations from the
past.[11]

To better understand the empirical conse-
quences, it is important to study mixed-type
FDEs, for, not only Popper, but leading physi-
cists, such as Richard Feynman, have got con-
fused by reasoning intuitively about the issues
involved.

2.4 Earlier theories

Thus, advanced electromagnetic radiation was
admitted in the Wheeler-Feynman absorber
theory of radiation.[12, 13] That theory sought
to explain time asymmetric radiation damp-
ing starting from time-symmetric propagators
(i.e., α = 1

2
). The observed predominance of

retarded radiation was explained by putting
a condition on the cosmos: namely that it
should be totally absorbing.

However, the arguments of Wheeler and
Feynman are circular, as I pointed out long
ago.[14] Wheeler and Feynman, themselves,
did sense the possibility of such circularity and
tried to resolve it. Like Popper, they stated
that the past motions of particles are uncor-
related. However, in the presence of even a
tiny amount of advanced radiation (α 6= 0),
correlations will travel into the past, just as
they travel into the future with retarded radi-
ation. So, with time-symmetric propagators
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the time asymmetric assumptions made by
Wheeler and Feynman (or Popper) of random
and uncorrelated past motions were wrong.
Unfortunately, some people (e.g. [?]) are still
using the Wheeler-Feynman absorber theory
without addressing that error. My own ver-
sion of the absorber theory predicted that
small amounts of advanced radiation actually
exist.[14] Issues concerning the absorber the-
ory were summarised in an earlier article in
this journal, also posted on the arxiv.[15]

2.5 The new theory

However, the existence of advanced interac-
tions is now being considered from a fresh
point of view,[4] unconnected with any ab-
sorber theory. To reiterate, the new point
of view is this: it is incorrect to exclude ad-
vanced interactions on metaphysical grounds
such as causality or Popper’s argument. We
should instead (1) set up a theory which in-
cludes advanced interactions, (2) determine
its empirical consequences, and (3) compare
those consequences with empirical observa-
tions to then decide whether or not advanced
interactions exist.

From this general perspective advanced in-
teractions and mixed-type FDEs are not lim-
ited to electrodynamics. The retarded gravi-
tation theory, outlined earlier,[1] can be eas-
ily modified to include advanced interactions.
That is, mixed-type FDEs are relevant to the
interaction of all particles, not just charged
particles.

3 Mixed-type FDEs

Mathematically speaking, a tilt results in
mixed-type FDE of the following kind:

ẏ(t) = αy(t+ τ) + (1− α)y(t− τ). (6)

(This is a simplified equation, and not the
most general one possible.) This describes
a situation where the rate of change of y
depends upon both the future and past in
different proportions. What happens in this
situation?

Some general features are obvious. First of
all, if the coefficient of the advanced term, α,
is small, we can regard it as a perturbation
on the retarded FDE model. That is, the re-
tarded FDE model (α = 0) would continue to
describe the world to a first approximation:
the world is approximately mechanistic, and
future is approximately decided by the past.
Time asymmetry persists, for the reverse sit-
uation is not true: future cannot be used to
determine the past even as a first approxima-
tion.

Since, however, α 6= 0, there is an advanced
component, hence future cannot be fully de-
termined or controlled from the past. Thus,
full control is impossible from either past or
future.

The curious conclusion, however, is this:
even if we prescribe most of both past and
future, that may no longer determine the
present!

For example, consider the following mixed
type FDE,

ẏ(t) = a(t)y(t+ 1) + b(t)y(t− 1), (7)
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where a has the same properties as above.
For b we use the same function used in
the retarded FDE case, namely that it has∫ 1

0
b(t)dt = −1, but now stipulate that it has

support on the interval [2, 3].
On the interval (∞, 1] we have b ≡ 0 so (7)

is a pure advanced FDE, and we get future
branching solutions from past data as earlier.
On [1, ∞) we have a ≡ 0 so (7) is a pure
retarded equation, and we get past branch-
ing from future data as before. Combining
the reasoning used in the separate cases of
retarded and advanced equations, we obtain
the solutions below.

Figure 2: With a realistic mixture of history-
dependence and a small amount of anticipation, the
past still fails to decide the future. With this model,
all phenomena do not admit mechanistic causal ex-
planations, so that spontaneity really is possible. The
existence of a small tilt is exactly the condition for
time-travel of the second kind.

3.1 Consequences

That is, with a model which uses mixed-type
FDEs, with a small advanced component, we
have the following immediate consequences.

1. Retarded FDEs, would remain a good
first approximation, so past data could
still be used to approximately determine
the future.

2. Time asymmetry persists, since future
data cannot similarly be used to deter-
mine past, even as a first approximation.

3. Past data fails to decide future exactly.
Even if we could prescribe the entire past
accurately, that would still not determine
the future.

4. There must exist “spontaneous” phenom-
ena which do not admit an explanation
from the past (“causal” explanation), in
principle.

As is clear, this describes a situation closer
to experience.

4 Time travel

The puzzling and counter-intuitive features of
such a model are best brought out by the vast
confusion in both physics and popular litera-
ture (and films) about time travel. Therefore,
let us now turn to the question of time travel
with a tilt in the arrow of time.[16]

In the popular imagination, time travel is
associated with time machines. While physics
has not defined life, it is easy enough to define
a machine. The defining feature of a machine,
any machine, is that it can be fully controlled
(by pressing a button for example). But can
a time machine be controlled?
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4.1 Two types of time travel

To make matters clearer, time travel may
be classified as being of two possible types:
(1) with machines, and (2) without machines.
Time travel of the first kind visualises time
machines which physically transport entire hu-
man beings at the press of a button. In time
travel of the second kind, only the occasional
transfer of small bits of information from fu-
ture to the past is contemplated, for example
through an advanced signal coming from the
future. With a “tilt” only time travel of the
second kind is contemplated.

4.2 Time machines

However, time machines abound in the science
fiction literature, the classic example being H.
G. Wells’ Time Machine. Travel across the
galaxy, within the short lifespan of humans, is
also visualised in the science fiction literature
or films like Star Trek.

Time machines are also found in the sci-
entific literature: for example, the Gödelian
time machine based on the closed timelike
curves which arise in the Gödel cosmos. (It
is believed that given a timelike curve we can
construct a rocket which will follow the curve.
Such a rocket might require a large amount
of energy, but the Gödel cosmos rotates and
is not asymptotically flat; hence energy is not
well-defined in it.)

Travelling large distances in a time span
which is short (compared to light travel times,
and the human life span) necessarily involves
time travel. Hence, a more recent NASA
funded study by Kip Thorne and others

[17, 18, 19, 20] explored the possibility of time
machines based on general relativity.

Thorne et al. focused on TWISTs:
traversable wormholes in space time. A worm-
hole, such as one made in an apple by a worm,
may connect two distant points of spacetime
(analogous to the surface of the apple). If
the apple is very big, like the cosmos, only a
short time may be needed to travel through it
compared to the time needed to travel around
it (i.e., on the surface of the apple). Such
a wormhole is called traversable if the tidal
forces within it are not so strong as to kill
the traveller. Thorne et al. concluded that
such traversable wormholes could be built us-
ing negative energy. This possibility is visu-
alised in Carl Sagan’s novel and film Contact.
Thorne even suggested ways of building neg-
ative energy, though he was earlier a strong
advocate of the positive energy condition2.

4.3 The tachyonic
anti-telephone

This issue of control explicitly arose in the
context of the tachyonic anti-telephone.[21].
Tachyons are hypothetical particles which
move faster than light; if they exist, they can,
in principle, be used to communicate with
the past. The tachyonic anti-telephone is a
hypothetical device which uses tachyons to
allow one to converse with people in the past.

Suppose that, using this device, Shake-
speare dictated the script of Hamlet to Bacon.
Since Bacon came before Shakespeare he has

2and had earlier objected to my use of negative
energy for gravitational screening
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chronological priority, being the first person to
actually write down the script of Hamlet. So,
whom should we rightly regard as the author
of Hamlet : Shakespeare or Bacon? To re-
solve this paradox, it was opined that though
the cause is in the future, Shakespeare is the
one who has control over the text of Hamlet,
therefore he remains the author.

This naive belief that with time machines
the future can be used to control the past in-
volves a fallacy similar to Popper’s pond. The
fallacy is to put together two contradictory
pictures of time: (1) the notion of time used
in physics, according to which the evolution of
the cosmos is determined by various equations
(“laws of nature”), and (2) the time of our
daily experience (mundane time), in which we
make the future happen. These are contradic-
tory not compatible as already explained. It is
elementary that from contradictory hypothe-
ses one may derive any desired conclusion.
The solution is to remove the incompatibility,
by making physics compatible with mundane
time. If we do so by means of a tilt, we find
that future cannot be used to control the past.
That is, in the above scenario, Shakespeare
has little or no control over the play Hamlet.

4.4 Other paradoxes

The resolution of the grandfather paradox
and the Augustine-Hawking paradox is simi-
lar. In the grandfather paradox we use a time
machine (constructed using relativity say) to
send Tim back in time. Then we switch from
the equations of physics to the (incompati-
ble) mundane view of time, and suppose that
acting on his own volition, Tim kills his own

grandfather. So how could Tim have been
born?

Similarly, the Augustine-Hawking paradox
contemplates closed timelike curves in relativ-
ity. Then there is a switch to mundane time
to say that given such a curve we can build a
rocketship which will travel around the curve.
Then Hawking concludes that the rocketship
repeats its history, so we no longer have “free
will”! This “free will”, Hawking argues, is
essential for the belief that we are free to per-
form any experiment we like. Once again,
the contradiction arises from the unstated as-
sumption that the equations of relativity on
the one hand decide the future from the past,
and on the other hand are compatible with
mundane experience (that past does not en-
tirely decide the future, leaving us free to do
so). The paradoxical thing is that mundane
time plus time travel is now being applied to
try to create the past (which is implausible,
even on mundane experience, or with a “tilt”).

These mistakes made by top physicists and
philosophers such as Feynman, Hawking, and
Popper show that talking about the future
interacting with the past is a tricky matter,
made murkier by the constant intrusion of
church dogma about “free will” as in Hawk-
ing’s arguments which directly mimic those of
the theologian Augustine, as I have explained
at length elsewhere.[5]

4.5 No time machines

In fact, the science fiction scenario of hopping
into a time machine and pressing a button
to go back into the past assumes the possibil-
ity of controlling the time machine from the
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future. The consequences of the mixed-type
FDE model outlined above make this impos-
sible. Hence, there can be no time machines.

We can understand this conclusion in an-
other way.[16] Just as retarded interactions
increase entropy, advanced interactions de-
crease entropy. (On the advanced FDE model
one has less information about the past than
the future.) So, the mixed-type FDE model
may be thought of as a model involving a
combination of two sorts of processes: those
which increase entropy and those which de-
crease entropy. Processes which decrease en-
tropy (of the entire cosmos) may exist without
conflict with the entropy law (second law of
thermodynamics), provided that entropy in-
creasing processes predominate, as they do in
the mixed-type FDE model.

However, if entropy decreasing processes
could be mechanically controlled, at the press
of a button, that would allow us to decrease
entropy by an unlimited amount. In short, a
time machine (which can be controlled) would
be a perpetual motion machine, and is hence
impossible. Time travel can only be of the
second kind: without machines. That is, while
time travel of the second kind is possible (e.g.
with a tilt), time machines are not.

4.6 Empirical evidence for
time travel

Finally, let us reiterate the empirical conse-
quences of a tilt. Hawking[22] asserted that
if time travel were possible, we would have
been invaded by hordes of tourists from the
future. That argument naively assumes that

time travel means time machines which, as we
just saw, is impossible. Hence, going round
looking for tourists from the future as evi-
dence for time travel is absolutely the wrong
kind of thing to do.

Instead, we should expect to observe some
rare events that are spontaneous, and cannot
be explained from the entire past.

For example, in the grandfather paradox,
the time traveller’s chronologically earliest ap-
pearance in space time (which is earlier than
his biological birth from his mother’s womb)
would be such a spontaneous event, for it has
no possible explanation from the past. (If it
can be explained from the past, there is no
time travel involved.) However, that is just a
figurative example, for, as already explained,
time machines are impossible.

Is mundane human creativity (more gener-
ally, the creativity of all living organisms), or
just the existence of life, an example of such
spontaneity? I believe so. If so, that would
be empirical proof supporting the mixed-type
FDE model against other models.

4.7 Spontaneity vs chance

Note that spontaneity differs from chance.
Mathematically, this is readily understood.
Spontaneity is modeled by mixed-type FDEs.
“Chance” can mean many things: in this con-
text we take it to mean stochastically per-
turbed retarded FDEs. Though the two mod-
els are mathematically very distinct, the so-
lutions have some similarity. One distinction
is this: spontaneity leads to reduction of en-
tropy or increase in negentropy. Chance, on
the other hand, as in classical thermodynam-
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ics, is believed to usually lead to an increase
of entropy. Of course, chance too could lead
to a decrease in entropy; however, as a rule of
the thumb, one expects that the time scale for
that to happen would be much longer than
the time scale for decrease of entropy with
spontaneity.

4.8 Microphysical
consequences

Whether or not scientists accept the empiri-
cally observed creativity of living organisms,
which is our most common experience, we
at least now have a model for it. Biology is
becoming increasingly important, and mixed-
type FDEs are the first model which can ac-
count for some basic biological observations.

Since the effects of advanced interactions
would be tiny one may imagine that they
are especially important at the molecular
level, for biological macromolecules, say. Cur-
rently, molecular simulation is done using out-
dated Newtonian many-body theory, and the
Coulomb force. It would be interesting to
redo this using first retarded FDEs and then
mixed-type FDEs.

At the level of single particles, the con-
sequences of the mixed-type FDE model are
likely to be even more prominent. We will take
up the relation of a tilt to quantum mechanics
in more detail in the next and last article in
this series. Mundane experience shows that
living organisms are somehow able to scale up
spontaneity to the macrophysical level. Is this
relevant to the current technological problem
of scaling up quantum computers?

5 Conclusions

Physics must be compatible with biology and
our mundane experience. A simple way to
achieve compatibility is to permit a tilt in
the arrow of time. This corresponds to using
mixed-type FDEs (for both electrodynamics
and gravitation). The resulting (non-local)
physics is non-mechanistic. With mixed-type
FDEs full control of future is not possible
from past and much less so is control of the
past possible from future. This understanding
resolves all paradoxes of time travel. Hence,
also, time travel can only be of the second
kind: without machines (i.e, time travel is
possible, but time machines are not). The
correct refutable consequence of realistic time
travel is the existence of spontaneous events,
not hordes of tourists from the future.
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Abstract

It is shown that the famous paradox of two charged capacitors is successfully resolved if all
the energy changes in the system are properly considered when some of the charges are
transferred from one capacitor to the other. It happens so even when the connecting wire
has an identically zero resistance, giving rise to no Ohmic losses in the wire. It is shown
that in such a case the “missing energy” goes into the kinetic energy of conducting charges.
It is shown that radiation plays no significant role in resolving the paradox. The problem
can be formulated and successfully resolved in a novel form, where the capacitance of the
system is increased by stretching the plates of the original capacitor, without involving any
connecting wires in a circuit. There is an outward self-force due to mutual repulsion among
charges stored within each capacitor plate, and the work done by these self-forces during
an expansion is indeed equal to the missing energy of the capacitor system.

1 Introduction

In the famous two-capacitor paradox[1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11] one of the capacitors,

say C1, of capacitance C is initially charged
to a voltage V0 with charge Q0 = CV0 and
energy U0 = CV 2

0 /2 = Q0V0/2 = Q2
0/(2C),

while the other similar capacitor, C2, is ini-
tially uncharged, thereby the total energy of
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the system being U0. Both capacitors are as-
sumed be to identical in every respect. Now
C1 is connected to C2 using a conducting
wire, resulting in transfer of some charges
from C1 to C2. From symmetry each capaci-
tors will end up with charge Q0/2 and voltage
V0/2, with energy of each as CV 2

0 /8 = U0/4.
Therefore the total energy of the system will
be U0/2. What happened to the other half of
the energy?

Puzzling though this might appear at a
first look, the loss of energy is easily explained
if we consider the Ohmic losses in the con-
necting wires. Suppose the connecting wires
have a resistance R (Fig. 1), then the charg-
ing current will be (V0/R)e−2t/(RC) and the
dissipated energy will be,

∫ ∞

o

I2R dt =
∫∞
o

(
V0

R
e−2t/(RC)

)2
R dt

=
CV 2

0

4
= U0

2
. (1)

The above equation is true for any finite value
of R. But what happens if there were no
Ohmic losses, e.g., if in our ideal hypothet-
ical case the resistance were identically zero
(a superconductor!). The total energy in the
two capacitors, however, is still half of the
initial energy, so where does the remaining
energy disappear?

Of course there is nothing special about the
two capacitors being identical. In the case
the two capacitances C1 and C2 are unequal,
the initial stored energy U0 = Q2

0/2C1 af-
ter transfer of charges reduces to Q2

0/(2(C1+
C2)) = U0C1/(C1 + C2). This implies a loss

Figure 1: Charging a parallel plate capacitor.

of energy[12]

∆U =
U0 C2

C1 + C2

. (2)

For equal capacitances (C1 = C2) the energy
loss reduces to U0/2, as derived earlier. Of
particular interest is the case for large C2

(C2 → ∞), where all stored energy is lost.

Since the charges undergo acceleration
while moving from higher to a lower potential
in case of zero resistance, can it be that whole
of the missing energy appears as radiation
from these accelearted charges? The current
belief seems to be that the missing energy is
radiated away.[13, 14] It should be clarified
that here we are not talking of the thermal
electromagnetic radiation like in a resistance
wire, but of electromagnetic waves radiated
from an antenna system. As we will show in
Section 4, the present radiation calculations
are based on circular arguments. Moreover
from maximum possible radiation losses from
Larmor’s formula we will argue that missing
energy cannot be accounted for by radiation
losses, and that the radiation hypothesis does
not offer a satisfactory resolution of the para-
dox.
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2 Where does the

missing energy go?

The missing energy actually goes into the ki-
netic energy of conducting charges getting
transferred from C1 to C2 for R = 0[12]. Ac-
tually one has to be cautious when extremely
low resistances are considered. The conduc-
tivity of a metal is directly proportional to
the characteristic time τ between successive
collisions of the charge carriers that results
in loss of directional correlation[1, 15]. Drift
velocity in the conductor is qEτ/m, where E
is the electric field and q is the electric charge
and m is the mass of the charge carrier (an
electron!). A typical value for τ in the met-
als is ≈ 10−14 sec with typical drift velocity
usually a fraction of a mm/sec. The resis-
tivity is ∝ 1/τ , and low resistivity implies τ
is large and then the mean free path λ be-
tween collisions (∝ τ) would also be large. In
that case there will be fewer collisions and in
an extreme case, we could assume that the
mean free path λ will be large enough to be
longer than the length of the wire or chan-
nel joining the two capacitors. This could be
termed as R = 0 case. Then the conducting
charges will steadily gain velocity and kinetic
energy as the collisions will be minimal. In
that case the charges will not undergo Ohmic
losses and when they reach C2 their kinetic
energy will be equal to the potential energy
difference during the transfer between two ca-
pacitors.

The gain in kinetic energy in the absence
of Ohmic losses is easily calculated from the
change in potential energy of each charge.

The charge gains a velocity increment ∆v =
qE∆t/m or m∆v = qE∆x/v which implies
a kinetic energy gain ∆(mv2/2) = q∆V .
For a charge transfer Q from C1 to C2, the
voltage difference between the two becomes
∆V = (Q0 − Q)/C1 − Q/C2. Then the to-
tal kinetic energy gained by charges during a
total charge transfer Q2 from C1 to C2 is,∫ Q2

0

(
Q0 −Q

C1

− Q

C2

)
dQ =

Q0Q2

C1

−Q2
2

2

(
1

C1

+
1

C2

)
. (3)

As the voltage difference between C1 to C2

becomes zero at the end, then (Q0−Q2)/C1 =
Q2/C2 = Q0/(C1+C2), implying that the to-
tal kinetic energy gained by the charges from
(3) is Q2Q0/(2C1) = Q2V0/2 = U0C2/(C1 +
C2), in agreement with the energy loss ∆U in
(2).
When the charges finally get deposited on

plates of the capacitor C2 this kinetic en-
ergy should get transferred to the plates of
C2, which as we discuss later, could even be
utilized by an external agency, or else the
plates of C2 would get heated. The problem
as posed is between two equilibrium states
in which the charges are stationary both ini-
tially and in the final state. Thus there
should be no residual kinetic energy in the
system. It implies the charges when finally
get deposited on plates of the capacitor C2,
they remain stuck there. This means that
all the kinetic energy gained by the mov-
ing charges in the absence of Ohmic losses,
should get transferred to the plates of C2,
which we assume to be not free to move
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(clamped to the lab bench!). There will
thus be necessarily inelastic collisions and
the plates of C2 would get heated because
of these inelastic collisions. There could also
be some partial energy loss in sparks but as
we show later the whole energy loss cannot
be accounted for by the radiation.
Actually R → 0 is only a mathematical

idealization which may not hold good when
we go below certain very low resistance val-
ues. Let us take a material which can turn
into a superconductor, say lead. If we lower
its temperature, the resistance of the conduc-
tor will reduce steadily up to a certain point
(7.22 K for lead),[15] below which it may sud-
denly become zero as the material turns into
a superconductor. That means either it will
be a normal electrical resistance with Ohmic
losses above this turnover point or it will be
zero resistance without Ohmic losses below
this point. Thus there is a discontinuity in
resistance and one does not have R → 0 in
limit.
Let us examine the idea of R → 0 in

limit in a non–superconductor material. Re-
sistance of a wire is R = ρL/A where ρ is the
resistivity, L is its length and A is the cross
section. We cannot increase A beyond cer-
tain values (for example, it cannot be larger
than the capacitor plate size), so we can de-
crease ρ or/and L to reduce R. Now ρ ∝ 1/λ,
the mean free path, meaning R ∝ L/λ. Usu-
ally L/λ ∼ 107 for a few cm long wire, how-
ever starting from some finite resistance, as
we go to lower R, by decreasing ρ and thereby
increasing λ or decreasing L, the ratio L/λ
will decrease. And near some critical value
of resistance, say Rc, λ will approach L, that

is the mean free path will become equal to
the length of the wire or channel joining the
two capacitors. At this stage 1/e th fraction
of the current carrying charges will pass the
length of the wire without suffering any col-
lisions and thus without undergoing Ohmic
losses. The remaining charges will of course
undergo Ohmic losses due to collisions. It is
of course statistically a random process. Let
us denote the electric current by the latter
as I1 and that by the collisionless charges
as I2. Then P1 = V I1 fraction will be the
Ohmic losses and P2 = V I2 fraction will be
the power going into the kinetic energy of
charges. Thus there will be sharing of power
losses between the two processes, with total
power loss as P = P1+P2 = V (I1+I2) = V I.
Now let us see what will happen as we

reduce R. Initially with much higher resis-
tance than Rc, with L/λ ≫ 1, there will be
only P = P1, the usual Ohmic losses. As we
reach Rc, the Ohmic losses (P1 fraction) will
steadily decrease while the P2 fraction will
increase. For much lower resistance than Rc,
there will be almost no collisions, there will
be only P = P2, with the conducting charges
gaining the kinetic energy in the absence of
collisions and the P1 losses being zero.
In (1) it is implicitly assumed that all

charges undergo Ohmic losses however low
the collision rates might be (even when R →
0), and accordingly the dissipation losses are
calculated. In reality it may not even be
proper to still think of resistance below Rc

in the usual ohm’s law sense, when the colli-
sions will be few and far between. Therefore
R → 0 might not be very meaningful much
below Rc. Thus the mysterious difference be-
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h0

Stopcock

Conduit filled with pebbles

T1 T2

Figure 2: The equivalent case of missing-
energy during transfer of water between two
tanks of equal storage capacity

tween R = 0 and R → 0 cases appears only
because in the latter it is implicitly assumed
that the charges lose their kinetic energy into
Ohmic losses however low their collision rates
might be, and accordingly we calculate the
dissipation losses in (1), while in an identi-
cally zero resistance case, Ohmic losses are
not even considered.

3 The equivalent case of

water transfer between

two tanks

An equivalent example exists in case of a wa-
ter transfer from one full tank to an iden-
tical empty tank under the force of gravity
(Fig. 2)[12, 16]. Initially the gravitational po-
tential energy of the water to a height h0 in
tank T1 is U0 =

∫ h0

0
ρgAzdz = ρgAh2

0/2 =
Q0V0/2, where ρ is the density of the water,

A is the cross-section area of each tank, g is
the acceleration due to gravity and z is the
vertical distance. Then Q0 = ρAh0 is the to-
tal quantity (mass) of water and V0 = gh0

is the gravitational potential. Now we open
the stopcock, so that water is transferred
from tank T1 into tank T2 through a con-
duit (Fig. 2). However when we consider the
friction with the conduit walls and obstruc-
tions within (say, pebbles inside the conduit
blocking a free flow of water) then the water
loses all its kinetic energy during the transfer
to tank T2. At the end with each tank having
Q0/2 amount of water up to height h0/2, the
potential energy of the water in each tank is
Q0V0/8 = U0/4 with the total energy of the
system being U0/2, exactly as in the two ca-
pacitor case. This is because the water in the
upper half of tank T1 goes into the lower half
of tank T2, then half of the total water mass
(i.e., Q0/2) which earlier was at a height be-
tween h0/2 and h0 in T1 is now at a height
between 0 and h0/2 in T2, thus ending up
at an average height lower by h0/2, implying
an energy loss of U0/2. If there is no friction
with the conduit walls (and no obstructions
within either), from Bernoulli’s theorem[1]
(or from simple energy conversion between
potential and kinetic energy) the water would
exit with a velocity v =

√
2g(h1 − h2) or

ρv2/2 = ρ∆V , at any moment when the
heights of water columns in T1 and T2 are
h1 and h2 respectively, with a gravitational
potential difference ∆V = g(h1 − h2). The
water will thus move in the conduit with a ki-
netic energy that could be even utilized with
a suitable device attached to the conduit (a
tiny electric power generator!) otherwise this
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energy will be carried to the tank T2 and ul-
timately lost as heat there by the time things
have settled down.

For unequal tank capacities, let T1 and
T2 have cross-section A1 and A2 respectively.
Then the total water that will get transfered
from T1 to T2 is Q2 = Q0A2/(A1 + A2),
and the height of water columns in the two
tanks will be h = h0A1/(A1 + A2). That
means this much amount of water would have
fallen from a height of initial average value
(h + h0)/2 in T1 to a final average value
h/2 in T2, implying an average height loss
of h0/2 and the loss in potential energy of
Q2 gh0/2 = Q2V0/2 = U0A2/(A1 + A2). It
also shows readily why the loss of energy in
the tank (charged capacitor) system is the to-
tal transferred water (charge) Q2 multiplied
by half of the initial potential, i.e., V0/2.

4 Possibility of radiation

losses

In the radiation hypothesis the authors in
general assume that the power losses (irre-
spective of the expression for radiation losses,
(see e.g., (8), (9) and (10) in [13]) can be
written as VXI = Prad and have thus put
VX = V12, where V12 is the potential differ-
ence between the two capacitors. Thus their
assumption directly leads to Prad = V12I and
therefore

∫
Prad dt =

∫
V12I dt =

∫
V12 dQ.

From our (3) we know the right hand side
is CV 2

0 /4 irrespective of the time depen-
dence of V . No wonder authors also get∫
Prad dt = CV 2

0 /4, as that is a built–in as-

sumption. This way one is bound to get the
same final result of energy losses irrespec-
tive of any other details of the exact radi-
ation process that might have been assumed
(whether it is a magnetic dipole radiation like
the authors[13] assumed or some other pro-
cess), and which could therefore be chosen
any arbitrary function of time. In this partic-
ular case the authors emphasize that charg-
ing/discharging is not instantaneous. But ac-
cording to this procedure for any arbitrary
P (t) one could define radiation resistance as
Rr = P (t)/I2, and then writing V12 = IRr,
one gets P = V12I which no wonder gives∫
Prad dt = CV 2

0 /4, and actually that way
one does not really prove anything about the
radiation process. It is not the radiation hy-
pothesis that gets confirmed this way, it is
only the a priori assumption of equating radi-
ation losses Prad (or losses in any other way!)
to V12I which begets the apparently right an-
swer. For this one does not even need to de-
rive any complicated formulae for radiation
expressions and it does not prove in any way
that the radiation is that of magnetic dipole
or some other “multipole”. Different assump-
tion about the radiation process (whether it
is electric dipole or magnetic dipole or some
other multipole) only at most may give a
different time dependence of function V (t)
or Q(t), but as the time integral of total
charge transferred will be Q0/2 and voltage
V0/2, one is bound to get the result for en-
ergy dissipated as CV 2

0 /4 = U0/2. Moreover
when charging/discharging is not instanta-
neous, the Ohmic resistance is not identically
zero and the lost energy CV 2

0 /4 should then
be distributed between dissipation in R and
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radiation. But we find that the energy dissi-
pation is fully satisfied by the Ohmic losses
alone (Eq. (1)) even when the resistance re-
duces in limit to zero (R → 0) and the radi-
ation hypothesis is not at all needed.
It is possible to estimate how much maxi-

mum radiation losses can be there. From Lar-
mor’s formula[17] we know that the energy
radiated by a non-relativistic charge acceler-
ated for a time interval ∆t (and thus having
gained a velocity v = a∆t in the absence of
Ohmic losses) is 2q2a2∆t/3c3. For all the en-
ergy gained by the charge due to the potential
difference to go into radiation implies

qV12 =
mv2

2
=

2q2a2∆t

3c3
=

2q2av

3c3
(4)

or
v

a
= ∆t =

4q2

3mc3
∼ re

c
, (5)

where re = q2/mc2 is the classical electron
radius.[17] Thus for all of the missing en-
ergy U0/2 in the capacitor paradox to ap-
pear as radiation is possible if and only if
the charges move from one capacitor to the
other in a time interval of the order in which
light travels the classical radius of the elec-
tron re, which is an impossible condition. In
fact the radiation losses, due to the acceler-
ation of the charges will be extremely small
and can be made arbitrarily small by making
the time over which the charge moves from C1

to C2 large enough. For example, an external
agency using some electrical probe (“magic
tweezers”),[1] could pick up charges one by
one from C1 at a higher potential and deliver
them to C2 at a lower potential at a leisurely
rate (quasi-statically) and the difference in

the potential energy of these charges can be
utilized by the transferring agency. There
will be no radiation losses, nor will there be
any Ohmic loses. We shall further discuss one
such alternate example in the next section.

5 A capacitor is charged

without using resistive

wires

Instead of charging a capacitor C2 from C1

using a wire of zero resistance, we could pose
the problem in a different way. Let us sup-
pose that we can expand or stretch the plates
of a capacitor quasi-statically so that each
plate area becomes double of its previous
value, but without changing the plate sep-
aration. For simplicity we assume a paral-
lel plate capacitor with dimensions a and b
of the capacitor plates much larger than the
plate separation, h, so that the electric fields
within the capacitor can be considered, with
negligible errors, to be uniform as in the case
of infinite plates. Let σ0 = Q0/A be the ini-
tial uniform surface charge density on the two
oppositely charged plates, with A = ab as the
surface area of each plate. Then the electro-
static field is a constant, 4πσ0, in the region
between the two plates which thus have a po-
tential difference V = 4πσ0h. The field of
course is zero everywhere outside. The mu-
tual force of attraction on each plate is 2πσ2

0

per unit area, and the electric potential en-
ergy U0 accumulated in separating the two
plates by a distance h is 2πσ2

0Ah. The ca-
pacity of a parallel plate capacitor is given
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by C = A/(4πh),[15] and with energy U0 =
CV 2/2 = Q2/2C.
With an expansion of the capacitor plates’

areas by a factor of two, the charge den-
sity becomes half with the charges now dis-
tributed over its double charge capacity. The
final energy of the capacitor is now only half
of the previous value and the problem returns
to the standard two capacitor paradox. The
question again rises where has half of the en-
ergy gone. Now that there are no connecting
wires with their resistance coming into pic-
ture, so we do not have to worry about Ohmic
losses. There are no radiation losses either.
As it is a quasi-static expansion there is no
gain in the kinetic energy of current carrier
charges. But we still have a problem of the
missing energy.
Actually in addition to the force of at-

traction between two plates of a capacitor,
there is also an outward force of repulsion
within each capacitor plate. The presence of
such self-repulsive forces within the capacitor
plates and the work done against them dur-
ing a Lorentz contraction of the system when
the charged capacitor system moves from one
inertial frame to another, was first shown ex-
plicitly by Singal[18] and accordingly the fa-
mous Trouton-Nobel experiment[19] was re-
solved from energetic points of view.[20] Here
we will show by explicit calculations that the
energy spent by the capacitor system during
expansion is indeed equal to the missing en-
ergy, i.e, CV 2

0 /4.
Adapting the calculations of [18] to our

present case, we have calculated these force
of self-repulsion in Appendix, where we find
the expression for the rate of work done dur-

ing an expansion of capacitor plates by the
forces of self-expulsion as dW/dη = U0 /η

2

(c.f. (16)) with η as the expansion factor.
Now integrating from initial η = 1 to a final

expansion factor η0, we get the amount of
work done by the system during an expansion
as W = U0 [1− 1/η0], which is equivalent to
the energy loss ∆U in (2) with the charge
capacitance having increased by a factor η =
(C1 + C2)/C1. In particular, for η0 = 2, we
get the work done during expansion as W =
U0/2 = Q2

0/4C = CV 2
0 /4, which indeed is the

energy that were missing in the two equal–
capacitor problem.
The above expression for energy change of

the capacitor is quite general and it shows
that if η0 → ∞, whole of the capacitor energy
goes into the expansion of the plates (again
this amounts to loss of all stored energy in (2)
for C2 → ∞). We can look at it in another
way. If we were to contract the system (η0 <
1), then we (an external agency!) have to
do work against the forces of electrical self-
repulsion within the capacitor plates. In fact
the energy stored in the capacitor is nothing
but the work done in bringing the charged
capacitor plates from an infinite size to finite
dimensions which is essentially the work done
in moving the charges from infinity (against
their electrical forces of mutual repulsion) to
the finite-sized plates of a capacitor.

6 Conclusion

We have shown that the famous paradox
of two charged capacitors is successfully re-
solved if one properly considers all the energy
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changes in the system. It was shown that the
“missing energy” goes into the kinetic energy
of conducting charges when the connecting
wire has an identically zero resistance. The
problem was formulated in an alternate form,
without involving connecting wires in a cir-
cuit, where the capacitance of the system is
increased by stretching the plates of the orig-
inal capacitor. The paradox was properly re-
solved by showing that the work done by the
outward self-forces, arising due to mutual re-
pulsion among charges stored within each ca-
pacitor plate, during an expansion is equal to
the missing energy of the capacitor system.
It was also shown that radiation plays no sig-
nificant role in resolving the paradox.
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7 Appendix

7.1 Work done during a
stretching of the plates of
an ideal capacitor

By an ideal capacitor we mean here that the
surface charge density is uniform throughout
on both plates. We assume that the charges

z

a

b

+ 0

- 0 h

dx'y

x
xx'

dx

Figure 3: The geometry of the parallel plate
capacitor for calculating the forces of self-
repulsion within each plate of the capacitor.
σ0 is the surface charge density.

somehow remain ”glued” on the surface and
the surface charge density decreases as the
rubber–like plate surfaces are stretched. Let
us assume the plates to be lying in the x-
y plane (Fig. 3). The electric field between
the plates is parallel to the z-direction. The
potential energy of the system as well as
the energy in the electrostatic field is U0 =
2πσ2

0abh, where a, b are the plate dimensions
and h is the plate separation.

Let us assume that we expand the plate di-
mensions by say, stretching them along the
x-axis. It should be noted that there are
electromagnetic forces of repulsion on charges
within each plate, along its surface. We may
generally ignore these repulsive forces, but
during a stretching of the plates parallel to
the plate surface, work will be done by these
forces. The forces are indeed small near the
plate-centers and become appreciable as we
go away from the plate centers, becoming
maximum near the plate-edges, and it might
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seem that for a and b large enough as com-
pared to h, the effect of these forces should
be negligible. But as we will see below, the
amount of work done by theses forces during
a plate expansion is proportional to the plate
dimensions.

As the expansion considered is along the
x-axis alone, then only the x-component of
the forces of repulsion will be relevant for our
purpose. Now the mutual electrostatic force
of repulsion between two line charges, each
with a linear charge density λ and of a length
b, separated by a distance x is easily calcu-
lated to be 2λ2(

√
b2 + x2 − x)/x.

z

a

b

+ 0 /

- 0 /h

y

x
a/2 x

Figure 4: The parallel plate capacitor ex-
panded by a factor η with σ0/η as the surface
charge density.

Accordingly the net force of repulsion on a line charge of linear charge density λ = σ0 dx
lying at x, due to both plates is given by,

Fdx = 2σ2
0 dx

[∫ 2x−a

0

dx′
√

b2 + (x− x′)2 − (x− x′)

x− x′ −
∫ 2x−a

0

dx′ x− x′√
h2 + (x− x′)2

·
√
b2 + h2 + (x− x′)2 −

√
h2 + (x− x′)2√

h2 + (x− x′)2

]
. (6)

Here the second integral term represents the x-component of the force of attraction on the
line element at x due to the oppositely charged plate lying at a distance h below (Fig. 3).
We have taken the line element at x to be in the right-half of the plate, which experiences
a net force towards the +ve x-axis; the left-half of each plate would equally experience a
net force along the −ve x-axis. Further, only the portion of each plate lying between 0 and
2x−a contributes a net force at x, the force due to the remaining portion of each plate gets
cancelled because of its symmetry about x.
With a change of variable x− x′ = ξ, we can write,

F = 2σ2
0

∫ x

a−x

dξ g(ξ) (7)

where

g(ξ) =

√
b2 + ξ2 − ξ

ξ
− ξ

h2 + ξ2
·
(√

b2 + h2 + ξ2 −
√

h2 + ξ2
)
. (8)
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Fig. 4 shows a capacitor whose plates have undergone a uniform expansion by a factor η
and accordingly the charge density reduced to σ0/η. Now the charges at x on the expanded
plates move an infinitesimal distance (x− ηa/2)dη/η further away with respect to the plate
centers, during the change in expansion factor from η to η + dη.
Then the rate of work being done by the forces of self-interaction, during expansion of

both plates, is written as ,

dW = 8
σ2
0

η3
dη

∫ ηa

ηa/2

dx (x− ηa/2)

∫ x

ηa−x

dξ g(ξ). (9)

One factor of 2 in the above expression has entered because an equal work is done on both
halves of either plate, while another factor of 2 arose because work is done during expansion
of each of the plates.
The rate of work done can be written as

dW = 4
σ2
0

η3
dη

∫ ηa

0

(2x− ηa)f(x) dx, (10)

where

f(x) =

∫
dξ g(ξ) =

√
x2 + b2 − x+

√
x2 + h2 −

√
x2 + b2 + h2

− b ln

(√
x2 + b2 + h2 − b√

x2 + h2
· x√

x2 + b2 − b

)
. (11)

With the help of the indefinite integrals,∫
ln

(√
x2 + b2 + h2 − b√

x2 + h2

)
dx = x ln

(√
x2 + b2 + h2 − b√

x2 + h2

)
+ b ln

(√
x2 + b2 + h2 − x

)
+h tan−1 bx

h
√
x2 + b2 + h2

,(12)

and ∫
x ln

(√
x2 + b2 + h2 − b√

x2 + h2

)
dx =

1

2
(x2 + h2). ln

(√
x2 + b2 + h2 − b√

x2 + h2

)
− b

2

√
x2 + b2 + h2, (13)
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and after a simplification, we finally get the following expression for the rate of work done
during an expansion of the system,

dW = 4σ2
0

[
2h2

3

(√
η2a2 + h2 − h+

√
b2 + h2 −

√
η2a2 + b2 + h2

)
−b2

3

(√
b2 + h2 − b+

√
η2a2 + b2 −

√
η2a2 + b2 + h2

)
+
η2a2

6

(√
η2a2 + h2 − ηa+

√
η2a2 + b2 −

√
η2a2 + b2 + h2

)
+
ηab2

2
ln

(√
η2a2 + b2 + h2 − ηa√

b2 + h2
· b√

η2a2 + b2 − ηa

)

−ηah2

2
ln

(√
η2a2 + b2 + h2 − ηa√

b2 + h2
· h√

η2a2 + h2 − ηa

)

−bh2 ln

(√
η2a2 + b2 + h2 − b√

η2a2 + h2
· h√

b2 + h2 − b

)

+ ηabh tan−1 ηab

h
√
η2a2 + b2 + h2

]
dη

η3
. (14)

We can expand this complicated-looking expression in terms of an ascending power series in
h/ηa , h/b , h/

√
η2a2 + b2 as

dW = 4σ2
0 ηabh

[
π

2
+O(

h

ηa
,
h

b
,

h√
η2a2 + b2

)

]
dη

η3
, (15)

where O(· · ·) represents the first and higher order power series terms in h/ηa, h/b etc.
Therefore for h ≪ ηa, b, we get,

dW
dη

=
2πσ2

0abh

η2
=

U0

η2
. (16)
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Abstract

The  paper  considers  the  non-relativistic  Schrodinger  equation  for  a  particle  under  the  influence  of  a

homogeneous field. The strategy of Hamilton-Jacobi method permits the solutions take the well known results

from the classical mechanics. On the other hand, the generators of the Lie group SO(3) for the homogeneous

quantum rotator in the large radius limit can be contracted to the Euclidean group E(2) for the motion in the

homogeneous field.

Key  words:  Homogeneous  field,  Euclidean  group  E(2),  Hamilton-Jacobi  method,  Contraction  of  SO(3),
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Introduction 

The  motion  of  a  system having  two degrees  of

freedom is said to take place in two dimensions.

The simplest motion is the motion of a particle in

a  homogeneous  external  field  in  Cartesian

coordinates (x, y, say), with the force  acting

on the particle. The potential energy of the particle

in  the  homogeneous  field  is  of  the  form:  

 ;  choosing  the

constant so that  for  we

have .

Two interesting cases of the homogeneous fields

are an electric  field of intensity   acting on the

charge -e with the force , and the other is

the gravitation field in the y coordinate with the

force  .   Projectile  motion

constitutes a very elementary problem of classical

mechanics  since  the  works  done  by  Galoleo

Galilei  and  Sir  Issac  Newton.  The  projectile

motion is one of the main problems used to teach

elementary  physics  and  not  well  known  facts

about it appear in physics literature by now. Many

of these ideas are presented in a compelling paper

by Groetsch [1], Rao [2] and [3]. Also, the motion

of the charge in the homogeneous field   is  the

elementary  problem in  the  electromagnetic  field

too [4].

Applications of group theory in physics establish

the  standard  framework  for  the  application  of

geometric  symmetry  groups  to  the  treatment  of

Quantum  mechanics  systems  that  possess  some

geometric  symmetry. Contraction  is  a process to

reparameterize the Lie group’s parameter space in

such a  way that  the  group properties  in  the  Lie

algebra remain well defined. The parameter space

for the contracted group, Casimir operators, matrix

elements  of  operators  are  well  defined.  Also,

contraction provides limiting relations among the

special functions of mathematical physics.

One  of  the  interesting  group  contractions  is  the

group SO(3)  that  is  contracted  to  the  Euclidean

group E(2). The internal space-time symmetries of

massive and massless particles are isomorphic to

SO(3)  and E(2)  respectively.  It  has  been  shown

that  [5] transverse rotational  degrees  of freedom

for massive particles become contracted to gauge

degrees of freedom for massless particles. 
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In  this  work  we  investigate  the  motion  of  the

particle  in  the  homogeneous  field  in  two

directions. In particular, it is shown that by using

the  Hamiltonian-Jacobi  method  we  get  the  well

known results from the classical mechanic. Then,

we show that  quantum rotator  on  the  sphere  S2

with  Lie  group  SO(3)  can  be  contracted  to  the

motion of the particle with Euclidean group E(2)

on the plane R2.

The paper  is  organized  as  follows:  we begin by

proposing the Schrodinger equation for the motion

of  a  particle  in  the  homogeneous  field  in  two

dimensions  and  the  limiting  behavior  of  it,  is

investigated which goes to the well known results

from the classical mechanics. In section 3, we will

see  that  Quantum  projectile  yields  from  the

contraction  of  the  Quantum  rotator  and  its

eigenvalues  and eigenfunctions  take the form of

the motion in the homogeneous field. Finally, we

end the paper by conclusion.

2-1: Schrodinger equation for a particle in the

homogeneous two dimensional fields

In this section, a particle in the homogeneous field

is considered as a point mass M that its equation of

motion  must  be  solved  by  the  Schrodinger

equation.  Since,  the  latter  has  no  spatial

extensions,  this  amount  to  neglecting  issues  of

shape,  orientation  and  rotation  altogether.

Furthermore,  we  suppose  lift  forces  to  be

negligible too.

This motion has 2 degrees of freedom in the plane

and  can  be  considered  as  a  problem  with  the

classical group E(2) [6]. This group consists of all

the  transformations  on  plane.  In  other

words,  the  Euclidean  group  E(2)  consists  of

matrices  of  the  form  .  This

group has three infinitesimal generators 

as following:

(2-1)

 With the commutation relations:

            (2-2)

The time independent Schrodinger’s equation for a

particle M in the X-Y Cartesian plane is:
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  (2-3)

Where  by  replacing  the  momentum  operators:  

 and   we have:

.

(2-4)

We  consider  the  coordinates  are  completely

separable as following:

(2-5)

So,  the  Schrodinger  equation  separates  into  two

terms:

                (2-6)

               (2-7)

These equations determine the motion of a particle

in  the  x-  and  y-coordinates  completely.  By

choosing appropriate variables the equation (2-6),

(2-7) are:

          (2-8)

Where  and  ; also 

and F is the force acting on the particle. Since the

potential  energy depend on the coordinates,  it  is

clear  that  the  energy  levels  form  a  continuous

spectrum  occupying  the  whole  range  of  energy

values  E  from   to  .  None  of  these

eigenvalues is degenerate, and they correspond to

motion which is finite. The equation (2-6), (2-7)

do not contain the energy parameter. Hence, if we

obtain  a  solution  of  them,  we at  once  have  the

eigenfunctions for arbitrary values of the energy.

Their  solutions,  which  are  finite  for  all  q

coordinate is called the Airy function [7].

Since,  we’ll  be  using  a  superposition  of  several

single energy solutions, we must go to the general

time dependent Schrodinger’s equation, which has

solutions  like  the  usual  time  independent

Schrodinger  equation.  So,  by  using  linear

combinations  of  time  dependent  solutions,  we

have:

                            (2-9)
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Where  N could  be  determined  from  the

normalization condition.

Two special cases for the potential energy are the

gravitational  field  and  the  electric  field.  For

gravitational  field  in  the  y-direction  we  have  

 . In this case the differential

equation (2-6) is a familiar equation for us, with

sinusoidal  solution  like   or    ,

where   and the complete solution is:

   

                                                                      (2-10)

The  other  case  is  the  electric  field  in  two

directions,  and  the  potential  energy  are:  

 ,  where  ℇ is  the

electric field and we have two Airy function for

the solution in the x- and y-directions.

2-2:  The  Hamiltonian-Jacobi  method  and  the

well known classical results

In this sub section we see that previous solution is

completely compatible with the classical solution

for  semi  classical  wave  function  by  using  the

Hamilton-Jacobi method [8]. Our Hamiltonian is:

         (2-11)

We obtain  the  Hamilton-Jacobi  equations  for  

(action) by replacing  by   and   by   in

the  Hamiltonians  (2-7),  (2-8).  Since  our

Hamiltonian is separable we obtain two equations:

 

                                                                       (2-12)

The  explicit  dependence  of   and   on   is

present only in the last terms, so, for   we have:

         (2-13)

Now,  if  we  choose  the  particle  is  in  the

gravitational field in the y-direction we have for  

 :
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                               )2-14(

And for we also have:

(2-15)

To  get  out  the  explicit  solutions  of  and  

coordinates we have:

                                        (2-16)

Where  is an arbitrary constant, and we can find

it by using initial conditions of the problem. For

simplicity at  initial  time  we take it  

and   is  the kinetic  energy   ,  so for  

equation we have:

,                                                       (2-17)

And for  coordinate:

(2-18)

Again at initial time  is a constant and we

take it equal zero, and          

, so, we obtain:

                              (2-19)

On the other hand the action is:

(2-20)

And semi classical wave function is:

(2-21)
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Where  is the normalization parameter. Now, we

want  to  compare  the  relation    (2-21)  with  the

wave  function  (2-10).  So,  by  replacing  the

asymptotic  relation  for  Airy  function,  i.  e.  

 and  ignoring  the  normalizing

parameters  and , the right hand side of two

relations (2-10) and (2-21) are the same.

For the electric field in two directions we obtain:

                  (2-22)

By  choosing  appropriate  conditions,  we  could

obtain the well known results for this case too.

3:  Quantum  rotator  and  its  relation  to  the

Euclidean motion in the gravitational field

A rigid body may be defined in mechanics by the

angular momentum operator J, which has the Lie

group SO(3) on the sphere S2. The generators of

this group are:

       (3-1)

The  commutation  relations  are   .

The Hamiltonian of a homogeneous rigid body is

[8]:

(3-2)

Where I is the moment of inertia, the parameter 

is the polar angle and  is the azimuthal angle. We

are  familiar  with  the  corresponding  eigenvalues

and eigenfunctions as follows:

                                            (3-3)

Under contraction with respect to the subalgebra

of rotations about the Z-axis and considering the

limit  , the operators   transform to the

operators   respectively.  So,  the

commutation relations of the contracted group, i.

e., the group  E(2) are:

             

                                                                        (3-4)
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This group consists of rotations about the Z-axis,

and displacements of the origin in the x- and y-

directions. So, we have:

(3-5)

And  its  wave  function  

 is  transformed to

the  ,  where    is  the  Bessel

function  [6].  This  answer  is  equal  to  the  wave

function (2-10),  because the Airy function could

be written in terms of the Bessel functions [7]. For

the  potential  part  of  the  Hamiltonian  under

contraction we have:

                    (3-6)

Where we use the classical mechanics to compute 

.  If  we replace   and  take  the  limit   

  for the relation (3-6), we conclude that:

                                     (3-7)

So, the contracted Hamiltonian is:

                                             (3-8)

This  means  that  by  changing  the  corresponding

space  of  the  motion  from  S2 to  R2 by  the

contraction, the rigid Quantum rotator transformed

to the projectile motion.

Lorentz group with respect to the time coordinate

yields  the  homogeneous  Galilei  group.

Contraction  of  the  de  Sitter  group  yields  the

inhomogeneous  Lorentz  group  and  these  are

because  of  the  great  magic  power  of  the

contraction! 

4: Conclusion

Many physical systems exhibit symmetry. So, it is

possible  to  use  group  theory  and  algebra  to

simplify both the treatment and the understanding

of the problem. Central two-body problems, such

as the gravitational and coulomb interactions, give

rise to systems exhibiting spherical symmetry (two

particles)  with  the  Lie  algebra  so(3)  or  broken

symmetry (planetary systems) with the Lie algebra

e(2).

In  this  paper  the  motion  of  a  particle  in  the

homogeneous  field,  such  as  the  gravitational  or

electric  field,  is  analyzed  with  the  standard

Quantum and  semi-classical  method.  It  has  also

indicated that the Quantum mechanics behavior of
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the eigenfunctions and eigenvalues transformed to

the classical results in the limiting case.

We have shown that the contraction of the group

SO(3)  takes  our  rotator  on  the  sphere  S2  to  the

projectile motion on R2 plane, i. e., Euler rotations

for  our  rotator  under  contraction  take  it  to  the

simple motion on a flat space R2.

We would like to end our paper with some words

from Galileo:

The great book of Nature lies ever open before our

eyes and the true philosophy is written in it,  but

we cannot read it unless we have first learned the

language  in  which  it  is  written.  It  is  written  in

mathematical  language  and  the  characters  are

triangles, circles and other geometrical figures [9].
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Abstract

In this paper, the concept of 2-Dimensional (2-D) Bravais Lattices is being arrived at using
a constructivist approach, which is similar to the Socratic method of inquisitive questioning
followed up with analysis and activity to obtain a comprehensive understanding of the
idea. By posing the question as to how to construct a lattice by repeating a fundamental
unit, we have created an activity that involves playing with triangles and quadrilaterals
and figuring out which of them could easily tessellate to cover the 2-D chart without
leaving any gaps. This lead to the construction of the five possible 2-D Bravais Lattices.

1 Introduction

2-D Bravais lattices were elementary and
unrealisable theoretical constructs till the re-
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alisation of Graphene in 2004 [1], which was
the first 2-D crystalline structure that is sta-
ble and has shown tremendous promise in a
very short time. Various patterns on wallpa-
pers [2] have exploited the possibility of pe-
riodic or symmetrical arrangements in 2 di-
mensions. Now many more 2-D crystalline
structures such as NbS2,MoS2 etc. are be-
ing realised [3] [4].

On questioning students, it was found that
recalling the five 2-D Bravais Lattices, af-
ter certain lapse of time post examinations
is difficult and putting together all the 14
3-Dimensional (3-D) Bravais Lattices is defi-
nitely a daunting task at the undergraduate
level.

There is a new found enthusiasm in
the Physics community to innovate and ex-
plore ways of teaching fundamental concepts,
wherein, one tries to systematically iden-
tify the alternative conceptions and gaps in
learning and develop strategies to overcome
them.This process has come to be known as
Physics Education Research (PER) [5]. Fur-
ther, new paradigms in education pedagogy
such as Constructivism [6] and Construction-
ism [7] have paved way for learning concepts
(in Physics) through a process of discovery by
the students based on their previous knowl-
edge, interaction among the peers and the
guidance of the teachers. In this paper, an
effort has been made to use PER strategies to
develop modules which would help students
to construct their own knowledge of 2-D Bra-
vais Lattices, a preliminary concept in Solid
State Physics.

Based on Bloom’s taxonomy, Sapna et.
al. [8] have devised learning/instructional ob-

jectives for Bravais Lattices in the context of
Crystal Structure.The very first ideas of lat-
tice and basis which form the foundation of
crystallography require previous knowledge
of symmetry and periodicity. 2-D and 3-D
Bravais Lattices are abstractions that result
from the classification of all the possible lat-
tice structures.
Here, we are proposing a simple activity to
realise the following learning objectives :

1. Which is the smallest unit that can
cover all space to form a lattice?

2. What are the distinct types of lat-
tices in 2-D?

3. Which is the most convenient way
to obtain them?

2 Methodology

In this paper, we use the constructivist
approach wherein we would want to arrive
at the learning objectives through a strat-
egy similar to Socratic method of questioning
why, what and how followed by analysis, ac-
tivity and comprehension in a repetitive man-
ner till we gain complete clarity of the desired
concept.
The implementation strategy for construct-
ing the knowledge of 2-D Bravais Lattices in-
cludes the following steps:

1. firstly capturing the interest of the stu-
dents by showing them some interesting
pictures from the current science,
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2. arousing their curiousity by posing a
challenge and then raising questions to
make them inquisitive,

3. putting them to activity to explore for
themselves,

4. encourage them to share their findings
with each other,

5. putting together the outcomes,
analysing the findings along with
their consensus and

6. finally arriving at the comprehensive un-
derstanding of the topic and applying it
to solve the posed challenge.

2.1 Formulating the Question

Keen observation is the key to asking ap-
propriate questions. We take advantage of
current progress in science & technology and
propose to look at Scanning Tunneling Micro-
scope (STM) picture of Graphene as shown
in Figure 1(a). It is interesting to note that
Graphene has a hexagonal structure which
is not one of the standard 2-D Bravais Lat-
tices. Posing it as a challenge in the class-
room and asking the students to identify the
underlying 2-D Bravais Lattice and basis of
Graphene, can prove to be a fruitful activity
to probe student understanding. This paves
way for starting the discussion with the ques-
tion: Why is it that the hexagonal lat-
tice not one of the five 2-D Bravais
Lattices?

A lattice is a periodic array of points which

Figure 1: (a)STM image of Graphene.
(source:http://arxiv.org/pdf/1009.4714.pdf )
(b)In the structure of Graphene, shown are two
points A and B. The honeycomb lattice ob-
served is not a Bravais Lattice as the environ-
ment around points A and B differ by an angle
of 60o [9] [11]

ensures a similar environment from any given
point all around [9].The vertices of such fun-
damental units which can build all possi-
ble periodic arrangements have come to be
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known as Bravais Lattices, named after the
person who deduced them [10].
The Graphene structure shown in Figure
1(b), clearly depicts that the environment
around points A and B is not same, thus rul-
ing out a hexagonal structure to be a possible
Bravais Lattice [11]. This brings us to the fol-
lowing questions:

1. What are the possible periodic
arrangements in 2-D which pre-
serve the property of having ex-
actly same environment at each lo-
cation?

2. What are the various Bravais Lat-
tices, how to obtain them and
where do we begin?

2.2 Building the Activity

The clue is to identify the smallest unit
area that can be enclosed by the minimum
number of lattice points, which when re-
peated covers all 2-D space without leaving
any gap. Minimum three non-collinear points
are required to cover an area in 2-D and
joining them gives us a triangle, which can
be chosen as the smallest unit for the pur-
pose. From previous knowledge, we know
that there are only seven different types of
triangles possible as shown in column 1 of
Figure 2. The activity proposed here involves
trying to cover a chart paper using these 7
types of triangles by a combination of reflec-
tion, rotation and/or translation operations.
The entire class can be divided into various
groups, each of them working with either 1 or

Figure 2: Depicting how five 2-D Bravais Lat-
tices can be obtained using various types of tri-
angles (classified on the basis of sides and an-
gles). Though there may be many other possibil-
ities of obtaining the lattices through triangles,
but the (apparent) first intuitive method which
incorporates basic symmetry operations (reflec-
tion/rotation around a convenient axis or both)
has been employed. The dots (or the vertices
of the triangles) depict the position of the lat-
tice points in the lattice they constitute. While
columns depict the type of triangles and the ba-
sic transformations employed, the rows consti-
tute how various symmetry operations on differ-
ent types of triangles lead to the formation of
five 2-D Bravais lattices.
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2 types of triangle cut-outs to fill the charts
provided to them. The outcome of the activ-
ity can then be discussed in the classroom.

Figure 3: Depicting how triangles can form
quadrilaterals which are not Bravais lattices (i.e.
when they are tessellated over a given space,
they will not be able to cover it wihout leaving
gaps)

3 Discussion of Results

Triangles meet the requirement of the first
learning objective as they are the smallest
unit that can cover all space to form a lattice.
Covering all space using triangles required all
three operations of reflection, rotation and
translation. This is a tedious process. On

looking carefully at the output charts, we find
that quadrilaterals are the ones which can be
tessellated(i.e. translating a unit of area in
order to cover a given space without leaving
any gaps) along two directions to cover all
space. Column 4 of Figure 2 shows those
quadrilaterals that can be tessellated to cover
all space. Those that do not satisfy the re-
quirement of covering all space without gaps
are given in column 4 of Figure 3.

4 Comprehension

The activity shows that there are only five
possible quadrilaterals

1. Oblique (a1 6= a2, γ 6= 90o),

2. Rectangular (a1 6= a2, γ = 90o),

3. Rhombus,Type-1 (obtained using
isosceles obtuse/acute triangles
giving a1 = a2, γ 6= 120o/90o )

4. Rhombus,Type-2 (obtained using
equilateral triangle giving a1 =
a2, γ = 120o/60o )

5. Square (a1 = a2, γ = 90o),

These are the appropriate fundamental
units which when tessellated would cover all
the space and could be thought of as primi-
tive unit cells in 2-D. The two rhombuses can
be alternatively visualised as centered regu-
lar hexagonal lattice and centered rectangu-
lar lattice as shown in Figure 4. In stan-
dard textbooks [9] [12] though, the connota-
tion used for Rhombus, Type-2 is hexagonal
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Figure 4: Figures showing equivalence condi-
tions for two of the Bravais Lattices.
(a)shows a Rhombus, Type-2 (adjacent angles
60o and 120o) amidst the lattice
(b)shows how the Rhombus, Type-2 is reflected
and rotated to obtain the centered regular hexag-
onal structure
(c)shows the Centered Regular Hexagonal
amidst the lattice.
(d)shows a centered rectangle amidst the lattice.
(e)shows how the Rhombus, Type-1 is also inher-
ent in the centered rectangle.
(f)shows the Bravais Lattice, Rhombus, Type-1.

which is not correct and can confuse students.
These are non-primitive unit cells but are
more conventionally employed and are typ-
ically part of the five 2-D Bravais Lattices as
they are known and are shown in Figure 5
for sake of completion. Now, coming back to

Figure 5: The five 2-D Bravais Lattices.

Graphene, we notice that it is a Rhombus,
Type-1 (a1 = a2, γ 6= 120o/90o) lattice with
two C-atoms forming a basis as shown in Fig-
ure 6.

5 Conclusion

We have developed an activity based
strategy involving symmetry oopreations on
triangles which are the smallest unit that
could cover all space. Based on the obser-
avtions and analysis of the outcomes, quadri-
laterals were found to be more convenient as
they involve only tessellation.

The combination of all seven possible tri-
angles that resulted in various quadrilaterals
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Figure 6: The dotted parallelogram, Rhom-
bus Type-1 shows the underlying Bravais
Lattice of Graphene structure with C-C ba-
sis(filled circles) at each of its vertices, the
lattice points.

were tabulated into two groups based on the
criteria whether the given quadrilateral tes-
sellate to cover all space without leaving any
gaps. The group of quadrilaterals that sat-
isfy the criteria form the five primitive cells
that generate all possible lattices in 2-D. We
have shown that primitive cells consisting of
Rhombus, Type-1 and Rhombus, Type-2 are
equivalent to the non-primitive more conven-
tionally used unit cells of centered rectangu-
lar and centered regular hexagonal lattices re-
spectively and thus arrived at the five 2-D
Bravais lattices as they are known today.
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Abstract 
An object in frictionless contact with and moving along a rotating spherical surface will experience Coriolis and 

centrifugal accelerations in the rotating frame.  Although these are the only accelerations that appear explicitly in the 

equations of motion, assuming no other tangential physical forces are present, velocity changes of the object over a 

finite time interval cannot be correctly computed by integrating the sum of only these two accelerations over that 

time interval. This was proven in a recent publication [J.C. Piquette, “Velocity Change Calculation for an Object 

Moving on a Rotating Spherical Surface,” Phys. Educ. 31(1) (2015), art. num. 3, pp. 1-12]. It was found there that an 

unexpected additional acceleration, therein termed the “kinematic” acceleration, was also required to be integrated 

over the finite time interval in order to deduce the correct velocity change.  Interestingly, a satellite in circular orbit 

about a spherical rotating planet satisfies everything required for the results of this previous work to apply. Hence, 

for example, the change in velocity of such a satellite, as seen in the rotating frame, cannot be determined by 

integrating over only the sum of the Coriolis and centrifugal accelerations. It was also found in the earlier work that 

the influence of the kinematic acceleration is dominant for high initial object speeds. The kinematic acceleration 

dramatically dominates both the Coriolis and centrifugal accelerations in the case of a satellite in circular near-Earth 

orbit, since such a satellite has a speed of about 18000 miles/hour. These conclusions also apply to the calculation of 

velocity changes along the ground track. To permit detailed understanding of the satellite’s motion along the ground 

track, the notion of a “shadow satellite” is introduced. The results and examples given here can be used in an 

undergraduate- or graduate-level classical mechanics course as modern space-age applications of classical mechanics 

that may be of high interest to students. 

 

1. Introduction 

The problem of computing the velocity change 
over a finite time interval of an object moving on 
the surface of a rotating sphere was considered in 
a recent publication [1]. In the problem considered 
there, the object was taken to be free of any 
applied tangential physical forces, and was 
constrained to remain on the sphere’s surface. 
Naturally, from the perspective of the rotating 
frame, the object experiences both Coriolis and 

centrifugal accelerations. Indeed, these two 
accelerations are the only accelerations that appear 
explicitly in the equations of motion. But despite 
that fact, if one attempts to compute the change of 
velocity of the object over a finite time interval by 
integrating over only the sum of these two 
accelerations, an incorrect result is obtained. By 
integrating the two equations of motion over the 
finite time interval of interest, it was found that a 
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third acceleration component appears. That third 
component was termed the “kinematic” 
acceleration. 

Interestingly, a satellite in circular orbit obeys all 
the requirements considered in the previous work, 
and hence the same conclusions apply to a satellite 
in such an orbit. An example of such a satellite 
that is especially interesting is one that orbits the 
Earth and passes over the two poles [2]. The 
ground track of such a satellite carries it over a 
very large percentage of the Earth’s surface. 

The influence of the kinematic acceleration was 
found to become increasingly dominant over the 
Coriolis and centrifugal accelerations as the initial 
velocity of the object increases. For an object in 
near-Earth orbit, which travels at a speed of about 
18000 miles/hour, the kinematic acceleration is by 
far the largest of the three acceleration terms that 
contribute to changes in velocity. 

Here, applications of the results of Ref. 1 to 
satellites in circular orbit are considered. For 
simplicity, in example calculations involving the 
Earth, it is assumed the Earth is a perfect sphere of 
radius 4000 miles, and completes one rotation in 

exactly 24 hours. It is also assumed that the orbital 
velocity of a satellite at the approximate POES [2] 
altitude of 700 miles above the surface is exactly 
18000 miles/hour.  

It is hoped that the results and examples given 
here may be useful in either an undergraduate- or 
graduate-level classical mechanics course. As 
space-age applications of classical physics, these 
examples may be of high interest to students. 
Those who would like to see additional references 
related to non-inertial frames and relating the 
material to classroom teaching are directed to the 
larger list of references given in Ref. 1. 

In Sec. 2, the two coordinate systems of interest 
are described, and the equations of motion are 
presented. A brief summary of the velocity-change 
calculation developed in Ref. 1 is given in Sec. 3. 
It is shown in Sec. 4 that the solution of an object 
given an initial velocity at the equator can actually 
be applied to cases with more generality than 
initially considered. The concept of the shadow 
satellite, which is useful for studying the satellite’s 
ground track, is developed in Sec. 5.  Numerical 
examples are given in Sec. 6. A summary and 
conclusion are given in Sec. 7. 

2. Coordinate Systems and 
Equations of Motion 

The approach used here applies the results of Ref. 
1 to a satellite in a circular orbit about a spherical 
rotating planet. The results of that reference apply 
directly to the satellite problem if the sphere radius 
is simply replaced by the radius of the circular 
orbit. Of course, when applied in that way the 
rotating sphere is actually an imaginary 
mathematical surface, rotating with the same 
angular speed as the planet, over which the 
satellite is assumed to be moving. Also of interest 
is the ground track of the satellite, and the notion 
of a “shadow satellite” is introduced for studying 
the ground track. The shadow satellite is taken to 
be a physical object located on the rotating  

 

 

 

planet’s surface, with the planet assumed airless 
and frictionless. The shadow satellite moves along 
the surface of the rotating planet, and always 
remains directly underneath the orbiting satellite. 

Two coordinate systems are used in the analysis. 
These are termed the “unprimed” and “primed” 
coordinate systems. The systems are depicted in 
Fig. 1.The unprimed coordinate system is an 
inertial frame at rest with respect to the fixed stars. 
The Cartesian coordinates of this system are 
denoted  zyx ,, . Not shown is a related 

unprimed spherical coordinate system   ,,r . 

However, the angle   of this system is depicted, 
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and expresses the angle between the x  and  

xaxes, and between the y  and y axes. The 

primed system also consists of Cartesian and 
spherical coordinates as shown. However, the 
primed system rotates about the common 

zz , axes at constant angular speed   . 

 
Fig 1 Primed and unprimed coordinate systems 

 

In the primed coordinate system, the well-known equations of motion of an object moving on the surface with no 
physical tangential forces can be expressed as [3] 

   






CENTCOR

aarr cossin2
         (1)  

and, 

 






COR

arr cos2sin  .               (2) 

Here r is assumed constant, and for the cases of interest either Rr  , where R is the radius of the rotating 

spherical planet, or hRr  , where h is the height of the satellite above the planet’s surface. But 

when hRr  , the spherical surface in question is an imaginary, mathematical surface having this radius and 

rotating at the same rate   as the planet. The notations  
COR

a  and  
CENT

a  denote the Coriolis and 

centrifugal accelerations, respectively. These are considered in more detail in the next section.

3. Summary of the Velocity-Change Calculation 

The Coriolis acceleration is   v2 



COR

a  and the centrifugal acceleration 

is   ra
CENT


  , with v


denoting velocity of the object of interest in the primed frame. 

These are expressed in component forms in Eq. (3) through Eq. (5) 
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  


 cossin2 ra COR ,               ( 3) 

  





cos2 ra
COR ,               (4) 

and, 

  





cossin2ra
CENT .               (5) 

It should be noted that  0
CENTa , always. 

The components of the kinematic acceleration, as introduced in Ref. 1, are 

  


 cossin2raKIN ,                              (6) 

and 

  





cosraKIN .                 (7) 

(The need to consider more than just the Coriolis and centrifugal accelerations was also discussed in Ref. 4.) In the 

primed frame, the tangential velocity     ,v


 is expressed as  

  
ˆsinˆv ,
 


rr ,       (8) 

where  ˆ  and ̂are the usual spherical unit vectors, and the components of the velocity changes over the finite time 

interval  t,0  are expressed as 

      t

rr 0v 

   ,   (9)     

and, 

      trr 0sinsinv 
 


.               (10) 

Notice from Eq. (9) and Eq. (10) that the velocity changes of interest here are the velocity changes in a given compass 
direction. That is, it is the changes in the coefficients of the unit vectors of Eq. (8) that are of interest, not the changes 

in the unit vectors themselves. The symbol   has the usual meaning of “change.” 
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As shown in Ref. 1, the components of the velocity change over a finite time interval  t,0 in the primed frame are 

computed from the components of the acceleration as 

         
t

KIN

t

CENT

t

COR
dtadtadta

000

v



,               (11)      

and, 

       
t

KIN

t

COR dtadta
00

v



.                (12) 

There is no loss in generality by taking the time interval to start at 0t .

4. Generalized Solution 

The problem of an object initially located at the equator and 
given an initial tangential velocity was also considered in Ref. 
1. The problem is depicted in Fig. 2.  

 

Fig 2   A sphere of radius R rotates uniformly at angular speed .  

Here, 
0

v is the initial tangential velocity in the northern direction and V is the initial tangential velocity in the 

eastern direction as specified in the unprimed, or inertial, frame. 
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The solutions of Eq. (1) and Eq. (2) for this problem are [1] 

 






























r

Vt

V
t

22

0

22

0

0
v

sin
v

v
arccos

,         (13) 

 

and 

  t
r

Vt

V

V
t  































22

0

22

0

v
tan

v
arctan

.        (14)           

 

(This problem has also been solved numerically[ 5].) In 
Ref. 1, the case of interest was the object having the 
same initial tangential speed in the eastern direction as 
the tangential speed of the sphere at the equator. 
However, Eq. (13) and Eq. (14) remain valid for 

arbitrary speeds  
0

v  and V . Hence the restriction to 

a specific value V can be removed, and these 
solutions are valid for this more general case. It should 
be understood that Eq. (13) and Eq. (14) are the 
solutions to Eq. (1) and Eq. (2) subject to the initial 

conditions       0,
2

0,0    and 

     








rr

V 0
v-

,0,0   . 

Here, 
0

v , V ,  and  again have the same meaning 

as in Fig. 2, and Rr  for an object on the surface 

of the rotating planet, and hRr   for the 

orbiting satellite, with R  being the sphere radius and 

h  being the height of the orbiting satellite above the 
sphere’s surface.

5. The Shadow Satellite 

Although Eq. (13) and Eq. (14) are valid for an orbiting 

satellite, where hRr   , the equations 
assume the satellite would be viewed from an 
imaginary spherical surface located at the same height 
as the satellite, and rotating at the angular speed of the 
planet.  Since such a surface is a purely mathematical 
construction, it is more helpful to transform the solution 
to the planet’s surface.  

The path directly under the satellite along the planet’s 
surface is the satellite’s ground track. To find the 
ground track, the idea of the “shadow” satellite is now 
introduced. The shadow satellite is taken to be an object 
located on the planet’s surface directly underneath the 
orbiting satellite. The planet is assumed airless and the 
shadow satellite is assumed to be in frictionless contact 
with the surface. It is first assumed, and then proven, 
that it is possible to impart an initial velocity to the 

shadow satellite such that the shadow satellite remains 
directly underneath the orbiting satellite at all times.  

We now consider the calculation of the initial velocity 
of the shadow satellite that in fact produces the 
behavior of always remaining directly underneath the 
orbiting satellite. For definiteness, we will also assume 
the planet of interest is the Earth, having the idealized 
physical properties previously mentioned, although the 
analysis applies to any spherical planet. To find the 
required initial velocity of the shadow satellite, we 
consider first a special case: The geosynchronous 
satellite. A satellite in geosynchronous orbit appears to 
an observer on the Earth’s surface to remain stationary 
above a given point on the equator. Clearly, any object 
located on the equator directly underneath the 
geosynchronous satellite will serve as its shadow 
satellite, as defined here. For both the geosynchronous 
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satellite and for the shadow satellite, the tangential 
velocities obey the equation 

rv   .                                                         (15) 

For the shadow satellite, Rr  , the Earth’s radius, 

and for the orbiting satellite hRr  , where 

h is the height of the geosynchronous satellite above 
the surface. Writing out Eq. (15) for both the shadow 
and the orbiting satellite, and forming the ratio of these 
two equations, gives 

hR

R

ORBIT

SHADOW




v

v
.                                   (16) 

Solving Eq.(16) for 
SHADOW

v gives 

ORBITSHADOW
hR

R
vv


 .                 (17) 

Although there is no a priori reason to believe it will 
work, at this point we use Eq. (17) as a guide, and 
assume that  each of the components of the tangential 
velocity of the shadow and orbiting satellite will obey 
an equation of the same form as Eq. (17), or 

   
ORBITSHADOW hR

R
00

vv


 , (18) 

and, 

   ORBITSHADOW
hR

R
VV


 ,    (19) 

where 
0

v  and V again are the northward and 

eastward tangential velocity components, respectively, 
as viewed in the inertial, or unprimed, frame. In this 
case, it is the shadow satellite that is depicted in Fig. 2, 
and the orbiting satellite, which is directly above it, is 
not shown. 

In order to prove that Eq. (18) and Eq. (19) are valid for 
the general case, one starts by writing out Eq. (13) and 
Eq. (14) for both the shadow satellite and for the 
orbiting satellite. Naturally, the initial tangential 
velocities appearing in these equations should be 
replaced in each case with the appropriate subscript 
depending upon which of the two satellites the 
equations are being written for. Also, in the case of the 

shadow satellite, r is replaced by R , and in the case 

of the orbiting satellite r is replaced by hR  .  

Next, the tangential velocities  
SHADOW0

v  and 

 SHADOWV are replaced in the two equations for 

the shadow satellite by the expressions for these 
quantities as given by Eq. (18) and Eq. (19), 
respectively. If the resulting equations are then 
simplified algebraically, the resulting pair of equations 
will be found to be identical to the two equations for the 
orbiting satellite.  

This exercise proves that the solutions  t   and 

 t  are identical for both the shadow and the 

orbiting satellite. This therefore proves that if the 
shadow satellite is given the initial tangential velocity 
components as specified by Eq. (18) and Eq. (19), the 
shadow satellite will remain perpetually directly 
underneath the orbiting satellite. It thus also proves that 
the transformations given by these two equations are 
correct. And since the shadow satellite always remains 
directly underneath the orbiting satellite, it follows that 
the shadow satellite will trace out the ground track of 
the orbiting satellite, as desired. 
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6. Examples  

Two numerical examples will now be considered. In 
the first example, the satellite is considered to have 
been launched from the equator and no attempt has 
been made to counter the effect of the Earth’s rotation. 
We also assume the satellite orbits at a height of about 
700 miles. These conditions approximate those of the 
POES program  [2]. However, rather than considering 
the orbiting satellite in the example, we will consider 
instead the shadow satellite, in order to see the 
properties of the ground track. 

The initial eastward and northward speeds of the 
shadow satellite are calculated by first computing these 
quantities for the orbiting satellite, and then 
transforming the results down to the shadow using Eq. 
(18) and Eq. (19). The initial eastward speed of the 
orbiting satellite is taken to 

be  hRV
ORBIT

 , where R 4000 

miles and h 700 miles. The quantity  is 
calculated assuming the Earth rotates in exactly 24 

hours, giving 
ORBIT

V  1230.46 miles/hour. This 

result is then projected to the surface using Eq.(19). 

Carrying out these calculations gives 
SHADOW

V  

1047.2 miles/hour. Not surprisingly, this is exactly the 
speed of the (idealized) Earth’s rotation at the equator 
as seen from the unprimed, or inertial, frame.  

The initial northward speed 
0

v of the orbiting satellite 

is computed from the assumption that the orbital speed 
at the height of 700 miles is exactly 18000 miles/hour. 

Thus,  22

0 18000v ORBITORBIT
V  ,  or 

  
ORBIT0

v  17957.9 miles/hour. Projecting this 

result to the surface using Eq. (18) then gives 

  
SHADOW0

v  15283.3 miles/hour. Using these 

speeds together with  Rr  4000 miles in Eq. 

(13) and Eq. (14) produces the     tt   ,  

values of the ground track. Taking the complement of 

 t   to be the latitude, and  t  to be the 

effective longitude, the ground track produced by these 
calculations is as shown in Fig. 3. The result is clearly 
similar to the ground track of a POES-type satellite [2].

 

Fig. 3 -  Ground track latitude vs. longitude for a POES-type satellite. 
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Examining Fig. 3, it is evident that that path is not a 
closed path. This is why a satellite in polar orbit can be 
used to observe the majority of the Earth’s surface, 
since such a satellite passes over the equator at a 
different longitude on each orbit. 

It is also interesting to consider specific velocity 
changes that occur for this satellite along the ground 
track, and to identify how much of the velocity change 
is attributable to each of the three accelerations 
involved in the problem. 

Again examining Fig.3, it is clear that after starting at 

the equator deg0latitude  , the shadow satellite 

closely approaches the northern 

pole deg90latitude  , then rapidly reverses its 

northern motion and heads south. The distance of 
closest approach to the northern pole is about 273.6 
miles. At the moment that the northern velocity 
reverses direction, it is clear that the initial northern 
velocity of 15283.3 miles/hour has been reduced to 
zero.  The individual contributions to the change in 
northern velocity of the shadow satellite contributed by 
each of the three accelerations are:    

   CORv - 410.647 miles/hour, 

   CENTv - 36.273 miles/hour, 

and   KINv - 14836.4 miles/hour. It is evident 

that the overwhelming contributor to the northern 
velocity change is the kinematic acceleration. These 
results were computed by separately evaluating each of 
the corresponding integrals in Eq. (11). 

It is also interesting to consider the velocity change in 
the eastern direction and the contributions of the 
individual accelerations to it. The shadow satellite 
initially has zero velocity in the eastern direction as 
seen in the rotating frame. At the moment the velocity 
in the northern direction reduces to zero, that is, at the 
moment of closest approach to the northern pole, the 
velocity in the eastern direction reaches its maximum 
value. (This was proven in Ref. 1.) At that moment, the 
eastern velocity of the shadow is about 15247.56 
miles/hour. The contributions of the individual 

accelerations to producing this velocity are: 

   CORv 1951.22miles/hour,

   CENTv  0, and   KINv 13296.3 

miles/hour. 

These results were computed by evaluating the 
corresponding integrals in Eq. (12). Again we note that 
the null centrifugal contribution results from the fact 

that the centrifugal acceleration in the  direction is 

always identically zero. Again, it is apparent that the 
kinematic contribution strongly dominates the easterly 
velocity change, although not as significantly as in the 
northern direction.  

We next consider a second example, but in this case it 
is assumed that the satellite has been launched in a way 
that almost cancels the velocity component due to the 
Earth’s rotation at the equator as seen in the inertial 
frame. For the case of interest, it is assumed that the 
satellite that is in orbit at a height of 700 miles above 
the surface has been launched so that the initial 
velocity component that is directed toward the east has 
been reduced to just 10 miles/hour as seen from the 
unprimed, or inertial, frame. 

Again, we are interested in the shadow satellite for the 
current example. Applying the same procedures as 
were described for the first example gives for the initial 
velocity components of the shadow satellite as seen in 

the unprimed, or inertial, frame  
SHADOW

V 8.51 

miles/hour  and  
SHADOW0

v 15319.15 

miles/hour. The initial eastward velocity seen in 
primed, or rotating, frame is -1038.69 miles/hour. The 
minus sign signifies that the shadow satellite is actually 
moving westward as seen in the rotating frame. The 
initial northward velocity in the rotating frame is the 
same as that seen in the inertial frame. 

Again using the initial shadow speeds for this case 

together with  Rr  4000 miles in Eq. (13) 

and Eq. (14) produces the     tt   ,  values 

of the ground track. Plotting these in the same way 
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as was done to produce Fig. 3 results in the ground 
track as shown in Fig. 4. The fact that the ground 
satellite has an initially westward velocity can be seen 
by noting the negative slope of the initial ground-path 
curve as seen in Fig. 4. Again it is clear that when the 
shadow satellite reaches the northern pole it reverses 

its direction of travel and then heads southward. Hence 
the satellite again reaches a point where its northward 
velocity becomes zero as seen in the rotating frame. 
This happens at the point of closest approach to the 
northern pole, which happens when the shadow 
satellite is just 2.22 miles distant from the pole. 

 
Fig. 4 - Ground track latitude vs. longitude for a satellite launched to almost cancel the Earth’s rotational velocity. 

As can be seen in Fig 4, as the shadow gets close to the 
northern pole (latitude 90 degrees), it undergoes an 
extremely rapid change in longitude. This is a 
consequence of the very close approach of the shadow 
satellite to the northern pole, where there is a 

discontinuity in the value of  . That is, if the 

satellite were approaching the northern pole along the 
zero-degree longitude line, there would be a 
discontinuous change in longitude as it passed the pole, 
because that line abruptly changes in longitude from 0 

degrees to 180 degrees at the location of the pole. The 
longitude values will vary in a similar way for the 
shadow satellite in this example, owing to its very 
close approach to the northern pole. 

Again it is of interest how much each of the 
acceleration terms contributes to reducing the 
shadow’s initial northward velocity from 

  
SHADOW0

v 15319.15 miles/hour to zero. The 

results are: 
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   CORv  +62.06 miles/hour,   CENTv - 35.79 miles/hour, and    KINv - 15345.40 

miles/hour.

It is again evident that the overwhelming contributor to 
the northern velocity change is the kinematic 
acceleration. It is also interesting to notice that the 
Coriolis contribution is positive, which occurs due to 
the westward-directed initial velocity component, and 
hence the Coriolis force actually acts to increase the 
northward velocity during the trip from the equator to 
the northern pole. As before, these results were 
computed by separately evaluating each of the 
corresponding integrals in Eq. (11).  

Again considering the motion in the easterly direction, 
it is evident from Fig. 4 that the shadow suffers a huge 
apparent eastern acceleration as it approaches the 
northern pole. It then just as rapidly decreases its 
eastward velocity, and shortly past the northern pole 
the satellite again has a westward-directed velocity 
component, as can be seen from the fact that the 
longitude values begin to decrease as the shadow 
begins to move southward. The maximum eastward 
velocity of the shadow in the rotating frame, which 
again occurs at the point of closest approach to the 
northern pole, is 15318.57 miles/hour. Keeping in 
mind that the “eastern” velocity was initially -1038.69 
miles/hour in the rotating frame (actually westward), 
the overall change in eastern velocity is 16357.3 
miles/hour ( 15318.57 miles/hour+1038.69 
miles/hour, to within rounding error).  Breaking down 
the overall eastward velocity change by acceleration 
term gives: 

   CORv 2093.23 miles/hour, 

   CENTv  0,   

 

and    KINv 14264.00  miles/hour. 

These results were again computed by evaluating the 
corresponding integrals in Eq. (12), and once again the 

 component of the centrifugal acceleration is 

identically zero. 

It may be of concern as to why the shadow acquires 
such a high easterly directed velocity at the moment of 
closest approach to the northern pole. This again 
happens due to the fact that the shadow approaches so 
closely to the pole. If one considers the latitude circle 
at the point of closest approach to the pole, that circle 
has a radius of just over 2.2 miles. As with all latitude 
circles, motion along their length is either purely 
eastward or purely westward. At the point of closest 
approach to the northern pole, the shadow is moving 
tangent to this latitude circle, and thus is moving 
purely eastward as seen from the surface. Since the 
northward movement is null at this point, it is clear that 
the entire surface velocity of the satellite must appear 
in the eastward direction. To do this, the eastward 
velocity must suffer a sharp increase in the vicinity of 
this latitude circle. This very high eastward velocity, 
however, is only present while the satellite is in close 
proximity to this latitude circle, an event which is of 
extremely short duration, and this occurs while the 
shadow moves over a very small area of the surface.

7. Summary and Conclusion 

A satellite in a circular orbit obeys all the requirements 
for the methods of Ref. 1 to be applicable. Thus 
velocity changes for such satellites over a finite time 
interval cannot be computed correctly by integrating 
only the sum of the Coriolis and centrifugal 
accelerations over that time interval. It is also 
necessary to include the contributions from the 
kinematic acceleration. Interestingly, in the case of a 
satellite in circular orbit, the kinematic contribution is 
dramatically dominant over the Coriolis and 

centrifugal accelerations, despite the fact that those are 
the only two accelerations that appear in the equations 
of motion in the rotating frame. 

The notion of a shadow satellite was introduced to 
allow detailed study of the ground track of the orbiting 
satellite. With suitable transformations applied, all the 
results that apply to the orbiting satellite also apply to 
the shadow satellite. 
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The results and examples presented here should be 
useful to those who teach graduate- or undergraduate-
level classical mechanics courses. These space-age 

applications of classical mechanics are potentially of 
high interest to students.
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Abstract 

Within the harmonic approximation, we estimate the Young’s modulus and tensile strength of 
typical carbon nanotubes at zero temperature following four important potentials used in solid 
state physics. The theoretical results are compared with experimental observations. The results 
thus obtained also find an important link with the applicability of carbon nanotubes as a space 
elevator.  

 
 

1. Introduction 
Scientific discovery along with technological 
revolutions strongly depends on materials. To 
achieve smaller, faster and reliable smart devices 
for the continuing need of present age, it is highly 
essential to understand the properties of the 
materials in depth. Mechanical, optical properties 
of nano-structures [1,2] and nano particles coupled 
with electronic study are indeed one of the 
exciting fields of research from basic science. This 
study also forms the basis for future smart devices. 
 
After Iijima’s pioneering and illustrious work on 
carbon nanotubes [3] and single-walled carbon 
nanotubes (SWCNTs) [4–8] in the early 1990s 
sparked a general growing interest in fundamental 
condensed matter physics as well as nano science 
and nanotechnology. To describe the structures of 
SWCNT, one needs to know graphene, the basic 
building block of carbon allotropes.  
 
Graphene is a one-atom-thick planar sheet of 
carbon atoms that is densely packed in a  

 
 
 
honeycomb crystal lattice. We show schematically 
in Fig. 1 the computer generated graphene and the  
direct image obtained by Meyer et al. [9] side by 
side. It is worthy to mention at this point that the 
graphene [6,10-12], by itself, can be characterized 
as either a zero-gap semiconductor or a metal 
(since the density of states (DOS) is zero at the 
Fermi energy (EF)) and naturally, graphene 
imparts these properties to a nanotube. 
Carbon nanotubes (CNTs) are the allotropes of 
carbon with a cylindrical nanostructure. 
Conceptually, CNTs are cylindrically shells made 
by rolling graphene sheets into a seamless 
cylinder. These sheets are rolled at specific and 
discrete angles. The typical length of a SWCNT 
can be between 1–100  m and diameter around 

1-10 nm. The perfect CNTs have crystalline 
structures formed by the hexagonal rings of 
benzene molecule with double and single C–C 
bonding. In Fig. 2, we schematically show the 
formation of SWCNT from graphene and 
fullerene. Their unique one dimensional structure 
with curvature in the sidewall is one of the 
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paradigms in the low dimensional systems of 
inter-disciplinary research. 
 
 

 
 
                      (a) 

 

                          (b) 

Fig. 1. (a) Computer generated graphene visual 
showing the honeycomb lattice structure. (b) 
Direct image of a single-layer graphene membrane 
(Red dots denote carbon atoms) 
 
The typical molecular structure of SWCNTs can 
be characterized by a chiral circumferential 

vector bmanBA


 , a linear combination of two 

unit lattice vectors a and b with m and n being 
integers. The pair of indices (n,m) for any given 
nanotube structure determines its diameter, 
chirality, and the basic electronic character. 
For example, if n = m, the nanotube is designated 
as armchair and is metallic in nature (with a zero 
bandgap, strictly speaking). While for n ≠ m and 
neither n nor m are zero, the CNT exhibits 
chirality, having important implications in optical 
properties. 
 
 
 

 
 
Fig. 2. Schematic illustration of formation of 
SWCNT from Fullerene and graphene sheet 
 
 
For n = 0 or m = 0, the CNT is termed zigzag. If 

pmn 3 , where p is a non-zero integer, the 

CNT is semimetallic/ quasi-metallic with a band 
gap of the order of meV. For pmn 3 , where p 

is a non-zero integer, the CNT is semi-conducting 
having a band gap of the order of 1 eV. In fig. 3, 
the various flavors of CNTs are illustrated through 
the chiral circumferential vector. From the 
circumferential vector AB, one can easily obtain 
the diameter and chiral angle, the characteristic 
features of a typical CNT.  
 
The diameter of a given nanotube can be 
expressed in terms of (n,m) and the carbon–carbon 
bond length 0.142 nm. The typical geometry of 
simple hexagonal unit used in generating the 
structures of CNT or graphene is shown in Fig. 4. 
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The distance (a) between two carbon atoms as 
shown in Fig. 4 is 0.142 nm while the half 
distance between any two parallel bonds 

( 2/)142.03(2/ b nm=0.123 nm). The 

diameter of a given nanotube can be expressed 
[1,4] in terms of (n,m)  as 

22142.03
mnmndnm 





. 

 

 

Fig. 3. Schematic illustration of various carbon 
nanotubes 

 

Fig. 4 A Typical hexagonal unit for formation of 
graphene  

C-G bonds are one of the strongest bonds in 
nature. It has been illustrated in Fig 3 and 4 that 
the carbon nanotube is composed of perfect 
arrangement of these bonds. Because of these 
bonds, carbon nanotubes are the strongest material 
[1,4] known ever having Young’s modulus (Y) 

1250 GPa and tensile strength ( ) 11-63 GPa 
quite comparable to diamond. In comparison, the 
values of Y and   in steel are 200 GPa and 2 GPa 
respectively. In this paper, we would like to 
present a simple model calculation to estimate the 
high values of Y and . In table 1 and 2, we show 
the comparison of various related physical 
parameters with two different forms carbon 
allotropes, diamond and graphite. 

Name of 
Elements 

Li Be B C(Dia) C(Graph 

Atomic 
Number 

3 4 5 6 6 

Y(GPa) 11.5 289 440 1140 8.3 

Melting 
Point 
(0C) 

181 1277 2030 3550 3550 

Density 

(103 
Kg/m3) 

0.531 1.85 2.34 2.25 2.25 

Table 1: Comparison of Various physical 
parameters with diamond and graphite 

Intuitively speaking, the materials with strong 
covalent bonds have a deep potential energy with 
a sharp curvature. Therefore, strong bonding 
naturally results in large values for Young’s 
modulus. Similarly, the shallow potential well of 
the weakly bonded materials is responsible for 
small values of Y as evident above from table 1. 
Elements beyond carbon do not form solids with a 
three dimensional network of covalent bonds. For 
example, graphite having two dimensional sheet 
held together by van der Waals bonds possess a 
very small value of Y (about 8 GPa). Again, the 
interatomic distance varies with crystal direction 
in a solid along with corresponding variation of 
bond strength. This results an elastic anisotropy as 
a function of crystal direction. More importantly, 
this effect is prominent for those materials having 
two types of bonds. As an illustration, Y for 
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graphite in a direction parallel to the sheets is 950 
GPa which is sensibly larger than that averaged 
over all direction (about 8 GPa). This picture is 
valid at absolute zero temperature. 

Name of 
Elements 

Na Mg Al Si 

Atomic 
Number 

11 12 13 14 

Y(GPa) 8.9 44 71 103 

Melting 
Point 
(0C) 

98 650 660 1410 

Density 

(103 
Kg/m3) 

0.97 1.74 2.70 2.33 

 

Table 2: Comparison of Various physical 
parameters of Alkali metals and Si 

2. Computation of Young’s Modulus  

We begin the section with the definition of 
Young’s modulus. It is defined as the ratio of 
longitudinal stress to longitudinal strain within 
elastic limit. Within elastic limit, the elongation 
(x) is proportional to the applied force (F) 
according to Hooke’s law. This gives us the force 
constant (k) as the ratio of F to x. We would like 
to compute the Young’s modulus of the material 
within this elastic limit of the chemical bond so 
called as harmonic approximation. If 0l  is the 

stress free length, A is the cross sectional area, we 
can write the Young’s modulus as 

A

kl
Y 0            (1) 

It is to be noted that the force constant k is related 
to the force between pair of atoms as 

0

2

2

Rr
dr

Ud
k











  with 

dr

dU
F  . Now, in the 

macroscopic specimen of length l0 and cross-
sectional area A, the specimen has roughly l0/r0 
number of bonds where R0 is the typical 
equilibrium distance of the interaction potential 
U(r). If one stretches this specimen by an 
infinitesimal distance dx, then the typical length of 

these bonds will increase by 
0

0

l

dxR
. Naturally, the 

tension in the each chain of atoms will be 
0

0

l

dxkR
. 

But the specimen contains 
2
0R

A
 of these chain of 

atoms, hence, the total force needed to produce an 

extension dx will be
00 Rl

kAdx
. Thus, the stress 

developed in the specimen is simply
00 Rl

kdx
. 

Therefore, the Young’s modulus can be written in 
terms of force constant k as 

0

2

2

0

1

rr
dr

Ud

R
Y











        (2) 

We model the potential of the chemical bonds by 
four different functions often taken in solid state 
physics. The first one in this category is the 
famous (6-12) Lennard-Jones potential given by 































6

0

12

0
01 2)(

r

R

r

R
UrU     (3) 

This potential is also used in statistical mechanics 
and liquid state theory. The power 6 is due to the 
fluctuating dipolar interaction energy [13] while 
the power 12 is not fixed in the sense that it could 
be any power greater than 6 for the stability 
reason. In the fluctuating dipolar theory [13], it is 
assumed that the two atoms are separated by a 
distance r. If the instantaneous dipole moment of 
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the first atom is 1p


, then within the dipole 

approximation, the electric field at a distance r 

will scale as 
3

1

r

p


. As a result this field will 

eventually induce a dipole moment 2p


 in the 

second atom of the order of 
3

1

r

p


. Therefore, the 

typical fluctuating dipolar energy will be of the 

order
6

2
1

3

21

r

p

r

pp





. Interestingly, although the 

time average value of 1p


 and 2p


 is zero but the 

time average of interaction energy is non-zero 
because of the quadratic dependence on 1p


. It is 

interesting to note that the potential goes to zero in 
the asymptotic limit of the distance. Moreover, the 
force generated from the above interaction is 
restoring one because above the equilibrium 
distance 0R , the force is attractive and below 0R , 

repulsive in nature. We expand the force around 
the equilibrium distance ( 00 xRr  ) and 

restricting to linear elastic limit, we find  

002
0

072
kxx

R

U
F            (4) 

This helps to identify the relevant force constant 

(k). Hence, the Young’s modulus can be written as 

2

0288

ad

U
Y


              (5) 

Here, we have used aR 0  and the cross-

sectional area 
4

2d
A


  with d  being the relevant 

diameter. One can also give a simple justification 
to the above formula from simple dimensional 
analysis [14]. Given the parameters used in the 
potential i.e. 0U  and 0R , it is easy to note that 

3
0

0

R

U
Y  . 

The expression obtained in equation (4) can now 
be used to estimate the typical magnitude of 
Young’s modulus of CNT. Assuming 

93.40 U eV as noted in case of Morse potential 

[15], we find the typical magnitude of force 
constant as 2790 N/m. For (9,0) SWCNT ( the 
circumference turns out to be 2.2 nm), the 
equation (4) should be multiplied by 9  for the 
computation of  Y . The estimated value thus turns 
out as 9363 GPa. This value is around 7.5 times 
larger than the experimentally observed value. The 
large value of 0U  taken in the above calculation is 

the reason for this discrepancy. However, 0.5 eV 
value of 0U  gives us a reasonable value of 948 

GPa. If we take typical value ( 211068.1  J) used 
for Ar atoms [15], we get back a very low value of 
Y  (20 GPa) for (9,0) SWCNT. 

As a generalization of the above potential, we 
consider the following one: 









































nm

r

R

nr

R

mmn

mn
UrU 00

0

11
)(   (6) 

with nm . . The equation (3) follows from the 
above equation in the limit 12m and 6n . 
With this generalized potential, the expression for 
Y turns out as 

2

04

ad

mnU
Y


                    (7) 

Another potential energy often used in molecular 
physics [16] is defined as 











rr

R
BrU

1

8
)(

8

7
0

2               (8) 

with 281031.2 B Jm. The second term in the 
above equation is the Coulomb term. In this case, 
the value of Y in terms of B becomes 
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22

28

da

B
Y


              (9) 

When three positive charge particles are 
maintained in a straight line with the end particles 
being identical and are held fixed at a distance 0R , 

a new type potential [16] emerges 













0

3
2

11
)(

Rrr
BrU          (10) 

The above elastic limit calculation yields the 
Young’s modulus as 

22

16

da

B
Y


               (11) 

Another variant of anharmonic potential  











9

00
4 )(

r

B

r

A
rU      (12) 

in material science [17] can also be used for rough 

estimation of Y .  With 29
0 1068.7 A Jm , it is 

easy to notice that the expression of  
2

4
2

dr

Ud
 at the 

equilibrium distance ( 0r ) becomes 

11
0

0

3
0

0

2

04
2 902)(

r

B

r

A

dr

rUd
      (13) 

with 
9

8
00

0

rA
B  . Therefore, the numerical value 

of Y  for (9,0) becomes 825 GPa comparable to  
experimental observation. 

The above picture is valid for absolute zero 
temperature. A suitable generalization to finite 
temperature can be done in the following way. At 
finite higher temperature, with the help of thermal 
energy, the atoms vibrate about their mean 
equilibrium positions. As a result, the amplitude of 

the vibration increases with increase of 
temperature. With further increase of temperature 
(still quite far away from their respective melting 
points), the bonds between the atoms loosened up. 
As a consequence, there is a decrease of Young’s 
modulus with temperature. With the help of linear 
expansion coefficient , the expression (6) can be 
written at finite non-zero temperature as 

)31(

4

)1()1(

4
)(

2
00

0

22
00

0

Tda

mnU

TdTa

mnU
TY

 





                                                               (14) 

In other words, the zero temperature and finite 
temperature Young’s modulus are related roughly 
by 

T

Y
TY

31

)0(
)(


              (15) 

2. Computation of Tensile Strength 

It is clear that for the computation of tensile 
strength, one has to take the single C-C bond in 
the hexagonal network. However, in all the above 
potentials, there is no information about the 
rupturing of the bond itself. However, we use the 
harmonic approximation to estimate the 
magnitude of the ultimate tensile strength in the 
following way. In Fig. 5, we show the variation of 
the scaled van der Waal interaction with scaled 
distance and the harmonic approximation adopted 
in it. The maximal elongation ( maxx ) is computed 

by equating the maximum potential energy at this 
distance to the bond energy. This gives us 

k

U
x 0

max

2
            (16) 

for the first potential in equation (3).  

Therefore, the final maximum tensile strength in 
terms of Y can be written as 
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6
max

max

Y

a

Yx
               (17) 
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Fig. 5. Sketch of the scaled typical van der Waal 
interaction (black) and its harmonic approximation 
(red) with dimensionless distance 

For (9,0) SWCNT, this value is simply 1560.5 
GPa quite large compared to experimental 
observed value. Similar analysis for generalized 
Lennard –Jones potential in equation (6) yields the 
maximal value of tensile strength as 

mn
Y

2
max                     (18) 

The equation (14) can also be used to estimate Y  
if max of the material composing the system is 

known. 

Fig. 6 represents the schematic variation of the 
interaction used in equation (8) with scaled 
distance. Please note the long tail of the 
interaction due to Coulomb interaction in contrast 
to Fig. 5. For the potential in equation (8), the 
ultimate tensile strength reduces to 

2
max

Y
                 (19) 
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Fig. 6. Sketch of the scaled second interaction 
potential (black) used in equation (8) and its 
harmonic approximation (red) with dimensionless 
distance 

Similarly, the expression for the potential given in 
equation (10) is recast as 

2
max

Y
            (20) 

It should be remembered that the discrepancy 
arises in the large estimated values lies with the 
validity of harmonic approximation in such a 
situation. In fact, the harmonic approximation 
breaks down for rupturing the bonds in SWCNT. 

In Table 3, we compare the different values of 

Y and max  obtained from all the above interaction 

potential with other observed values. The large 
difference between the theoretical predicted values 
and real experimental values may be due to 
structural defects inherent in SWCNT [15]. 
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Table 3: Comparison of values of Young’s 
modulus and tensile strength of (9,0) SWCNT 

 

Before we conclude we would like to point the 
possibility or prospect of carbon nanotubes as a 
space elevator [15, 18]. Till date CNT has not 
been produced at the macroscopic scale to produce 
a very long cable/rope connecting earth and space 
station/satellite. There might be occurrence of 
damage from atmosphere by storms and lightning. 
One has also to be careful to take appropriate 
precautions from collisions rendered by heavenly 
bodies moving around earth. Therefore, we still 
believe that its status as a space elevator remains 
in the arena of science fiction.  

 

3. Conclusions 
 

Within the limit of harmonic approximation, we 

have made a rough estimation of the Young’s 

modulus and tensile strength of typical carbon 

nanotubes at zero temperature following four 

important potentials used in solid state physics. 

The theoretical results are compared with 

experimental observations. We have also 

generalized the zero temperature result to finite 

non-zero temperature with the help of linear 

expansion parameter. The results thus obtained 

also find an important connection with the 

applicability of carbon nanotubes as a space 

elevator. 
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Abstract 
The Undergraduate syllabus of Physics Honours course in Jamshedpur Women’s College, 
Jamshedpur expects the students to carry out a project (30 marks) in the  Fifth semester. A 
laser refractometer built out of a spectrometer (which has seen better days), a hollow glass 
prism(fabricated) and some other apparatus mandatorily available in the Undergraduate 
laboratory unfolds some interesting ideas to carry out projects on a shoestring budget. 

 
 

1. Introduction 
One of the most important optical properties of a 
medium is its refractive index. As it is a fundamental 
property of the substance it is often used to identify 
a particular substance, confirm its purity or measure 
its concentration.  
   The absolute refractive index of a medium is the 
ratio of the speed of electromagnetic radiation in 
free space to the speed of the radiation in the 
medium. The relative refractive index is the ratio of 
the speed of light in one medium to that in the 
adjacent medium. Refraction occurs with all types of 
electromagnetic waves but the refractive index of a 
medium differs with the frequency of the wave. For 
a given frequency the refractive index of a medium 
depends on the density of the medium, which is 
again a function of temperature. 
 Beside other methods, the refractive index of a 
substance can be measured using a refractometer. 
i.e. how much a light beam bends on passing 
through a medium. 
 
 
 

 
 
 
Petrol is at times suspected to be adulterated with  
cheaper fuels like kerosene oil .An effort was made 
to determine the “purity” of petrol by calculating the 
refractive indices of petrol and that of a mixture of 
petrol and kerosene oil (in various proportions) and 
the values plotted to give a calibration curve to 
determine the degree of adulteration in any given 
sample. The usual method of determining the 
refractive index of a liquid with a hollow prism, a 
sodium lamp source and a spectrometer was found 
unsuitable as the image obtained was blurred making 
it  difficult to take measurements.[1]. 
A make-shift refractometer was, therefore, made 
from a discarded  spectrometer and a laser source 
replaced the conventional sodium lamp source.[2] 
 

2.Fabrication    
 (a)Construction of a hollow glass prism 
A transparent glass sheet 3mm thick was used from 
which a square 5cm x 5cm and three rectangular 
 strips 2cm x 4 cm were cut out. Using a water-proof 
adhesive, the pieces were glued together and left to 
dry for 24 hours.(see Fig. 1) 
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.  
Fig.1 Hollow glass prism filled with kerosene 

 
(b) Setting up a make-shift Refractometer. 
 
A spectrometer was used to make a refactometer. The telescope tube was made open ended on both ends by 
removing the eye-piece and the lens and simply used as case for placing the pencil laser source.  
 
 

 
The prism table was used to keep  
 the hollow prism filled with the desired liquid and also used to 
rotate it about a vertical axis 
passing through it. The collimator had no role to play and 
hence was rotated out of the way of the 
laser beam. A metre-rule was fixed on the wall to receive the 
incident laser beam after refraction through the liquid-filled  
prism as shown in Fig.2.  
 
 

 Fig.2 

3.Theory and Method 

                                                                                                                                        Meter Rule 

                                   Open ended telescope tube 

  Hollow prism filled with liquid 

                                                                                           Base Line=x                                                    

  

 Dm Initial Point  

                           Laser Source                                                                                                                                     Deflection=y 

 Deflected 

                                                                     Prism table                                                          point 



Physics Education                                           3                                           Oct – Dec 2015                 
 

Volume 31, Issue 4, Article Number : 7                                                                                www.physedu.in  
 
 

                                                                                                 Fig.3 

The above figure 3 shows the layout of the make-shift refractometer and the path of a laser beam(red) undergoing 
minimum deviation. Dm refers to the angle of minimum deviation. The point on the ruler where the laser light 
falls in the absence of the prism  is called the “Initial point” and the distance between the centre of the prism and 
the Initial point is called the base line.. 

The refracting angle A and the angle of 
minimum deviation Dm  give the refractive 
index µ of the medium by the following  
well known formula, 

 
     µ = sin{ (A +Dm)/2}/sin(A/2) ----------(1) 

From fig.3 we have 
 
Dm =  
    tan-1(y/x)=tan-1(deflection/baseline)----(2) 
 
Using equations (1) and (2) we get 
 
µ sin(A/2) =sin{(A + tan-1 (y/x))/2}-------(3) 

Which finally gives an expression for the angle 

of the prism  as 

A= [2 tan-1 {sin (Dm /2)}] / { µ- cos(Dm /2)}-   

                                                           ------(4) 

 

Calibration of prism   In theory, each 

angle of an equilateral prism is 60˚ but for a 

self-fabricated prism, this may not be true. 

Hence the prism needs to be be calibrated 

which in effect means that the angle 

between a pair of  refracting sides of the 

prism must be determined. 

To calibrate, first a pencil laser source was 

placed in the hollow open-ended telescope tube 

so that the laser beam travelled to the mounted 

ruler. The prism should not be on the prism table 

at this point. The reading on the ruler where the 

laser spot fell denoted the “Initial point”. Next a 

hollow prism, filled with water, was placed on 

the prism table. The laser spot on the ruler 

shifted. The prism table was rotated about the 

vertical axis passing through it so that the shift 

or deflection was a minimum. The reading on 

the meter-rule now represents the “deflected 

point”. 

The actual deflection is given by 

Deflection = (Deflected point) – (Initial point )  

                     = y--------- (5)            

The distance between the “initial point” and the 

centre of the prism was measured and denoted as 

baseline (= x).  Assuming  µ= 1.33 (water) and 

using Equations (2) and (4), the angle of the 

prism  “A” was calculated. This value was 

written on a sticker and stuck on the side of the 

prism opposite to the angle measured .This 

would keep the value of “A” handy and also 

ensure that in the rest of the experiment  too, the 

laser beam passed through the calibrated sides. 
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     Fig.4      Laser spot on mounted ruler 
 
Measurement of refractive index of the 
mixture 
 
Without disturbing the laser source, the 
hollow prism now filled with petrol was 
placed on the prism table. Care was taken to 
align the prism so that the laser beam passed 
through the calibrated sides. As before, the 
prism was rotated about the vertical axis to 
obtain the minimum deflection. The 
deflected point was noted and the deflection 
and the angle of minimum deflection 
calculated using (5) and (2). Equation (1) 
was now used to calculate the refractive 
index of the petrol in the hollow prism. The 
value for “A” obtained in the previous 
section was used in Equation (1). 
 
Next Kerosene was mixed with  petrol such 
that the ratio by volume was 25: 75 and the 
above process was repeated. Several 
readings with increasing proportions of 
kerosene in the mixture were taken ending 
with 100% kerosene (no petrol). The 
refractive index of the mixture was 
calculated each time.  
 
It was ascertained that the laser source did 
not undergo any motion (either rotational or 
translational) throughout the experiment. Its 

alignment with respect to the centre of the 
prism was kept constant and the prism was 
only rotated about the vertical axis through 
its centre. All these conditions were 
automatically satisfied in the above method 
by virtue of the construction of the 
spectrometer.     
 

4.Results and Discussion  
 
A graph was plotted between the refractive 
index of the mixture and the percentage of 
kerosene in it. It was observed that   with an 
increase in the percentage of kerosene, the 
refractive index of the mixture increased. 
(Fig. 5). 
  

 

    
 
The above triangle    and     dot show the 
refractive indices of petrol from two 
different petrol pump stations. 
                      Fig.5 
 
As petrol is made up of multi-components 
which can be broadly divided into alcohols, 
alkanes and aromatic compounds, the 
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refractive index of petrol/gasoline varies 
from country to country and also from 
company to company. Moreover it is also 
dependent on the method of extraction, area 
of extraction and even the time of the year. 
As such comparison of our results with any 
standard result was not possible. The studies 
done in Sweden on gasoline gives its 
refractive index as 1.429 at 27˚C using laser 
light (blue-green ∆λ = 488-514 nm) [3]. Our 
study was done with a source of He-Ne laser 
(λ= 668 nm) and for a particular brand of 
petrol, the value was 1.413. As it was 
diluted with kerosene (µ = 1.44)[4] its 
refractive index increased depending on the 
dilution. 
 
5.Limitations of the method 
 
 Our result for refractive index of kerosene 
turned out to be 1.429, a little less than the 
standard value. Our set up could not be 
expected to yield very accurate results as a 
self-fabricated hollow glass prism was used. 
Moreover, in our deductions we have treated 
the thickness of glass as negligible which is 
not really true.  
 
6. Learning 
 
However, on performing the project, the 
student understands that refractive index can 
well be an index of adulteration in many 
liquids. The student also learns how to use   
an old instrument in a  new and innovative 
way besides using the geometry of the set up 
and the concepts of Physics to deduce an  
expression for the refractive index. In a 
nutshell. the student is introduced to the 
flavor of research, something which she 
might savour and gravitate towards, later in 
her career. 
7. Way forward 

 A thin-walled and commercially 
manufactured hollow glass prism 
may give more accurate results.  

 
 A calibration graph of y(= 

deflection) against % of dilution can 
be used as a quick way of indication 
of adulteration in petrol. 
 

 The above set-up may be used to 
measure the refractive indicies of 
many transparent liquids and also to 
study the variation of the refractive 
index with change in temperature 
and also change in concentration in 
case of solutions. 
 

 A fibre optic sensor for 
determining the refractive index of 
liquds is likely to give better results 
as was done by Roy in 1999 [5]  
 

 
8. Expenses incurred on 

 Waterproof adhesive 
 Petrol and Kerosene 
  Labour charge for cutting glass for  

making the prism. 
. 
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Abstract

Gnuplot provides an excellent tool for plotting electromagnetic fields from various sources
of electric charges and currents, stationary as well as time-varying. Its extraordinary power
can be particularly exploited in plotting the propagating electromagnetic field from a
localized source, e.g., an oscillating electric or magnetic dipole. In this article we have
written the explicit commands in Gnuplot which will draw the E field lines of the
electromagnetic field due to a harmonically oscillating electric dipole aligned with the Z
axis. We have plotted the E field lines on the XZ plane over a limited region of radius 2.2
wavelengths around the source. We have shown, side by side, the B field lines from the
same source. However, the B lines are coaxial circles around the Z-axis, and hence do not
warrant plotting. The plotting of the E field involves plotting a 3D “relief map” with
contours embedded on it, for a certain function ψ(x, y, t), with t held constant. The
contour levels are selected by applying certain criteria. The plotted contours are converted
to directed contours, by drawing arrowheads on them, indicating the direction of the E
field, so that they qualify as field lines. We have demonstrated two alternative methods of
adding this qualification, namely (a) planting the E field vectors at selected points on the
XZ plane, and extrapolating them to the contour lines; (b) plotting the Eθ component
along the X axis, its positive value implying E pointing in the negative Z direction and
vice versa, and then following this direction around the entire contour. We have worked
out method (a) only for t = 0; and method (b) for one full cycle of oscillation
corresponding to eight values of t spaced at equal intervals. Looking at these eight plots
sequentially one sees how the electromagnetic field is propagating across space. We have
plotted Eθ along the X axis for the same eight values of t, all of them on the same graph,
to get a clear view of how the field is oscillating and moving, and its amplitude is falling as
the inverse of the distance. At the end we have used Gnuplot to plot the E and B fields for
a linearly polarized plane electromagnetic wave.
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1 Introduction

Distributions of stationary charges and
steady currents create time-independent

fields E (electric field) andB (magnetic field),
respectively. On the other hand, moving
charges, or localized distributions of time-

varying electric charges and electric currents
create both E and B. We shall represent
these fields as E (r, t) and B (r, t), where t
stands for time, and r for (x, y, z) in the
Cartesian coordinate system, (r, θ, φ) in the
spherical coordinate system, and represents
the coordinates of an arbitrary field point

(rather, the radius vector to the field point.)
We usually call these combined fields (E,B)
the electromagnetic field.

There are standard formulas for the elec-
tromagnetic field for simple cases: (i) A
plane wave (E,B) propagating through a lim-
ited region of space located far away from
the source, and (ii) the Electromagnetic field
(E,B) originating from a localized source,
namely, a harmonically oscillating electric

dipole, or magnetic dipole, the mathematical
expressions for (E,B) valid for all space, with
the origin of the coordinate system located
at the source point (i.e., where the point-like
dipole is located.) In this article our interest
is limited to these two examples.

The mathematical formulas for these two
fields are simple, in fact deceptively simple
for the case (ii). We have seen them umpteen
number of times in text books, but failed to
visualize how the field looks like, how exactly
it is spread over space, how its angular distri-
bution changes as we go from the near region

to the far region. One has to see plots of
these fields, to comprehend them, and get a
picture. There are articles, and some mod-
ern books where one can find plots in which
the field lines have been displayed beautifully.
Even then, the examples seen by us are defi-
cient in one respect, absence of ‘arrowheads’
indicating whether the field is pointing ‘up or
down’ along the field lines.
Partly to remove this deficiency, partly to

equip the reader with his own tool for draw-
ing the fields, and partly to continue our ef-
forts to clarify concepts in Classical Electro-
dynamics with illustrated examples, graphics
and plots[1, 2, 3], that we are writing this
article.
All our plotting work is based on freely

available software: (i) Gnuplot (Version 4.6),
and (ii) Xfig (version 3.2.5c). One can get
them and their Manuals[4] from the inter-
net for licence free use. The operating sys-
tem is Linux. We have used Debian distribu-
tion (version 5.0 Lenny) on our desktop com-
puter, and Mint distribution on our laptop
computer.
The author had used Gnuplot extensively

in his latest book[5] Mechanics, in which he
had also written an Appendix to introduce
the reader to Gnuplot and its applications,
namely drawing orbits of planets and space
vehicles, trajectories of various objects, plot-
ting coordinate vs time of particles in mo-
tion. The reader can benefit from these ex-
amples, can use them as a starting point for
learning and practising Gnuplot. However,
these experiences proved to be inadequate for
drawing the field lines of the (E,B) fields dis-
cussed in this article. It required two months
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of self training, working through a large va-
riety of exercises using two resource books,
namely the Gnuplot Manual[4] and Gnuplot
Cookbook[6], before the author gained confi-
dence in writing the commands to create the
field lines and ‘plant’ the E vectors along the
field lines.
The objective of this article is twofold: (1)

To present a graphical illustration of how
electromagnetic field propagates in space (i)
from a central localized source, viz., an oscil-
lating dipole, and (ii) as a linearly polarized
plane wave; (2) How to use Gnuplot for repli-
cating the same graphs on the reader’s own
computer.
We have placed greater emphasis on ob-

jective (2). For this purpose we have copied
the actual commands from the Console, pre-
sented them in 14 Exercises, starting each one
with a heading preceded by a serial number in
bold italics, e.g., Ex.1, Ex.2, etc. These ex-
ercises can be used to replicate all the graphs
shown in this article. We have provided ex-
planation of some of the commands, up to
Ex.8, in two ways: (a) its meaning at the
end of the command line, separated by the
symbol #, (b) general explanations/instruc-
tions at the end of the Exercise, emphasizing
them with the “bullet” symbol “. ”. For un-
derstanding the unexplained commands, the
reader should look them up in the references
just cited, in particular the Gnuplot Manual.
It is hoped that experience gained by do-

ing the exercises shown in this article will be
found useful by students and teachers for ap-
plication in a variety of other problems and
assignments in physics.
We shall begin with the Electromagnetic

field (E,B) originating from an oscillating
Electric dipole, which is more interesting.
This work will cover most of this article, and
is spread over Sections 2-10 (Pages 4 - 33).

2 The (E,B) Field of an

Oscillating Electric

Dipole

Fig.1(a) gives a schematic picture of an os-
cillating electric dipole. This figure also ex-
plains the spherical coordinates used, and the
unit vectors associated with them. The ob-
servation point P (we shall call it field point)
is located at the radius vector r, has po-
lar coordinates (r, θ, φ). It should be re-
membered that, unlike Cartesian unit vec-
tors i, j,k, the spherical unit vectors er, eθ, eφ
should be drawn at P (its components in the
directions of the XY Z axes are functions of
the angular coordinates θ, φ of P.) They are
pointing in the directions in which the respec-
tive coordinates are increasing. In particular
the unit vector eφ lies in a plane parallel to
the XY plane and is tangent to a circle with
centre on the Z axis. We have brought it
down from P to its projection N on the XY
plane, and shown it separately in Fig (c), in
a reduced scale.
The dipole consists of two metallic domes

A and B, each spherical in shape, mounted on
a metallic pole of length ℓ. The system is neu-
tral as a whole, but has equal and opposite
charges on the opposite domes. If at some in-
stant of time t the sphere A has charge qa(t),
then at the same instant of time the other
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sphere has charge qb(t) = −qa(t). A current
I(t) flowing through the pole, driven by an
oscillating voltage source (Fig.(b)), will make
the charge move back and forth between the
domes. It is assumed that this oscillation
is taking place harmonically at the angular
frequency ω. As a consequence the system
will develop a harmonically oscillating elec-

tric dipole moment p(t) = p(t)ez = qa(t)ℓ ez.
Here we have used the symbol ez to mean
a unit vector in the Z-direction. The wave

vector k is defined as

k = ker; where k =
ω

c
=

2π

λ
(1)

to be called the wave number, and λ is the
wavelength of the ensuing radiation.
We shall write the “source quantities” in

a proper form. We shall assume that the

current through the metallic pole is uniform1

(but time varying). Let q0 be the maximum
charge collecting on each dome. Then

qa(t) = q0 cosωt;
qb(t) = −qa(t) = −q0 cosωt;
p(t) = q0ℓ cosωt ez = po cosωt ez;
where po = q0 ℓ

(2)

is the scalar amplitude of this electric dipole
moment. The (E,B) field from this oscillat-
ing dipole, at some point P far away from
the dipole, and located at spherical coordi-
nates (r, θ, φ) is given by the following for-
mulas [7, 8, 9], assuming that r ≫ ℓ.

E(r, t) =
po

4πǫ0r3
[{cos(kr − ωt) + kr sin(kr − ωt)} 2 cos θ er

+
{
(1− k2r2) cos(kr − ωt) + kr sin(kr − ωt)

}
sin θ eθ

]
. (a)

cB(r, t) =
po

4πǫ0r3
[{
kr sin(kr − ωt)− k2r2 cos(kr − ωt)

}
sin θ eφ

]
. (b)

(3)

Here (er, eθ, eφ) are unit vectors associ-
ated with the polar coordinates (r, θ, φ), i.e.,
pointing in the directions of the increments
of the respective coordinates.

Note that we have multiplied the magnetic

1 This assumption will be valid for the special
case of our investigation in which the wavelength λ
of the resulting em wave is much much larger than
the length of the rod, i.e., λ≫ ℓ.

fieldB with c, the speed of light in vacuum, to
get the modified field cB, which has the same
unit as E in the SI units (volt/m) (and which
becomes necessary to express the EM field in
a relativistically covariant manner.) More-
over E = cB in the radiation zone, i.e., far
away from the source, i.e., regions for which

kr ≫ 1, or, r ≫ λ. (4)

In this radiation zone approximation, or far
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Figure 1: (a) Oscillating Electric Dipole at the origin, and the field point P at spherical coordinates
(r, θ, φ); (b) The oscillator driving the dipole; (c) Explaining the unit vector eφ, by projecting it
on the XY plane.

zone approximation (4), the EM field takes
the simple form[?]

E(r, t) = −
k2po
4πǫ0

cos(kr − ωt)

r
sin θ eθ.

cB(r, t) = −
k2po
4πǫ0

cos(kr − ωt)

r
sin θ eφ.

(5)

This is the radiation field repesenting an
electromagnetic wave emanating from a point
like dipole source located at the origin and
propagating along the direction of the radius
vector r drawn from the origin. We prefer
to use the symbol n to indicate the direction

of propagation. Which means that n = k

r
=

er. The radiation field is marked by three
important characteristics:

(I) cB = n× E;
(II) cB = E;
(III) E, cB ∝ 1

r
.

(6)

The opposite of the approximation (4) is
the near zone approximation:

kr ≪ 1; or, r ≪ λ. (7)

In this approximation we consider only the
zeroth power of kr. Ignoring the first and

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                        5                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 7 dateline(to be added by Editor)

second power of kr in Eqs.(3) we get

E (r, t) ≈

(
po

4πǫ0

2 cos θ er + sin θ eθ
r3

)
cosωt.

cB (r, t) ≈ 0.
(8)

3 Angular Distribution of

the Power Radiated by

the Oscillating Dipole

The Poynting’s vector, defined as

S = ǫ0c [E(r, t)× cB(r, t)] (9)

gives the flux density of the radiated electro-
magnetic energy. Consider a point P located
far away from the origin, at the spherical co-
ordinates (r, θ, φ). The EM field at this point
is given by Eq. (5). Therefore, the instanta-
neous electromagnetic energy flux density at
this point is given as

S(r, t) = ǫ0c

{
k2po
4πǫ0

cos(kr − ωt)

r
sin θ

}2

(eθ × eφ)

=
ck4p2o
16π2ǫ0

cos2(kr − ωt)

r2
sin2 θ er.

(10)

The above equation gives the instantaneous
value of S. Since the dipole will be oscil-
lating very fast, at frequencies of the or-
der of kHz, what is more relevant is the
time-averaged value of S, to be written as
< S >. This is easily obtained by noting
that < cos2(kr − ωt) >= 1

2
. Then,

< S(r, θ, φ) >=
ck4p2o
32π2ǫ0

(
sin2 θ

r2

)
er. (11)

The power radiated per unit solid angle is

dP

dΩ
= r2 < S(r, θ, φ) >=

ck4p2o
32π2ǫ0

sin2 θ.

(12)
Plotting the sin2 θ-angular distribution of

the radiated power, as given in Fig. 2, is a
trivial application of Gnuplot. The dipole is
oriented along the Z axis and is labelled p̃ (to
indicate that it is alternating harmonically).
The polar angle θ is measured from the pos-
itive Z axis.
We have indicated the strength of the

Poynting’s vector S over a sphere of radius r,
by the length of the arrow representing this
vector. The shaded double-lobe about the Z
axis is the XZ plane cross section of an axi-
ally symmetrical doughnut like 3-dimensional
plot of the radiated power, varying as sin2 θ,
which is characteristic not only of dipole ra-
diations (from both electric and magnetic
dipoles), but also of radiation from an ac-
celerating charge (in non-relativistic motion.)
In the latter case, the angle θ is measured
from the direction of the instantaneous ac-
celeration vector.
It is especially notable that there is no ra-

diation along the axis of the dipole, and maxi-

mum radiation along the plane perpendicular

to it.

4 Plotting with Gnuplot

The commands of Gnuplot are to be written
on Console. We shall show a few examples
of how to use Gnuplot. Let us observe a few
conventions. Every command in Gnuplot is
preceded by the following prompt

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                        6                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 8 dateline(to be added by Editor)

r θ

Z

X

S

S

S

S

S

S

S

p~

Figure 2: Energy flow from an oscillating Electric Dipole

gnuplot>
by which Gnuplot asks us to write a com-
mand line. On the other hand when Gnuplot
executes a command and gives its answer or
response, there is no such prompt. For econ-
omy of space we shall write
>
instead of the full prompt “gnuplot>”. We
shall also use the “comment” symbol ‘#’
for explaining a particular command to the
reader. This symbol ‘#’ is analogous to the
“comment” symbol ‘%’ used in LaTeX. Gno-
plot ignores anything written after # on the
same line.
To illustrate these points we shall ask Gnu-

plot to give the value of a certain function
f(x) which is either already there in its own

“library”, or which we have just defined, for
a few specific values of the argument.
We have copied below the “script” from the

Console in “footnote size typewriter font”, to
mark them out from the main text, and to
adjust them within the limited space of a col-
umn.

Ex.0

UrComputer:~ UrDir$ gnuplot # First line

G N U P L O T

Version 4.6 patchlevel 4 ....

Build System: Linux i686

Copyright (C) ....

Terminal type set to ’wxt’

> f(x)=3*x**2*cos(x)

# The function f(x) = 3x2 cos(x) is defined

> print f(1), sin(pi/2), cos(pi/2)

# f(x) at x = 1, others at x = π/2.
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1.62090691760442 1.0 6.12323399573677e-17

# values are 1.62090691760442, 1.0,
6.12323399573677× 10−17 = 0

• The first line is the same for all exam-
ples to follow. It shows the name of your
computer, working directory, and what
you have typed just after the $ sign to
start Gnuplot.

We shall begin with our first real example.

Ex.1. To plot the angular distribution of the
radiated power as given in Eq. (12). Here
let us note that in the 3-dimensional spheri-
cal coordinate system the the polar angle θ is
measured from the Z axis, as shown in Fig. 1.
In the plane polar coordinate system, on the
other hand, the polar angle is measured from
the X axis. Since we are going to plot a 2-
dimensional curve, the latter coordinate sys-
tem has to be used and the same function
sin2 θ written in Eq. (12) has to be written
as sin2(π/2 − θ) = cos2 θ. We now write the
commands.

> set polar # polar coordinates

dummy variable is t for curves

> set grid polar # draw grid lines

> set trange [0:2*pi] # range of θ
> set rrange [0:1.2] # range of r
> set size square # shape of the plot area

> set xrange [-1.2:1.2]; set yrange [-1.2:1.2]

# range of x,y coordinates

> plot ((cos(t))**2) # the plot is drawn instantly

> set term fig color portrait size 15, 15

metric pointsmax 1000 solid font "Times-Roman,12"

# Terminal specification

Terminal type set to ’fig’

Options are ’color small pointsmax 1000 portrait

metric solid textnormal font "Times Roman,12"

linewidth 1 depth 10 version 3.2 size 15 15’

> set title "S4dpol-150623.fig"

# a label to appear on the plot

> set out "S4dpol-150623.fig"

# to save as, file name

> replot # replots and saves

• The default coordinate system is Carte-
sian. To plot in the polar system, the
command “set polar” is necessary. The
function has to be written in the form
r = f(θ). The letter t stands for θ, when
plotting “polar”.

• Immediately after the command “plot
((cos(t))**2)” the plot appears on the
screen, but we are unable to save it
in the computer. For this purpose we
have to specify a “terminal”. The saved
plot will look identical with the one now
on screen, if we choose “set term png”.
However, we are more comfortable with
the terminal “fig” for editing using Xfig.
The command “set term fig ...” not only
sets the terminal, but also makes further
specifications, e.g, solid and coloured
lines for plots as well as grids, font name
and size for labelling, size of the screen
15 cm × 15 cm, etc. The plot is now
stored in the working directory with ex-
tension “.fig”.

• It has been our practice to add today’s
date (yymmdd) as part of the file name
(which the reader need not follow.) We
now start Xfig, look for the file name,
bring the plot on the screen, for which
we shall use the term “canvas”. We
work on this canvas and do some editing.
For example, we give extra labels, draw
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X,Z coordinate axes, change the grid
lines from “solid” to “dashed”, change
the colours of the curve, as we feel nec-
essary. See Ex.2 for a better example.

• Note that the “first line” pointed out in
Ex.0, and “the terminal specification” in
Ex.1 will be common for all Exercises to
follow, so that we shall not repeat them
any more.

We shall refer to the entire set of com-
mands given in Ex.1 as “script” (term bor-
rowed from Gnuplot Cookbook.) The script
written in Ex.1 results in the plot shown in
Fig. 3.

5 Plotting the Electric

Field from the

Oscillating Dipole in

the Near Zone

The term “plotting the field” here means
plotting the field lines, i.e., imaginary curves
in space such that the E field at any point
in space is tangential to such a curve passing
through that point. But why are we restrict-
ing ourselves to the E field only, ignoring the
B field? The answer comes from Eqs. (3).
The B field has only φ-component, i.e., it is
pointing in the direction of the eφ vector, so
that the field lines are coaxial circles around
the Z axis (see Figs. 1 (c), 15(b).) In contrast
the E field has both r and θ components (i.e.,
having components along er as well as eθ vec-
tors.) They create interesting and beautiful

patters in space, which we need to see, appre-
ciate and admire. Also, B accompanies E ev-
erywhere, being comparatively weaker in the
near zone, but equallly strong in the radia-
tion zone. Hence the “graph” of the strength
of E field is also a graph of the strength of
B field, especially in the radiation zone. See
Fig. 13.
We shall first set up the general differential

equation in the spherical polar co-ordinate

system for field lines of E andB that are sym-
metrical about the Z-axis (azimuthal symme-
try) so that one complete field line, from be-
ginning to end, is confined to an azimuthal
plane (φ = constant). For convenience of
drawing we have taken this plane to be the
XZ plane in Fig. 4(a), which shows a part
such a field line. The points P and Q are
infinitesimally close points on this curve at
radius vectors r and r + dr respectively, so
that dr = dr er + r dθ eθ. The lines of E
or B being tangential to the field line at ev-
ery point, Er/Eθ = dr/r dθ for electric field
lines; Br/Bθ = dr/r dθ for magnetic field
lines. Confining ourselves to electric field, let
the field lines be represented by the family of
curves C : r = f(θ, k) where k is a constant.
It follows that

dr

r dθ
=
f ′(θ) dθ

f(θ)dθ
=
Er

Eθ

; or,
f ′(θ)

f(θ)
=
Er

Eθ

.

(13)
Eq. (13) gives the differential equation[8]

for azimuthally symmetrical field lines at any
point in space where Eθ 6= 0. We shall now
use this equation to plot the E field from the
oscillating dipole for the near zone. We shall
plot the field at t = 0, so that cosωt = 1
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Figure 3: Angular distribution of the energy flow from an oscillating Electric Dipole

in Eq. (8a). The oscillating dipole is at its
peak value and is pointing up i.e., towards
the positive Z axis. Also, Er/Eθ = 2 cos θ

sin θ
=

2 cot θ. Hence,

df

dθ
= 2 cot θ f. Or,

df

f
= 2 cot θ dθ. (a)

By integration r = f(θ, k) = k sin2θ. (b)
(14)

Eq. (14b) gives the family of dipole field

lines, different members of this family corre-
sponding to different, positive values of the
constant k. In Fig.4(b) we have shown three
such curves on each side of the Z-axis. We
created them with Gnuplot, added subse-
quently “arrowheads” manually to indicate
the direction of the field at some selected
points.

Note that for each value of k there is one
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Figure 4: (a) Plotting field lines; (b) Quasistatic E lines from an oscillating electric dipole

pair of symmetrical lobes about the Z axis
on the XZ plane (looking somewhat like the
wings of a butterfly), representing a dipole
field. These contour curves exist symmetri-
cally around the Z axis, covering the vicinity
of the oscillating dipole. To evaluate k for
a particular field line Γ we have to find the
distance D of a point P on the XY plane
through which Γ passes. Since θ = π/2 for
such a point, it follows that k = D. We shall
now demonstrate the actual plotting of the
field lines.

Ex.2. To plot the field lines from the os-
cillating dipole at t = 0. This example also
illustrates the use of “do” command and “line
type”.

> set title "Ed-150623.fig"

> set out "Ed-150623.fig"

> Ed(n,t)=0.2*(1+n)*((cos(t))**2)

> do for [n=0:4] {plot Ed(n,t) lt n}

• The script written above has been con-
tinued from Ex.1.

• The defined function Ed(n,t) has 2 ar-
guments, t for θ and n for the “iter-
ation” number = 0,1,2,3,4 as specified
in the next “do” command. It creates
five plots, intersecting the X axis at
±(0.2, 0.4, 0.6, 0.8, 1.0)

• The sub-command“lt n” specifies “line
type” for each value of n. In term fig,
lt 0= black, 1= red, 2= light green, 3=
dark blue, 4= magenta. However, we
changed the colour of lt 2 from light
green to dark green for better visibility,

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                        11                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 13 dateline(to be added by Editor)

the grid lines from solid to dashed, their
colours from black to blue.

The actual plot is shown in Fig.5.

6 Fieldlines from

Oscillating Dipole

Plotting the E field as given by Eq. (3) is
much more difficult, because in this case the

differential equation (13) is not so easy to in-
tegrate. However we shall follow the path
given by Orfanidis[7] and achieve a wonder-
ful result.
Let us set P = k3po

4πǫ0
; ρ = kr, τ = ωt.

The EM field (E,B) has only three non-zero
components, as seen from Eq. (3):

Er =
P

ρ2

[
cos(ρ− τ)

ρ
+ sin(ρ− τ)

]
2 cos θ. (a)

Eθ =
P

ρ3
[
(1− ρ2) cos(ρ− τ) + ρ sin(ρ− τ)

]
sin θ. (b)

cBφ =
P

ρ3
[
−ρ2 cos(ρ− τ) + ρ sin(ρ− τ)

]
sin θ. (c)

(15)

We shall plot only the E field, ignoring the
B field, for the reason cited at the begin-
ning of Sec. 5. The B field lines on the XY
plane are coaxial circles around the Z-axis,
as shown later, in Fig.15.

Plotting implies a “picture” of the field
with time frozen, i.e., with t held constant.
We shall set

Ψ(ρ) ≡
cos(ρ− τ)

ρ
+ sin(ρ− τ).

so that dΨ
dρ

=

− 1
ρ2
[(1− ρ2) cos(ρ− τ) + ρ sin(ρ− τ)] ,

(16)
with τ held constant. It follows that

Er =
P
ρ2
Ψ(ρ) 2 cos θ;

Eθ = −P
ρ
dΨ
dρ

sin θ.
(17)

Then from (13)

dr
dθ

= rEr

Eθ
,⇒ dρ

dθ
= ρEr

Eθ
= − Ψ

dΨ
dρ

2 cot θ.

⇒ dΨ
dθ

= −2Ψ cot θ.
(18)

This differential equation is similar to the
one in Eq. (14a), except for a negative sign
on the right side. Solving it we get

Ψ(ρ) sin2 θ = C

⇒
[
cos(ρ−τ)

ρ
+ sin(ρ− τ)

]
sin2 θ = C ′

(19)

where C ′ is a constant.
We now return to the original variables and

write the above equations of the field lines as
[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ = C

(20)
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Figure 5: E field lines intersecting the X-axis at x = ±(.2, .4, .6, .8, 1.0)

Before we start plotting let us be careful
about what this plotting operation will in-
volve. We are going to plot the E field lines
on a predecided fixed plane Σ which passes
through the line of the oscillating dipole, the
same as the Z axis. This plane is to be iden-
tified as the XZ plane. The field lines will be
shown as contour plots of the function that
appears on the left side of Eq. (20), for a fixed

value of t. The above function will now be
considered to be a function of the Cartesian

coordinates (x, z), with y set to zero. This is
because Gnuplot can make contour plots of
functions only of Cartesian coordinates.

When Gnuplot plots either a surface, or a
series of contours on that susrface, it expects
the equation of the surface to be written in
Cartesian coordinates as z = f(x, y). For this
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purpose we shall change the variable z → y,
denote the left side of Eq. (20) as ψ(x, y, t),
and prepare to plot contours on the surface

defined as:

z = ψ(x, y, t)
def
=

[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ.

(21)

In this change of variables the surface is
raised above the XY plane (instead of the
XZ plane). The Z axis now represents the
function ψ(x, y, t). Plotting the field lines for
a given value of t is the same as plotting
contours on this surface for selected levels,
i.e., for selected values of z, with t held con-
stant. The constant C appearing on the right
side of Eq. (20) represents one of those “se-
lected evels”. After the plotting operation is
done, at some convenient point we shall re-
store the y-coordinate to the status of the
z-coordinate.

The contours on this surface are now given
by the equation

z = ψ(x, y, t) =[
cos(kr − ωt)

kr
+ sin(kr − ωt)

]
sin2 θ = C.

(22)

For every time t > 0 and every real value
of and C lying within zmax and zmin there is
a contour .

Now suppose we take the unit of distance
as the wavelength λ, and the unit of time as
the time period the harmonic oscillation T ,

i.e.,

ρ = kr = 2πr
λ

→ 2πr; τ = ωt = 2πt
T

→ 2πt,
Hence,[
cos 2π(r − t)

2πr
+ sin 2π(r − t)

]
sin2 θ = C

(23)
becomes the equation of the field lines in the
polar coordinate sytem.

We shall illustrate this contour plot for the
field at t = 0, so that

z = ψ(x, y) ≡ ψ(x, y, t = 0)
=

[
cos 2πr
2πr

+ sin 2πr
]
sin2 θ = C.

Alternatively,[
cos ρ
ρ

+ sin ρ
]
sin2 θ = C.

(24)

Gnuplot will not only plot the surface z =
ψ(x, y), but show selected contours on this
surface, and project them on the XY plane,
as we shall demonstrate in the next section.

7 Plotting the E Field at

t = 0

We shall first draw the field lines at t = 0.
Note that this instant t = 0 is not the begn-
ning of time. The dipole has been oscillating
forever, from t = −∞ to t = +∞. How-
ever the zero time is taken to be one of those
instants when the dipole achieves its peak
value, pointing upwards (i.e., in the +Z di-
rection).

For a better view of the details of the field
lines limit ourselves to a small region around
the origin, within a radius of 2 wavelengths.
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It should be remembered that we have cho-
sen the length scale in the unit of the wave-
length λ (just before Eq. 23). Therefore our
viewing region has a radius of r = 2 arond
the Z-axis. Before plotting the field lines it
will be necessary to decide the values of ψ
at which the contours will be drawn. For
example we may like the contours to pass
through some selected points on the X axis,
say, x = 0.8, 0.9, 1.0, 1.1. However the con-
tour lines need to be more dense. Hence we
shall add more lines. The selection process
and the subsequent plot is done in three steps.
Step 1: Selection of the contour levels.

To make the selection we have plotted the
ψ(x, y) function along the x-axis, i.e., we have
plotted the function

ψ(x) ≡ ψ(x, 0) (25)

in the range [0.1,2.0], avoiding the origin
where the function goes to infinity.

Ex.3. To plot the function ψ(x) along the
X-axis.

> ro(x)=2*pi*x # defines ρ(x) as in Eq.(23).

> psi(x) = cos(ro(x))/ro(x) + sin(ro(x))

# defines ψ(x) as in Eq.(24)

> set grid # sets grid lines

> set xtics 0.1; set ytics 0.5; set mytics 5

# sets tic marks on the X and Y axes

> set xrange [0.1:2]; set yrange [-1.1:2]

# sets the ranges of x,y values

> set title ‘‘psi(x)-150609.fig"

> set out ‘‘psi(x)-150609.fig"

> plot psi (x) # 2-D plot

The plotted function is shown in Fig.6. It
comes with the title “psi(x)-150609.fig”, as
per the command given in the 3rd line from
the bottom of the command chain. On that
plot we have indicated

(1) the values ψ = −0.89,−0.44, 0.16, 0.70
corresponding to the following intercepts of
the ψ(x, y) function on the x-axis: x =
0.8, 0.9, 1.0, 1.1. The exact values of ψ can
be obtained by writing the command:

> print psi(0.8),psi(0.9),psi(1.0),psi(1.1)

-0.889579538602437 -0.444719637070117

0.159154943091895 0.704838937474402

(2) zeros of ψ at x ≈ 0.44, 0.98, 1.49, 1.99, ...
(3) maxima of ψ at x ≈ 1.22, ...
(4) minima of ψ at x ≈ 0.7, 1.73, ...
We have shown the above points on the
plot“psi(x)-150609.fig”, below the x axis..
We selected the preliminary contour lev-

els at z = −0.89,−0.44, 0.16, 0.70 from con-
sideration of (1), and extra levels at z =
1, 1.3,−0.6, 0.5, 0.85 from consideration of
(2),(3),(4). We have indicated the above val-
ues on the left side and on the right side of
the plot.

Step 2: Plotting z = ψ(x, y), as a 3D surface,

and show the contours. We have achieved the
objective through the following commands:

Ex.4. To plot the surface ψ(x, y) and con-
tours on it.

> r(x,y) = sqrt(x*x+y*y) # defines r =
√
x2 + y2

> st(x,y)=x/r(x,y)

# defines sin θ
> sr(x,y) = sin(2*pi*r(x,y))

# defines sin ρ = sin 2πr
> cr(x,y) = cos(2*pi*r(x,y))

# defines cos ρ = cos 2πr
> psi(x,y) =( cr(x,y)/(2*pi*r(x,y))

+ sr(x,y) )*(st(x,y))**2

# defines ψ(x, y) as in Eq.(24)

> set size square

# shape of the plot area

> set surface # surface plot

> set contour both

# contour on the surface as well as
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Figure 6: The function ψ(x, y) drawn along the X-axis, for selection of contour levels

on the base

> set hidden3d # treat surface as opaque

> set cntrparam levels discrete - 0.89,

-0.44, 0.16, 0.7, 1, 1.3, -0.6, 0.5, 0.85

# contour parameters, discrete levels

> set xrange [-2:2]; set yrange [-2:2]

# domains of x and y

> set xlabel "x-axis"; set ylabel "y-axis"

# labels on the x and y axes

> set zlabel "psi(x,y)"

# label on the z axis

> set isosamples 50,50; set samples 10,10

> splot psi(x,y)

# 3-D surface plot. It is interactive

> set term fig color portrait size 15, 15,

metric pointsmax 1000 solid font

"Times-Roman,12"

# Terminal specification

> set title "psi(x,y)-150610.fig"

# label the plot

> set out "psi(x,y)-150610.fig"

# save as, the file name

> replot

• The “splot” command, before specifica-
tion of the terminal, results in a 3-D plot
which is interactive. You can change the
view angle, choose the best perspective,
then specify the terminal. Finally when
you give the “replot” command, the plot
will be saved and seen as you last saw it,
before setting the terminal.

The resulting plot is shown in Fig.7

Step 3: Plotting the Field lines of E. This
is achieved through the following commands,
starting with “unset surface” to make sure
that the surface will not be drawn again.

Ex.5 Plotting field lines on the XZ plane.
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Figure 7: The isometric plot of the surface function ψ(x, y), the z axis representing the height of
the surface above the XY plane. The contours at the selected levels are shown on the surface as
well as on the XY plane.

> unset sur

> set view map

> set key bmargin

> set title "psi(x,y)cont-150610.fig"

> set out "psi(x,y)cont-150610.fig"

> splot psi(x,y)

• The script written above has been con-
tinued from Ex.4.

The resulting plot is shown in Fig.8

8 Planting the E vectors

The E field lines drawn in the last section
may look impressive, but is deficient on one
count. There is no indication of the direction
of the field along the lines. One can remedy
this defect in one of following two ways.
(a) Actual planting of the E vector at selected
points of the region under scrutiny and, by
superimposing the plot of Fig.8 on the same
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Figure 8: The field lines of E on the XZ plane at time t = 0, due to an oscillating electric dipole
p̃ oriented along the Z axis, and placed at the origin. We have added a small circular blob, with
an arrow piercing through it (not part of the plot), to indicate the location and the direction of
the dipole at t = 0.
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canvas, get a clear indication of the direction
of the field along the field lines;
(b) Make a plot of the value of the transverse
component of the field, namely Eθ(x), along
the x axis, which gives the exact value of the
field along this axis, since there is no Er com-
ponent on the XY -plane. Since eθ = −k on
the XY plane, positive value of Eθ(x) implies

direction of the −Z axis and vice versa. Fol-
low these directions along entire field lines.
Each option has its advantage and disad-

vantage. In option (a) the plotter gets a clear
indication of the E planted all over the space,
with its both magnitude and direction in dis-
play. However, the procedure is laborious,
because it involves creating a “data table” of
(x, y, Ex, Ey) for selected points. In compari-
son, option (b) is relatively quicker and easier
to implement.
In this section we shall take up the first

option, i.e., option (a).
Gnuplot can “plot vectors”. We are using

the term “planting vectors” for the same op-
eration. Page 56 of Gnuplot Manual tells us
how to do this.

The 2D vectors style draws a
vector from (x,y) to (x+xdelta,
y+ydelta). The 3D vector style is
similar, but requires 6 columns of
basic data. A small arrowhead is
drawn at the end of each vector.
4 columns: x y xdelta ydelta
6 columns: x y z xdelta ydelta
zdelta
The keyword “with vectors” may
be followed by an in-line arrow style
specification.

.... plot ... with vectors filled heads

Therefore the operation “planting vectors”
begins with preparation of a 4 column data
table, in which each row will have four entries,
namely the (x,y) componets of the field point,
followed by the (Ex, Ey) components of the E
field at that point.
At this point let us note that the formulas

given in Eqs. (15) give the (r, θ) components
of the E field. They are to be converted to the
(x, y) components of the field by the following
formulas.

Ex = Er sin θ + Eθ cos θ
Ey = Er cos θ − Eθ sin θ

(26)

We shall now carry out this operation
through the following steps.

Step 1: Calculating the values of

(x, y, Ex, Ey) for selected distances d mea-

sured from the origin, as a prelude to the

creation of the Data Table.

We have selected d in the range of 0.1
to 1.6, at a fixed interval of 0.1, and their
locations at six values of the polar angle,
measured from the Z axis, equal to θ =
nπ/12; n = 1, ..., 6. The region under obser-
vation is the first quadrant of the XZ plane,
i.e, 0 ≤ θ ≤ π/2; φ = 0. In other words
z > 0; x > 0; y = 0; d = fλ = f , since
λ = 1, and f = 0.1, 0.2, 0.3, · · · , 1.6.
We shall illustrate the procedure here only

for d = 1 and d = 0.5.
The reader should interpret all y coordi-

nates written in the commands below as the z
coordinate, following the comments made on
page 15.

Volume xx, Number y Article Number : n.(to be added by editor) www.physedu.in

Physics Education                                                        19                                                 Oct - Dec 2015

Volume 31, Number 4, Article Number : 8                                                                   www.physedu.in



Physics Education 21 dateline(to be added by Editor)

Step 1A

Ex.6. Calculating the coordinates (x, y) of
the selected points.

> x(n)=d*sin(n*pi/12); y(n)=d* cos(n*pi/12)

# x(n), y(n) defined

> d=1 # d=1

> do for [n=1:6] {print x(n)}

# values of x(n) for d = 1;n = 1, ..., 6
0.258819045102521

0.5

0.707106781186547

0.866025403784439

0.965925826289068

1.0

> do for [n=1:6] {print y(n)}

# values of y(n) for d = 1;n = 1, ..., 6
0.965925826289068

0.866025403784439

0.707106781186548

0.5

0.258819045102521

6.12323399573677e-17

> d=.5 # d=.5

> do for [n=1:6] {print x(n)}

0.12940952255126

0.25

0.353553390593274

0.433012701892219

0.482962913144534

0.5

> do for [n=1:6] {print y(n)}

0.482962913144534

0.433012701892219

0.353553390593274

0.25

0.12940952255126

3.06161699786838e-17

Step 1B

Ex.7. Calculating Ex, Ey at the selected
points at t = 0.

> r(x,y)=sqrt(x*x + y*y)

> ro(x,y) = 2*pi*r(x,y);

ro2(x,y)= (ro(x,y))**2

> ro3(x,y) =(ro(x,y))**3

# ρ, ρ2, ρ3 defined

> sr(x,y)=sin(ro(x,y)); cr(x,y)=cos(ro(x,y))

# sin ρ, cos ρ defined

> st(x,y)=x/r(x,y); ct(x,y)=y/r(x,y)

# sin θ, cos θ defined

> Er(x,y) = (cr(x,y)/ro3(x,y)

+ sr(x,y)/ro2(x,y)) * 2 * ct(x,y)

> Et(x,y)=(cr(x,y)/ro3(x,y)

# (Er , Eθ) as defined in Eqs.(15)

+ sr(x,y)/ro2(x,y)-cr(x,y)/ro(x,y))*st(x,y)

> Ex(x,y)=Er(x,y)*st(x,y)+Et(x,y)*ct(x,y)

> Ey(x,y)=Er(x,y)*ct(x,y)- Et(x,y)*st(x,y)

# (Ex, Ey) from Eqs.(26)

> d=1.0 \# d=1

> do for [n=1:6] {print Ex(d*sin(n*pi/12),

d*cos(n*pi/12))}

# values of Ex(x, y) for d = 1;n = 1, ..., 6
-0.0367651544198614

-0.0636791154033154

-0.0735303088397228

-0.0636791154033154

-0.0367651544198614

-9.00486573608828e-18

> do for [n=1:6] {print Ey(d*sin(n*pi/12),

d*cos(n*pi/12))}

# values of Ey(x, y) for d = 1;n = 1, ..., 6
0.0179140770447072

0.0448280380281612

0.0815931924480226

0.118358346867884

0.145272307851338

0.155123501287745

> d=0.5 # d=.5

> do for [n=1:6] {print Ex(d*sin(n*pi/12),

d*cos(n*pi/12))}

0.0553888207210481

0.095936251660179

0.110777641442096

0.0959362516601791

0.055388820721048

1.35663484009156e-17

Step 2; Constructing the Data Table
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This was done in the following way (1)
Start a new text document by invoking Libre
Office Writer. (2) Save it as a text document
with extension .txt. In this case the name
of this file is ’E1vecdataC-150423.txt’. (3)
Choose any one of the selected points. Copy-
paste the values of x,y from Step 1A, and the
values of Ex,Ey from Step 1B (after round-
ing them off to 2 or 3 decimal places.). The 4
numbers are now displayed not in a row, but
in a column, as in

a

b

c

d

(4) take cursor just after the top number
in this row (i.e., a), go further by one space,
and click del. The next lower number (i.e.,
b) now comes next to the first number with
one blank space in between. In this way bring
all the numbers in one row. As a result the
copied numbers are now rearranged as
a b c d
Continue this procedure to bring the
(x,y,Ex,Ey) values of all selected points in as
many rows. The composition of this file is
now complete.
The (partial) Data Table below shows the

data for the 12 selected points corresponding
to d = 1.0, 0.5.

# x y Ex Ey

.26 .97 -.037 .018 # d=1

.5 .87 -.064 .045

.71 .71 -.074 .082

.87 .5 -.064 .118

.97 .26 -.037 .145

1.00 0 0 .155

.13 .48 .06 -0.08 # d=0.5

.25 .43 .1 -.12

.35 .35 .11 -.18

.43 .25 .1 -.23

.48 .13 .06 -.27

.5 0 0 -.29

The full data table, saved as ’E1vecdataC-
150423.txt’ in the working directory, is
shown in the Appendix.

Step 3: Planting the E vectors on the first

quadrant of the ZX Plane.
Ex.8.

> set size square

> set pointsize 0.5

> set xrange [-0.1:1.7];

set yrange [-0.1:1.7]

# sets x-range and z-range

> set xtics 0.5; set mxtics 5

# sets tic marks along the x-axis

> set ytics 0.5; set mytics 5

# sets tic marks along the z-axis

> set title ‘‘E1vecB-150505.fig"

# title that appears at the top

of the plot

> set out ‘‘E1vecA-150505.fig"

# filename of the plot, stored in UrDir

> set key bmargin

> plot ’E1vecdataC-150423.txt’ using

1:2 with points pt 7,

’E1vecdataC-150423.txt’ using

1:2:3:4 with vectors size .02, 15

filled lt 3

• The last command plants (a) the
field points from col 1,2 of the data
file ’E1vecdataC-150423.txt’ with ‘point
type’ 7 (circular blob), (b) the vectors
from col 1, 2, 3, 4 of the same data
file, as straight lines, starting at these
field points, and terminating at an ar-
rowhead. The size of the arrowhead is
indicated in the subcommand ‘with vec-
tors size .02, 15 filled lt 3’ (length = .02,
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Figure 9: The E vectors on the XZ plane at time t = 0, shown on the first quadrant. They are
planted at selected points marked with red dots. These points are distributed along radial lines at
equal length intervals of 0.1 from d = 0.4 to d = 1.6, and at equal angular intervals of π/12 from
θ = π/12 to θ = π/2. The oscillating dipole is shown at the origin as p̃
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sloping angle of the arrows = 150, line
type 3.)

• If we want to make the vectors look
longer, by increasing their size by, say
50%, the second part of the last com-
mand should be modified to:

... ’E1vecdataC-150423.txt’ using

1:2:(1.5*$3):(1.5*$4) with vectors

size .02, 15 filled lt 3.

See pp.72,169 of Gnuplot Manual, Ex-
ample on p.28 of Gnuplot Cookbook.

We have shown the planted E vectors in
Fig. 9.

Step 4: Plotting the Field lines
Ex.9

> r(x,y) = sqrt(x*x+y*y)

> st(x,y)=x/r(x,y)

> sr(x,y) = sin(2*pi*r(x,y));

cr(x,y) = cos(2*pi*r(x,y))

> psi(x,y)=( cr(x,y)/(2*pi*r(x,y))

+sr(x,y) )*(st(x,y))**2

> set contour base

> unset surface

> set view map

> set cntrparam levels discrete -0.89,-0.44,

0.16,0.70,1,1.3,-0.6,0.5,0.85

> set isosamples 80,80

> set title "E1lineD-150505.fig"

> set out "E1lineD-150505.fig"

> splot psi(x,y)

• The commands are a continuation of
those in Ex.8.

• The contur plots, even though they look
2-dimensional, are to be treated as sur-
face plots (3-dimensional). Hence the
“splot” command.

We have shown the field lines in Fig. 10.

Step 5: Superimposing the Planted Vectors on

the Field lines This operation does not in-
volve Gnuplot. It is mostly a copy-paste op-
eration done in xfig, and shown in Fig. 11.
The canvas is divided into four partitions:
(a), (b), (c), (d). We have copied Figs. 10
and 9, scaled down to about half their di-
mensions, and pasted them in partitions (a)
and (b). These two figures are superimposed
in partition (c), in which we find the field
vectors embedded in the neighbourhood of
the field lines. We extrapolate their direc-
tions into the field lines, in partition (d), by
drawing short tangents along the curve with
arrowheads, and get directed field lines.

9 Plotting the E Field at

equal time intervals of

T/8 for one full period

T .

We shall now take up the option (b) men-
tioned at the beginning of Sec.8, not just for
t = 0, but for eight instants of time, taken
at equal intervals spread over one full period
of oscillation of the dipole, namely, t =
0, T/8, 2T/8, 3T/8, 4T/8, 5T/8, 6T/8, 7T/8.
We shall first make two series of plots
for each one of the above instants,
namely, (i) plot the field lines on
the XZ plane over a square region:
[−2.5 λ ≤ x ≤ 2.5 λ,−2.5 λ ≤ z ≤ 2.5 λ];
(ii) plot E vs x along the X-axis for the
same x-range −2.5 λ ≤ x ≤ 2.5 λ. The
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E1lineD−150505.fig

Figure 10: The E field lines on the XZ plane at time t = 0, shown on the first quadrant, drawn
in the x-range [-0.1:1.7] and z-range [-0.1:1.7]. The oscillating dipole placed at the origin is shown
as p̃.
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Figure 11: Drawing directed E field lines (lines of force) on the XZ plane at time t = 0, on the
first quadrant.
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Figure 12: E field lines at t=0.
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directions of the field obtained in (ii) will be
extrapolated in (i) along the field lines.

Step 1: Plotting the field lines over one full

period at 8 equally spaced instants: t =
nT/4; τ = nπ/4; n = 0, 1, ..., 7
Ex.10

> set size square

> set xrange [-2.5:2.5]; set yrange [-2.5:2.5]

> set xtics 0.5; set mxtics 5

> set ytics 0.5; set mytics 5

> set grid xtics ytics back linetype 3

> unset key

> r(x,y) = sqrt(x*x+y*y)

> st(x,y)=x/r(x,y)

> sr(x,y) = sin(2*pi*r(x,y));

cr(x,y)=cos(2*pi*r(x,y)) # n = 0
> psi(x,y)=(cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set contour base

> unset surface

> set view map

> set cntrparam levels discrete -0.89, -0.44,

0.16,0.70,1,1.3,-0.6,0.5,0.85

> set isosamples 100,100

> set out "Evstime0-150518.fig"

> splot psi(x,y)

> sr(x,y)=sin(2*pi*r(x,y)-pi/4);

cr(x,y)=cos(2*pi*r(x,y)-pi/4) # n = 1
> psi(x,y) =( cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set out "Evstime1-150518.fig"

> splot psi(x,y)

..............................................

> sr(x,y) = sin(2*pi*r(x,y)-7*pi/4);

cr(x,y)=cos(2*pi*r(x,y)-7*pi/4) # n = 7
> psi(x,y)=(cr(x,y)/(2*pi*r(x,y))

+sr(x,y))*((st(x,y))**2)

> set out "Evstime7-150518.fig"

> splot psi(x,y)

• The field lines corresponding to t = 0 are
shown in Fig.12

• The command lines corresponding to
n=2,...,6 are not shown.

• The field lines corresponding to t =
nT/4; n = 1, ..., 7 are not shown. How-
ever, they have been saved in the work-
ing direcory under seven file names
as specified above, namely, Evstime1-
150518.fig, ... ,Evstime7-150518.fig.
They are to be used in the Step 5 be-
low.

Step 2: Plotting Eθ vs x along the X-axis. We
shall however go further and plot Eθ, Bφ on
the same plot only for t = 0.
Ex.11 To plot Eθ(x) and cBφ(x) at t = 0

along the X-axis.

> set xtics 0.5; set mxtics 5

> set ytics 0.15; set mytics 3

> set grid xtics ytics back linetype 3

> set xrange [0.2:2.5];set yrange [-0.3:0.3]

> ro(x) = 2*pi*x; ro2(x)=(ro(x))**2;

ro3(x) =(ro(x))**3

> sr(x) = sin(ro(x));cr(x) = cos(ro(x))

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)

-cr(x)/ro(x) # n=0

> Bf(x) = sr(x)/ro2(x)-cr(x)/ro(x)

> set xrange [0.2:2.5];

set yrange [-0.3:0.3]

> set title "EBvsx0-150621.fig"

> set out "EBvsx0-150621.fig"

> plot [0.2:2.5] [-0.3:0.3] Et(x),Bf(x)

We have shown this combined plot in Fig. 13.
Note from Eq. (15) that E has only θ com-
ponent on the XY plane, and cB has only φ
component everywhere. Therefore along the
X axis, E = Eθ, B = Bφ. We have shown in
Fig. 13 E and cB vs x on the same graph at
t = 0. It is seen that the two fields are almost
equal for x > 0.6.
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Figure 13: E and B vs x along the X-axis, at t = 0.

Ex.12 To plot Eθ(x) along the X-axis, for
t = nT/8; n = 1, ...7.

> sr(x)=sin(ro(x)-pi/4);

cr(x)=cos(ro(x)-pi/4) # n=1

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)-cr(x)/ro(x)

> set title "Evsxn1-150521.fig"

> set out "Evsxn1-150521.fig"

> plot Et(x)

....................................

> sr(x) = sin(ro(x)-7*pi/4);

cr(x)=cos(ro(x)-7*pi/4) # n=7

> Et(x)=cr(x)/ro3(x)+sr(x)/ro2(x)-cr(x)/ro(x)

> set title "Evsxn7-150521.fig"

> set out "Evsxn7-150521.fig"

> plot Et(x)

• The commands are a continuation of
those in Ex.11.

• The command lines corresponding to
n=2,...,6 are not shown.

• The seven graphs plotted above are
not shown. However, they have been
saved in the working direcory under
seven file names as specified above,
namely, Evsxn1-150521.fig, ... , Evsxn7-
150521.fig. These plots are to be used in
the Step 5 below.

Step 3: Insert arrows alongside E field lines

by finding their directions from the E vs x
plots, at t = 0.
We have illustrated in Fig. 14 how this op-

eration has been carried out. We copied two
figures, namely (a) Fig. 12, and (b) Fig. 13,
on a single canvas in xfig. We removed the
plot of Bφ, so that (b) has only plot of Eθ.
Now we placed (b) beneath (a), scaled down
(b) such that its boundary lines (correspond-
ing to x = 0.2, 2.5) were aligned with the cor-
responding tic marks in (a). This was done
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because the graph (a) has xrange [-2.5:2.5]
and the graph (b) has xrange [0.2:2.5]. Next,
we drew vertical lines from the following
points on the graph in (b) to the X-axis of
(a): (i) the maxima, (ii) the minima, and the
(iii) zeros.
The unit vector eθ coincides with −k on

the XY plane, as mentioned earlier. There-
fore, the maxima correspond to peak values
of E in the negative Z direction, the minima
to the peak values positive Z direction, and
the zeros to the centres of the loops formed by
the contours. We followed the directions ob-
tained from (i) and (ii) through entire loops
of the contours.

Step 4: Obtaining directed field lines of E and

B, at t = 0
Now that we have drawn directed field lines

of E at t = 0, we need to see it side by side
with the B field at the same instant of time.
For this purpose we have copied directed field
lines of Fig. 14 as part (a) of Fig. 15, and
drawn the field lines of B as concentric circles
in part (b) of the same figure, as suggested by
Fig. 1(c), and Eq. (15c).
It is seen from Fig. 13 that the positive and

negative peak values of E and cB occur at the
same set of points on the X axis. Using this
as a guide, we have obtained the directions
of B along the field lines, and have indicated
them with arrowheads.

Motion of Field lines
The field lines as drawn in Fig. 15 look

static. Actually they are moving lines, ex-
panding outward into space with the speed
of light. This dynamic character of the field
lines is clearly seen especially in the radiation

zone, from Eqs. (5). In this zone we can as-
sign a phase, defined as ϕ = (kr − ωt), to
every field line. Any particular phase ϕ asso-
ciated with, say the crest (positive maximum)
or trough (negative maximum), is given as
ϕ = a = constant. Hence, as t changes, the
value of r associated with that phase changes
accordingly, satisfying r = a + ω

k
t = a + ct.

For a better and analytical understanding
of the “motion of the field lines” we need to
go back to Eq. (22), in an attempt to giv-
ing a meaning to the term. Field lines are
contours on the surface z = ψ(x, y, t). Imag-
ine two field lines Γ(t) and its time evolution
Γ(t + dt) in a small time-interval dt. They
correspond to the same value of the constant
C, and are drawn at times t and t + dt re-
spectively. An imaginary point P(t) on Γ(t)
at the coordinates (r, θ, φ) moves radially to
the point P(t + dt) on Γ(t + dt) at the coor-
dinates (r + dr, θ, φ). We may then refer to
ṙ = dr

dt
as the radial velocity of the field line

at P. We can then obtain ṙ by differentiating
r with respect to t in the implicit equation
Eq. (22), and get

[
cos(kr − ωt)− sin(kr−ωt)

kr
− cos(kr−ωt)

(kr)2

]
ṙ

=
[
cos(kr − ωt)− sin(kr−ωt)

kr

]
c.

(27)
A few wavelenghts away from the source the
third term within the square brackets on the
left side vanishes, making ṙ ≈ c.

At this point let us pause for a while, and
introspect whether these field lines are in
conformity with Maxwell’s equations in free
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Figure 14: Extrapolating the direction of the E field on the XZ plane from the E − x graph
plotted along the x-axis. Time t = 0.
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Figure 15: The E field on the XZ (Fig.(a)), and the B field on the XY plane (Fig (b)),
corresponding to the same instant of time: t = 0. The B field lines are concentric circles. The
solid circles correspond to the maximum values of B in anticlockwise (Bφ positive) and clockwise
(Bφ negative) directions, the dashed circles to zero value of the field.
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space, written below.

∇ ·E = 0. (a) ∇×E = − ∂cB
∂(ct)

. (b)

∇ · cB = 0. (c) ∇× cB = ∂E
∂(ct)

. (d)

(28)
The form of the equations is a reminder of
the relativistic form (i.e., covariant form) of
Maxwell’s equations. Eqs. (a),(c) suggest
that the field lines of both E and B should
form closed loops, which is obviously the case
for both of them. Eq. (c) (representing Fra-
day’s law) requires that the line integral of
E around any such closed loop Γ must equal
the negative of the area integral of ∂cB

∂(ct)
over

the area enclosed by Γ, remembering that the
cB field, lying on the XY plane, is penetrat-
ing the XZ plane perpendicularly. This fact
cannot be verified by just by looking at the
plot.

Step 5: Draw directed field lines of E for one

full period T

We have replicated the operation men-
tioned in Step 3 (E field at t = 0) for the
remaining seven values of t, covering one full
perod, namely, t = nT/8; n = 1, ...7. For
each one of these instants, we have taken
the field lines from Step 1 (Ex.10), placed
below it the corresponding plot of Eθ vs x
plot from Step 2 (Ex.12). After completing
this work leading to the composite figure for
each value of t, we scaled down each one of
them to about half of their size (i.e., linear
dimension) so that the figures corresponding
to t = 0, T/8, 2T/8, 3T/8 were arranged in
Fig. 16 in four quadrants, and the figures
corresponding to t = 4T/8, 5T/8, 6T/8, 7T/8
were arranged in Fig. 17 in four quadrants.

Looking at successive pictures, correspond-
ing to successive values of t covering on full
period, the reader should get a reasonably
good idea of how the field is evolving in time,
resulting in a propagating wave in all direc-
tions along the XZ plane. The same pic-
ture holds for all planes passing through the
Z axis.

Step 6. Finally, we have plotted E vx x, along
the X axis, for one full period at eight equal
time intervals on a single graph, as shown in
Fig. 18, using the following commands.

Ex.13

> set xtics 0.5; set mxtics 5

> set ytics 0.05

> set grid xtics ytics back linetype 3

> ro(x) = 2*pi*x;ro2(x)=(ro(x))**2

> ro3(x) =(ro(x))**3

> sr(x) = sin(ro(x)-n*pi/4);

cr(x)=cos(ro(x)-n*pi/4)

> Er0(x)=(cr(x)/ro3(x) + sr(x)/ro2(x))

> Et0(x) = Er0(x) - cr(x)/ro(x)

> set title "EvsxD-150520.fig"

> set out "EvsxD-150520.fig"

> do for [n=0:7]

{plot [0.2:2.5] [-0.3:0.3] Et0(x) lt n}

The plots give a clear picture of the EM wave
along the X axis. It should be remembered
that as we go far away from the orign, the
amplitudes of the E and cB fields fall off as
1/r (compared to 1/r2 for the Coulomb field),
and they become equal in magnitude, but re-
main perpendiculr to each other. The pattern
remains the same in all directions around the
Z axis, except for the fact that their ampli-
tude varies as sin θ, being zero along the Z
axis, and maximum along the XY plane.
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Figure 16: Extrapolating the direction of the E field on the XZ plane from the E−x graph potted
along the x-axis. Times t = 0, T/8, 2T/8, 3T/8.
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Figure 17: Extrapolating the direction of the E field on the XZ plane from the E − x graph
plotted along the x-axis. Times t = 4T/8, 5T/8, 6T/8, 7T/8.
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Figure 18: E vs x at t = 0, T/8, 2T/8, 3T/8, 4T/8, 5T/8, 6T/8, 7T/8, covering one full period T ,
giving an indication of how the EM wave propagates in all directions, its amplitude falling off as
1/r as we go far away from the source.
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10 Plotting a linearly

polarized plane EM

Wave

We now come to the part (i) of our work,
as mentioned at the end of the Introduction,
namely the simplest example of a plane EM
wave, originating from a source which is far
away from the region where it is detected.

For the simplest example we shall take the
direction of propagation to be the Z direc-
tion, and the direction of the E and B fields
to be in the X and Y directions respectively.
Let the wave be a harmonically varying field.
Then[?]

E = E0 cos k(z − ct)ex (a)
cB = E0 cos k(z − ct)ey (b)

(29)

The direction of the E vector is called the
direction of polarization. This can be any
direction perpendicular to the direction of
propagation. Since in the present example,
the propagation direction is the Z direction,
the E and B fields must be on the XY plane.
The example shown in Eq.(29) assumes a

constant direction of polarization. When this
is the situation, the EM wave is said to be lin-
early polarized. There is another special case
in which the magnitude of the E field is con-
stant, but rotates uniformly, perpendicular to
the direction of propagation. Such a propa-
gating field is said to be circularly polarized.
The present example illustrates a linearly po-
larized wave for which the diection of polar-
ization is the X direction. We may even call

it an X-polarized plane EM wave. We have
depicted this wave in Fig. 19(c).

Note that the direction of the Poynting’s
vector S is the same as the Z direction, and
the the waveform shown in the figure is mov-
ing in bulk with the speed c in the Z direc-
tion. Also we have shown the cB field, as
the companion of the E field, so as to convey
to the reader the equality E = cB which is
intended to be portrayed by equal lengths of
the two vectors E and cB.

To create the picture of the propagating
field we first created two primitive plots,
shown in Figs. 19(a) and (b), each having
the same cosine function plotted on the XZ
plane and the YZ plane, and covering time
ranges [−π/2 : π/2], [π/2 : 3π/2] respectively.
Together they covered one full period of the
wave. The final picture of the propagating
wave shown in Fig. 19(c) was created by the
editing operation : copying-pasting, joining,
adding arrows, filling with colors, and then
extending further over two more periods. The
plots in Figs (a) and (b) were created using
Gnuplot through the following command.

Ex.14

> set parametric

> set urange [-pi/2:pi/2]

> splot u,0,cos(u),u,-cos(u),0,u,0,0

> set term fig color size 27 18 metric

pointsmax 1000 solid font "Times-Roman,12"

depth 50

> set title "EMplaneA-150504.fig"

> set output "EMplaneA-150504.fig"

> set key bmargin

> replot

> set urange [pi/2:3*pi/2]

> set title "EMplaneB-150504.fig"

> set key bmargin
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> splot u, 0, cos( u ), u, -cos( u ), 0, u, 0, 0

> set output "EMplaneB-150504.fig"

Appendix

The content of the file E1vecdataC-
150423.txt
The data below lists x,y,Ex,Ey for d= 1, .8,
.6, .4, .5, .7, .9, 1.1, 1.3, 1.5, 1.4, 1.6, 1.3

# x y Ex Ey

.26 .97 -.037 .018

.5 .87 -.064 .045

.71 .71 -.074 .082

.87 .5 -.064 .118

.97 .26 -.037 .145

1.00 0 0 .155 # d=1 on x axis

.21 .77 -.042 -.05

.4 .70 -.072 -.029

.57 .57 -.084 .013

.70 .4 -.072 .055

.77 .21 -.042 .085

.8 0 0 .097 # d=.8 on x axis

.16 .58 .011 -.116

.3 .52 .020 -.124

.42 .42 .023 -.136

.52 .3 .020 -.147

.58 .16 .011 -.155

.6 0 0 -.158 # d=.6 on x axis

.10 .39 .112 .054

.2 .35 .194 -.028

.28 .28 .224 -.140

.35 .2 .194 -.252

.39 .10 .112 -.334

.4 0 0 -.364 # d=.4 on x axis

.13 .48 .06 -0.08

.25 .43 .1 -.12

.35 .35 .11 -.18

.43 .25 .1 -.23

.48 .13 .06 -.27

.5 0 0 -.29 # d=.5 on x axis

.18 .68 -.02 -.1

.35 .6 -.04 -.08

.49 .49 -.04 -.06

.61 .35 -.04 -.04

.68 .18 -.02 -.02

.7 0 0 -.02 # d=.7 on x axis

.23 .87 -.05 -.02

.45 .78 -.08 .02

.64 .64 -.09 .06

.78 .45 -.08 .11

.87 .23 -.05 .14

.9 0 0 .16 # d=.9 on x axis

.28 1.06 -.02 .03

.55 .95 -.03 .05

.78 .78 -.04 .07

.95 .55 -.03 .08

1.06 .28 -.02 .1

1.1 0 0 .1 # d=1.1 on x axis

.34 1.26 .02 .02

.65 1.13 .03 .01

.92 .92 .04 -.01

1.13 .65 .03 -.03

1.26 .34 .02 -.05

1.3 0 0 -.05 # d=1.3 on x axis

.39 1.45 .03 -.01

.75 1.3 .04 -.03

1.06 1.06 .05 -.05

1.3 .75 .04 -.08

1.45 .39 .03 -.1

1.5 0 0 -.1 # d=1.5 on x axis

.36 1.35 .028 .005

.7 1.21 .048 -.015

.99 .99 .056 -.043

1.21 .7 .048 -.071

1.35 .36 .028 -.091

1.4 0 0 -.098 # d=1.4 on x axis

.41 1.55 .015 -.017

.8 1.39 .026 .028

1.13 1.13 .03 -.044

1.39 .8 .026 -.059

1.55 .41 .015 -.07

1.6 0 0 -.074 # d=1.6 on x axis

.31 1.16 .003 .034

.6 1.04 .005 .032

.85 .85 .006 .029

1.04 .6 .005 .026

1.16 .31 .003 .024
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Figure 19: A linearly polarized plane electromagnetic field propagating in the Z direction
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1.2 0 0 .024 # d=1.2 on x axis
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