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EDITORIAL 

 

  

We will soon be entering a new phase in the life of 
Physics Education. From the next issue onwards, 
major changes to journal website, its content and 
format will be implemented. The website content 
will be more dynamic and will engage in a 
continuous conversation and debate about many 
aspects of physics and its interface with all other 
aspects of life in general. All these changes have 
become possible, thanks to the continued support 
of the Board of Research in Nuclear Sciences, 
Department of Atomic Energy, Government of 
India. 
 

At the same time, we will maintain the standards 
of the journal. Physics Education will continue to 

focus on pedagogical aspects of physics with 
special reference to India, while keeping in mind 
that physics, and science in general, is an 
international enterprise without reference to 
national borders.   
 
We hope to have your continued support for the 
journal. 
 

 
M. S. Santhanam 

Chief Editor 
Physics Education    

           
 

_______________________________________________________________________________________________   
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Determination of Refractive Index of A Liquid Using Lensmakers’ formula 
 

Rabindranath Chattopadhyay                                                                                                   

Haripal G.D.Institution,  
W.B. India  &  Indian Centre for Space Physics , 

Hooghly , Kolkata, 712405. 

    (Submitted: 21 -11 - 2015) 

 
Abstract 

A High School Project is undertaken to demonstrate the Lensmakers’ formula and use it to determine 
the refractive index of liquids like water and glycerine. Such a formula is derived particularly for thin 
lens. A compound lens, made of a pair of thin convex  glass cover enveloping a liquid (water and 
glycerine separately in our experiment ) and are glued to each other is prepared and used as a 
compound liquid lens. The interface equation-based thin lens formula is then applied to the cases of 
two such lenses and then manipulating the experimentally found out value of focal length in  
respective cases the refractive indices  are found out. 

 
 
 
 
 
 

 

Fig.1 

 
1. Introduction 

Two thin glass-shells of same thickness and of 
nearly equal radii of curvature and of same aperture 
of rear edge are glued together keeping a small 
opening at one place on the edge-boundary and thus 
a hollow lens is formed (Fig.1). The thickness of 
the shells and the radii of curvature of those two 
spherical shells are measured prior to gluing them. 
Liquid under consideration is then poured into the 
hollow lens until it is completely filled up.It is thus 
made ready for use in the experiment.The 
compound lens thus produced is then clamped on a 
stand attached to an optical bench keeping the small 
opening upward so that  
 
 

 
 
 
liquid poured into it does not come out of it. 
Keeping that lens in a fixed position on the optical 
bench the object-pin and the image-pin are then 
moved as is usually done in U-V experiment for 
finding the focal length of a lens. The data are put 
down in tabular form and are then plotted with the 
help of Microsoft Words Worksheet. From that 
graph the focal lengths in the two different cases of 
two compound lenses are found out. On the other 
hand the focal length of a lens is also found out 
from theoretical consideration (discussed in the 
following section). The two values are equated to 
each other and from that equation the ‘μ (refractive 
index)’ of the liquid concerned is found out. 
 
Theory : The very physical parameter which most 

directly determines the optical behavior of an 

optical medium is the refractive index (μ) of the 

medium. When two different optical media touch 

each other at a boundary the boundary is called an 

‘interface’ between the two media. An optical 

system produced by encompassing an optical 
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medium with two such curved  interfaces is called a 

‘lens’. Ray-tracing diagram in Geometrical Optics 

helps one establishing interface equation 

corresponding to an interface(Ref.1). Inteface-

equation corresponding to  interface, either of 

concave or of convex nature(Fig.2) is given by , 

     
��

�
  -  

��

�
  =  

��� ��

�
   ………(for concave 

interface) 

   
��

�
  -  

��

�
  =  

��� ��

��
   (for convex interface) where   

‘r’ is the radius of curvature of the interface 
,interfaces being considered to be spherical in 
nature. The interface-equations given above are 
derived on the basis of   a set of assumptions as 
follow ;  (i)Rays incident on interface are paraxial  
(ii)Rays considered are only those which pass 
through a small aperture  while incident on 
interface.  (iii) Interfaces are   perfectly      spherical 

Brief interpretation of Fig.2:  O→ The point 

source situated on the common principal axis of                                                                                                                                                                                                   

the interfaces.                           I →  The point 

image situated on the common principal axis of the 

interfaces.                                 V→  The vertices 

,the points where the principal axis cut the 

interfaces.                                 C→  The centre of 

curvature of the spherical interface that lie on the 

principal axis.                     P→  A point on the 

boundary of the small aperture of the interface 

through which the paraxial beam passes. 

For the assumptions mentioned earlier to be 

followed the following approximations are taken                                  

granted:  OP ≃  OV = u = the object distance  ,   IP 

≃  IV = v = the image distance                                                                                                      

CP ≃  CV = r =  the radius of curvature. In our 

experiment, in case of the liquid-filled biconvex 

compound lens there are actually four  interfaces 

namely, ���  ,���  ,���  ,���   and the five separate 

media-entity labeled 1,2,3,4 &5 respectively. Here  

�� = �� = 1  (for air  μ =1) &  �� = �� =�� = 1.5 

(for glass   μ =1.5) and   �� the refractive index of 

liquid considered the value of which is to be 

determined. 

 

The interfaces  ��� and  ���  on the side of the image 

are both concave with respect to the  object while   ��� 

and ���  on the side of object are convex with respect 

to the same object.                                      Therefore 

the set of interface-equations required to be considered 

for establishing the                                                      

relation between the object-distance and image-

distance are as follows;  
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  τ  being the width between  ���  & ��� , � ′  being the width between ��� & ��� and  � ′′ being                                   

the width between ��� & ��� .  Adding all these four equations one gets, 
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 Determination  of radius of curvature of lens-interfaces and the final relation between the                                            

object-distance and image-distance: The radii of curvature of both outer sides of the lens                                                               

were found out with the help of spherometer and are given below;   

   ���= 6.61 cms. ,  ���= 5.80 cms. .As the glass thickness was found to be 0.15cm. the inner                                                        

interfaces’ radii are given by   ���= 6.46  cms. and  ���= 5.65cms. Here  τ =0.15cm.= � ′′ and                                                        

� ′ = 0.50cm. (as measured). Hence   τ ,  � ′ ,  � ′′  «  �  ,  � ′ ,  � ′′  and are therefore neglected                                     

in Eqn.(1) and putting these values in the same equation one gets, 
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 ) ] = – [ 0.3318��–0.3358] 

                                                                                                                       ………………………(2) 

                                                                   Table (U-V values for water lens) 

Serial 
No. 

Fixed position 
of lens 

Position of 
object 

Position of 
image 

Object(u)  
distance 

Image(v) 
distance 

Focal(f) 
length 

Mean(�)̅ 
of  f(cms) 

1 70 cms. 85 cms. 50 cms. 15 cms. 20 cms. – 08.600  
 
–09.500 

2 70 cms. 90 cms. 52 cms. 20 cms. 18 cms. – 09.474 
3 70 cms. 95 cms. 54 cms. 25 cms. 16 cms. – 09.756 
4 70 cms. 100 cms. 54.5 cms. 30 cms. 15.5 cms. – 10.219 
5 70 cms. 105 cms. 57 cms. 35 cms. 13 cms. – 09.479 
6 70 cms. 110 cms. 57.5 cms. 40 cms. 12.5 cms. – 09.524 
                                                                 

                                                                  TableII (U-V values for glycerine lens)                                                                                      

Serial 
No. 

Fxd.posn. 
of lens 

Position 
of object 

Position 
of image 

Object(u)  
distance 

Image(v) 
distance 

Focal(f) 
length 

Mean(�)̅ 
of  
f(cms) 

1 70 cms. 80 cms. 52.0 cms. 10 cms. 18.0 cms. –6.43  
 
 
–06.777 

2 70 cms. 82 cms. 56.0 cms. 12 cms. 14.0 cms. –6.46 
3 70 cms. 88 cms. 58.8 cms. 18 cms. 11.2 cms. –6.90 
4 70 cms. 92 cms. 59.8 cms. 22 cms. 10.2 cms. –6.97 
5 70 cms. 94 cms. 60.2 cms. 24 cms. 09.8 cms. –6.90 
6 70 cms. 97 cms. 60.8 cms. 27 cms. 09.2 cms. –6.86 
7 70 cms. 100 cms. 61.0 cms. 30 cms. 09.0 cms. –6.92  
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Using the well-known formula for finding the focal length of a thin biconvex lens in case of real                                     

image         
�

�
 + 

�

�
  = 

�

�
   ……….(2)        (as obtained from the definition of principal focus)                                                          

the focal length of two compound liquid lenses are found out and are  tabulated in the same table 

above(Table I & II).Moreover the focal lengths of the two liquid lenses are also found out from graphs 

plotted  for  u  versus  v  (Fig.3 & 4). Now combining Eqns.(1) & (2) one gets  

                                    [ 0.3318��–0.3358] =     
�

�
    ……………….(3)                                                                                           

                                    

 

 

 

 

 

 

 

 

     Fig.3                                                                                              Fig.4    

The values of ‘f’ , as found out from graph are ‘9.15’  and  ‘9.25’  respectively.Putting these values in 
Eqn.(3) one gets the  corresponding values of ‘�� ‘(Table III). Similarly the values     of ‘f’ for glycerine-
lens from graph are found to be equal to ‘6.9’ and ‘6.95’ respectively. The   corresponding values of ′���’,as 

obtained putting these values in Eqn.(3) are given in the    same table.                                                         

Table-III 

Liquid in lens Value of � 
From expt. 

Value of �(1) 
From graph 

Value of �(2) 
From graph 

Mean 
Value of � 

Standard 
Value of � 

% of 
deviation 

Water 1.329 1.341 1.338 1.336 1.330 +0.45% 
Glycerine 1.457 1.450 1.446 1.451 1.466 –1.00% 
 

 

The value of ‘� ‘of water is thus experimentally  
found to be equal to ‘1.336’ which is very close to 
the standard reference value of it at normal 
temperature.The value of ‘�′ of glycerine ,as found 

out here in this experiment is ‘1.451’.Glycerine 
,taken in this experiment was 95% solution by 
weight for which at room-temperature ,as was 
recorded during our experiment          i,e. 20⁰c the 
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reference standard value (Table  IV) is ‘1.46597’ 
which roughly may be taken as 
‘1.466’(Ref.3).From the result thus obtained it is 
observed that our experimental result deviates less 
than or equal to 1% from reference standard value 
of the refractive indices of the liquids concerned 
and therefore this experimental method may be 
regarded as quite a reliable method of finding 
refractive index  of a liquid. 

Conclusion:  The result of the experiment 

described above implies that on one hand the 

object-distance–image-distance relationship based 

on interface equations for thin lens is verified and 

on the other hand this method of experiment may 

be adopted for finding out the refractive index of a 

liquid.The advantage of this method of 

determination of focal length  through interface-

equation over other usual method in Geometrical 

Optics is that this interface equation-based 

formula may quite satisfactorily be applied thick 

lens as well.Moreover if instead of glass semi-

rigid transparent plastic is used as enclosure of 

liquid to produce compound liquid lens it will 

resemble certainly to a large extent to the lens-

system within eyes of a living being or more 

specifically to human eye.Using such a lens in an 

experiment as described in this article in a more 

sophisticated way and performing the experiment 

altering varieties of other variables such as 

pressure etc. many more possibility regarding the 

focal length depending on other factors may be 

explored too. 
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Appendix-I 

Table-IV(Ref.3) 

Refractive Index of Glycerine-Water Solutions at 20C (69F) 
                                    Glycerine      Refractive Index         Difference           Glycerine                      Refractive Index           Difference 
                                 % by Weight                nD20                   for1%            % by Weight                           nD20                          for1% 

 
 

100                  1.47399               0.00165               50                              1.39809                    0.00149 
99                    1.47234               0.00163               49                              1.39660                    0.00147 
98                    1.47071               0.00161               48                              1.39513                    0.00145 
97                    1.46909               0.00157               47                              1.39368                    0.00141 
96                    1.46752               0.00156               46                              1.39227                    0.00138 
95                    1.46597               0.00154               45                              1.39089                    0.00136 
94                    1.46443               0.00153               44                              1.38953                    0.00135 
93                    1.46290               0.00151               43                              1.38818                    0.00135 
92                    1.46139               0.00150               42                              1.38683                    0.00135 
91                    1.45989               0.00150               41                              1.38548                    0.00135 
90                    1.45839               0.00150               40                              1.38413                    0.00135 
89                    1.45689               0.00150               39                              1.38278                    0.00135 
88                    1.45539               0.00150               38                              1.38143                    0.00135 
87                    1.45389               0.00152               37                              1.38008                    0.00134 
86                    1.45237               0.00152               36                              1.37874                    0.00134 
85                    1.45085               0.00155               35                              1.37740                    0.00134 
84                    1.44930               0.00156               34                              1.37606                    0.00134 
83                    1.44770               0.00160               33                              1.37472                    0.00134 
82                    1.44612               0.00162               32                              1.37338                    0.00134 
81                    1.44450               0.00160               31                              1.37204                    0.00134 
80                    1.44290               0.00155               30                              1.37070                    0.00134 
79                    1.44135               0.00153               29                              1.36936                    0.00134 
78                    1.43982               0.00150               28                              1.36802                    0.00133 
77                    1.43832               0.00149               27                              1.36669                    0.00133 
76                    1.43683               0.00149               26                              1.36536                    0.00132 
75                    1.43534               0.00149               25                              1.36404                    0.00132 
74                    1.43385               0.00149               24                              1.36272                    0.00131 
73                    1.43236               0.00149               23                              1.36141                    0.00131 
72                    1.43087               0.00149               22                              1.36010                    0.00131 
71                    1.42938               0.00149               21                              1.35879                    0.00130 
70                    1.42789               0.00149               20                              1.35749                    0.00130 
69                    1.42640               0.00149               19                              1.35619                    0.00129 
68                    1.42491               0.00149               18                              1.35490                    0.00129 
67                    1.42342               0.00149               17                              1.35361                    0.00128 
66                    1.42193               0.00149               16                              1.35233                    0.00127 
65                    1.42044               0.00149               15                              1.35106                    0.00126 
64                    1.41895               0.00149               14                              1.34980                    0.00126 
63                    1.41746               0.00149               13                              1.34854                    0.00125 
62                    1.41597               0.00149               12                              1.34729                    0.00125 
61                    1.41448               0.00149               11                              1.34604                    0.00123 
60                    1.41299               0.00149               10                              1.34481                    0.00122 
59                    1.41150               0.00149                 9                              1.34359                    0.00121 
58                    1.41001               0.00149                 8                              1.34238                    0.00120 
57                    1.40852               0.00149                 7                              1.34118                    0.00119 
56                    1.40703               0.00149                6                               1.33999                    0.00119 
55                    1.40554               0.00149                5                               1.33880                    0.00118 
54                    1.40405               0.00149                4                               1.33762                    0.00117 
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Abstract : 

The world of mathematics got enriched by way of introduction of Taylor Series Expansion(TSE) in 1715 which 

is just above three centuries ago. Ever since its advent it had been making inroads into the world of physics 

and facilitating explanation of several phenomenon. 

The article is an attempt to sensitize the readers, in particular the undergraduate students of physics about 
the wide range of application of TSE. Here we have chosen examples from the areas of Oscillation and Waves, 
Motion under Resistive Force and Alternative Current Circuit. Using TSE as a vehicle we have made an effort to 
draw linkages between mathematics and physics. 

 
 
Introduction 
 

In 1715, Brook Taylor had developed in Methodus 

incrementoinum directa et inversa the calculus of  

 

 

 

finite differences, which inter alia consisted the 

famous infinite series named after him. It was the 

culmination of the works of James Gregory, 

Leonhard Euler, Brook Taylor and Colin 

Maclaurian (Figs.1-4). 

 

 

  

 

 Leonhard Euler (Fig. 2) James Gregory (Fig. 1) 

mailto:seema_sharmas@yahoo.co.in
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Before going into the mathematical descriptions, we 

would like to express a concern which is about the 

learners of physics at undergraduate level suffering from 

a fear psychosis particularly  

about various  

mathematical derivations which they come across in the 

study of physics. Mathematics is not only to be used for 

the explaination of several phenomenon in physics but 

the learners are to be sensitized to ponder over 

examples, where in a way physics emerges from 

mathematics. The Taylor series expansion presents 

many such situations . 

 

We have picked up examples from diverse areas of 

physics which are very much the integral parts of the 

undergraduate curriculum, and the vital link between 

them is TSE. The idea is to revisit the prolific 

mathematical tool as a facilitation to arrive at  finite 

results using an infinite series. 

 

The Taylor Series can be used to represent any 

function f(x) that is infinitely differentiable about a 

point x0 called the expansion point and the series is 

2

0 0 0 0 0

1

2!
f ( x ) f ( x ) ( x x ) f '( x ) ( x x ) f "( x ) ...

                       (1)
 

         0 0

0

1 n n

n

( x x ) f ( x )
n!

 

 

Where 'f  - first derivative of ( )f x  

"( )f x  - Second derivative of ( )f x  

( )nf x nth  derivative of ( )f x  

  

     

      0x
                       

x  
 

 

                                              Fig. 5 

0x  - the point about which Taylor series expansion 

takes place;  

 x  - location where we evaluate the series  

 

The location x, where the series is evaluated can be 

taken anywhere within the radius of convergence of 

the series in order to yield the correct values of f(x) 

The Maclaurin series is a special case of Taylor 

series expanded about the particular expansion 

point 0 0x  i.e.  

Brook Taylor (Fig. 3) Colin Maclaurian (Fig. 4) 
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21
( ) (0) '(0) "(0) ...
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f x f xf x f

 

0

1
(0)
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n n

n

x f
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  (2) 

Euler discovered the Maclaurin series for xe  

  

2 3

1 ...,
1! 2! 3!

x x x x
e       

 x     (3) 

Often prolific examples of Maclaurin series are  
3 5

sin ...
3! 5!

x x
x x    

 x      (4) 

2 4

cos 1 ...
2! 4!

x x
x    

 x      (5) 

 

Taylor series finds many applications in several 

areas of physics which we shall present here – 

 

1. Simple Pendulum  

A simple pendulum acts like a harmonic oscillator 

with period dependent on l (length of pendulum) 

and g  (acceleration due to gravity) for sufficiently 

small angular amplitudes, i.e. . With no friction 

mechanical energy is conserved. Total mechanical 

energy is a combination of kinetic energy and 

gravitational potential energy. As the pendulum 

swings back and forth, there is constant exchange 

of energy between kinetic and gravitational 

potential force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6 : A simple pendulum with a bob of mass ' 'm  

at a position having angular displacement, . 

 

Refer to Fig 6. 

 O  is the point of suspension of a simple pendulum, 

OA  is the mean position. The effective length of 

the pendulum is l . The value of the time period of 

oscillation of the pendulum can be derived in many 

ways. Here, we shall apply Taylor series to arrive at 

the desired result.  

 

The potential energy V mgh  

Expression h  in terms of , l we get  

V=mgl 1( cos ).                                                                                                                                       
 

Using Eq. 5,      

                                                                       (6) 

 

 

For small , we consider only upto the second 

term, to get  

 

 

or 

2

2
V mgl

                       
(7) 

2 4 6

cos 1
2! 4! 6!  

2

[1 (1 )]
2

V mgl
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Kinetic energy, 21
( )

2

d
T l

dt
 

or  2 2 21

2

d
T ml ( ) ( I ml )

dt          
(8) 

According to the principle of conservation of 

energy  

221 d
ml ( ) +mgl(1-cos ) = a ,constant

2 dt
 

or  2 1
2ml d

( ) mgl( cos ) a
2 dt

 constant

                      (9) 
Differentiating  w.r.t. time, t we get 

2 2

2

1
.2 . .2 0

2 2

ml d d d
mgl

dt dt dt
 

 

or    
2

2
0

d ld
ml g

dt dt
 

0
d

,
dt  

in general 

 
2

2
0

ld
g

dt  
or 

2
2

2
0

d

dt  

where 
2 g

l
 where  is the angular frequency  

The above is the differential equation of S.H.M  

Time period, 
2

T  

2
l

T
g

 

 

Comments :  We have discussed an example of 

simple harmonic motion, that is, motion governed 

by a Hooke’s law force, where the restoring force is 

proportional to the (negative of the) displacement. 

The above example was the case of a rotational 

analogue of Hooke’s law force. Hence the restoring 

torque is mgl sin , and again in the Maclaurin 

series (Eq. 4) approximation of  being very small, 

is sin . Thus the restoring torque is 

proportional to the negative of angular 

displacement, .  

 

Two points emerge here. First, that a simple 

harmonic motion is the outcome of an 

approximation and second, that the basis of the 

approximation is Taylor series expansion. While 

handling the example of simple pendulum, we had 

started with the expression for potential energy and 

then had applied the Taylor series expansion to 

arrive at the approximation. Let us flow generalize 

by considering an arbitrary potential, and let us see 

what it looks like near a local minimum. This is a 

reasonable place to look, because particles 

generally hang out near a minimum of whatever 

potential they are in. An example of a potential V 

(x) is shown in Fig. 7. The best tool for seeing what 

a function looks like in the vicinity of a given point 

0x x  is the Taylor series, so let us expand V (x) in 

a Taylor series around 0x  (the location of the 

minimum). We have  

    

      

2 3

0 0 0 0 0 0 0

1 1
( ) ( ) ( ) '( ) ( ) "( ) ( ) "'( ) ...

2! 3!
V x V x x x V x x x V x x x V x

                                          
(12) 

 

On the right hand side, the first term is irrelevant 

because shifting a potential by a constant amount 

does not change the physics. (Equivalently, the 

force is the derivative of the potential, and the 

(10) 
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derivative of a constant is zero.) And the second 

term is zero due to the fact that we are looking at a 

minimum of the potential, so the slope 
0V '( x )  is 

zero at 
0x . Furthermore, the 

3

0( )x x term (and all 

higher order term) is negligible compared with the 
2

0( )x x  term if x is sufficiently close to 
0x , which 

we will assume to be the case. So we are left with 

2

0 0

1
( ) ( ) "( )

2
V x x x V x . In other words, we have 

to be a potential of the form, 21

2
kx  where 

0"( )k V x  and where we have shifted the origin of 

x so that it is located at 
0x . Equivalently, we are just 

measuring x relative to 
0x . We see that any potential 

looks basically like a Hooke’s law spring, as long as 

we are close enough to a local minimum. In other 

words, the curve can be approximated by a 

parabola, as shown in Fig 8. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

This again establishes that S.H.M. is an 

approximation. The issue of approximation gets 

generalised by way of Eq. (12) which is a Taylor 

series expansion. Retaining the expansion upto the 

second order derivative term and neglecting the rest 

is called Harmonic Approximation, which finds 

application in several areas of physics. A very 

common problem is that of the interatomic 

potential, V( r ) , given as under.  

6 12

a b
V( r )

r r
                (13) 

The first term on the right hand side is an attractive 

potential, arising out of van der waals force (dipole 

– dipole interaction) and the second term is a  

 

repulsive potential having its origin is Pauli’s 

exclusion principle. ‘a’ and ‘b’ are constants, ‘r’ is 

the inter-atomic distance. Application of harmonic 

approximation provides a convenient method of 

determining the frequency of atomic vibration 

about their equilibrium position 0( r r ) . 

We know that for 0r r , 0V '( r )  

 7 136 12V '( r ) ( ar ) ( br )  

  
7 6

0 00 6 2r a br  

  
6

0

2b
r

a  

                             

1

6

0

2b
r

a                           
 (14) 

        
8 1442 156V "( r ) ar br  

  

21

2
V kx
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8 6

0 0 06 7 26V "( r ) r a .br
 

 

           

4

32
6 7 26

2

b a
. a b.

a b
  

 

73
44

0 3 3

4 4

36
6 6

2
2

a a
V "( r ) ( a ) .

b
b

    (15) 

 

 

 And the required frequency = 0V"(r )1

2
 

 where   = the reduced mass of the system.  

We have discussed another application of Taylor 

Series Expansion wherein we have determined the 

frequency of interatomic oscillation, based on the 

knowledge of interatomic potential and the fact that 

the displacement of atoms from their mean position 

while executing the oscillations is infinitesimal.   

 

Through these examples we observe that the Taylor 

series is tailor-made for the introduction of 

harmonic approximation (Eq.12 and as a sequel to 

that subsequent expression of the potential function 

as a second order term). It is indeed a testimony 
about mathematics playing a guiding role for a 

principle of physics. 

 

We have made an approximation in the expansion 

of the potential , where we have ignored all the 

terms beyond the second order. A parallel can be 

drawn with the derivation of Eq.7, where the 

expansion of cos  has been done up to second 

power of . And then what about cos  being an 

even function! But for it, the potential energy 

function would not have been symmetric about = 

0 (that is the mean position of the simple pendulum 

in example 1). Again, the first order term in the 

expansion of the potential function is identically 

zero and this is corroborated by the absence of 

terms having odd powers of  in TSE. 

 
 

 2.  Wave motion in a stretched string  

 

Let us consider a stretched string in which a wave is 

generated by shaking one end of the taut string;   

f(z, t) represents the displacement of the string at 

the point z, at time t. Given the initial shape of the 

string, g(z) = f(z, 0), the displacement at point z, at 

the later time t is the same as the displacement at a 

distance vt to the left (i.e. at z – vt), back at time t = 

0 (Fig. 9) [3]. 
Mathematically, 

( , ) ( ,0) ( )f z t f z vt g z vt             (16)
 

 

The function f(z, t) represents a wave of fixed shape 

travelling in the z direction at speed v.  

 

We know that in order to sustain a wave motion 

though a medium, we need inertia to absorb and 

transmit the push and elasticity for restoration.  

 

A stretched string supports a wave motion because 

the mass of the string provides the inertia and the 

tension in the string provides the elasticity. We 

shall now apply Newton’s second law to the given 

situation. Let us imagine a very long string under 

tension T. If it is displaced from equilibrium, the 

net transverse force on the segment between z and z 

+ z  (from Fig 9) is  

 

  
sin ' sinF T T

 
 



Physics Education                                                    7                                                    Jan - Mar 2017 

 

Volume 33, Issue 1, Article Number : 02.                                                                                                     www.physedu.in  

 
                                                   Fig 9:Variation of  f  vs ƶ 

 

 

where '  is the angle the string makes with the z-

direction at point z z,  and  is the 

corresponding angle at point z. Provided that the  

 

 

distortion of the string is not too great, these angles 

are small and we can replace the sine by the 

tangent.  

 

z z z

f f
F T tan ' T tan T

z z
 

 

Using Taylor’s theorem as mentioned earlier , this can be expanded about z z  as the increment , 

we get                                                    

2

2

z z z z

f f f
z z z

z z z
 

 

  

Considering only first two term of Taylor’s  series so, we get 

 
2

2
( ) ( )

f f f
F T T z T

z z z
 

2

2

f
T z

z
 

 

If the mass per unit length is , Newton’s second law says  
2

2
( )

f
F z

t                                                 (17)
 

And therefore  

 

    

 

2 2

2 2
( )

f f

z T t             
…. (18) 

 



Physics Education                                                    8                                                    Jan - Mar 2017 

 

Volume 33, Issue 1, Article Number : 02.                                                                                                     www.physedu.in  

Evidently, small disturbances on the string satisfy 

wave equation  
2 2

2 2 2

1
( )

f f

z v t                                  
…… (19) 

 

Where v
T

 is the speed of propagation.  

 

So, we have judiciously used Taylor’s series 

expansion to arrive at the differential equation of a 

wave through a stretched string.  

 

 

 3.      Motion in presence of resistive forces  

Let a ball of mass m be moving vertically up along 

positive y direction and let its initial velocity 

(pointing up) be 
0v . We assume that the only two 

forces acting on the ball are gravity and the air 

resistance, with the latter being directed oppositely 

to the direction of the ball’s motion.  

  According to Newton’s second law  

  air

mdv
mg F

dt
  

    …………. (20) 

Fair is proportional to the first power of velocity,  

i.e.  Fair  = ' v    

   ………….. (21) 

This approximation is applicable for small bodies 

moving with not very high velocity.  

   
dv

m mg ' v
dt

 

   
dv ' v

g
dt m

 

   1
dv

g( kv )
dt

, 

 Where 
'

k
mg

 

   
1

dv
g dt

( kv )
 

1
1n( kv ) gt C

k
,

  C  constant of 

integration  

Putting initial conditions 
0 00 0v( ) v , y( ) y  

we get                     

1 1
1 1n kv gt n kv

k k
   

                             0

1 1

1

kv
n gt

k kv
 

                              
1

1

kgt

o

kv
e

kv
 

          0

1
1 1gktv ( kv )e

k
     .…… (22) 

       

dy
v

dt
 

On integrating we get  

0 0

1 1
1

gkte
y y ( kv ) gt

gk k
    

          …….……… (23) 

               For k << 1 (very small) 

we can use second degree Taylor polynomial for 
kgte  

2 2 2
kgt k g t

e 1 kgt
2

  

Taylor series expansion upto second degree    (24) 

 

Using this Polynomials, we get  

2 2 2

0

1
1 1 1

2

k g t
v ( kv )( gkt )

k
 

2 2 2 2
2 3

0 0 0

1

2 2

g t g t
k( gt v k gtv k v

k
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2 2 22 2

0
0 0

2 2

k g t vkg t
v gt kgtv       

              ………..  (25) 

If air resistance is not present, i.e. 0k  when 

equation (22) and (23) reduces to 

 
0v v gt

 
     

                    …………..  (26) 

 

 

2 2

0 0

1

2

g t
y y ( v gt )

g
 

 i.e.  
2

0 0

1

2
y y v t gt    

                    …………..  (27) 

 

At max height v = 0,   time needed to reach 

maximum elevation is given by  

 
0

1
1t n ( kv )

kg
 

Using Taylor’s expansion for above function 

01n ( kv )
, 
 we get  

 

32 2

0 0 0

2 9 3

v v vk k
t ...........

g g
   

                           ……………..  (28) 

For 0k ,   0v
t

g
, which is the well-known 

result for free fall under gravity. Depending on the 

value of ‘k’, one can decide about the number of 

terms up to which the series has to be extended on 

the right hand side.  

 

 

 

4.          Sharpness of Resonance - Series LCR Circuit  

 

 

The impedance experienced by the source Vs is  

  
1

Z R j L
j C

 

  
1

R j L
C

  

         ……………….. (29) 

Which at 
0

1

LC
 becomes equal to R.  

 

 

This is the condition of resonance, at which the 

power dissipated in the LCR circuit is equal to the 

power dissipated by the resistor.  

With symbols having usual meanings and since 

voltage across a resistor (VRcos t ) and the current 

through it (
RI cos t ) are in phase, the Power at time 

t’ is given by, 

   P(t) = 2

R RV I cos t  

 The Average  Power becomes  
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1

2
R RP( ) V I

                                                                 

2 1

2
( cos t )  

  
21

2

RV

R                               
….. (30) 

 

The maximum power is dissipated at the resonance 

frequency.  

 

We shall now use the power vs frequency 

graph(Fig.11) to determine the sharpness of 

resonance. It measures the peakedness of the P vs 

graph around the resonance frequency = 0.For 

this we need to find the band width  which is 

given by  

                        = 2- 1           ….. (31) 

         Where 1 and 2   are the frequency 

corresponding to half of the maximum value of 

power ( 1 > 2)  

 

 

Now, 

                         2

1 2

1

4
/ maxP V / R  

    

 

 

 

 

 

 

 

To determine 1 and 2,we write

 

22

2

2

V R1 V

4 R 1
2 R L

C

maxmax
 

  

2

2 2 1
2R R L

C  
2

2 1
R L

C
 

  
1

L R
C

 

                           

1 1
R L a ; R L b

C C
 

 

From (a)  

 
2 1LC RC  

 
2 1 0LC RC  

 

2 2 4

2

RC R C LC

LC
 ;

 

2 2 4

2

RC R C LC

LC
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From (b)  i.e.  
1

R L
C

 

  

2 2 4

2

RC R C LC

LC
 

  
2 2 4

2

RC R C LC

LC
    ;    

2 2 4

2

RC R C LC

LC
  

 

The  values have been chosen as negative results 

are inadmissible. Out of these two values the 

greater one corresponds to 2 and the lesser to 1. 

 

Band width  

 

2 1

2

2

RC R

LC L
   

                                         …………… (33) 

 

 

The geometric mean of 1 2and   

2 2 2 2

1 2 2 2

4

4

R C LC R C

L C
  = 

0

1

LC
 = 

The resonant frequency.             …………… (34) 

 

The sharpness of resonance is measured by the 

quality factor , Q 

is in the denominator, because less the band 

width, higher is the peak 

0 1L L
Q

R R C
 

Hence the sharpness of resonance increases with 

decreasing R. This result can be obtained much 

more elegantly using Taylor’s series.  

According to Taylor’s theorem 
2

2

h
f ( x h ) f ( x ) hf '( x ) f "( x ) ............

!
 

 

 

We consider  

1
f ( ) L

C
 

Taking the increment of ‘ ’ by half the band width 

about  = 
0
, we get  

0 0 2

0

1

2 2
f f ( ) L ...................

C

 

0 2
2

. L  

L  

Now, going back to Eq (32), we get  

 

22

2 2 2

1

4 2

maxV RV max

R [ R L ]
 

 
22 22R R L  

 
2 2R ( L )  

 R L  

R

L
  which is same as Eq. (33) 

 

The rest can now follow.  

 

Conclusion  

 

Here we have provided four examples of 

obtaining extremely crucial and meaningful results 

from different areas of physics, using Taylor’s 

series expansion (TSE). As a matter of fact, such 

examples can be many. It finds application in 

derivation of Vector Integral Theorems, Adiabatic 

Approximation, Principle of Least Action, 
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Relativistic variation of Mass with Velocity and so 

on.   

In all the examples considered here, the 

functions taken were single–valued. Application of 

TSE can be extended to multiple variables, which 

finds application in many vital problems of physics.  

Thus an infinite series which has seen the 

light of the day more than three centuries ago has 

been contributing significantly towards yielding 

finite results; one of the rider in its application 

being the judicious choice of the order where the 

series is to be truncated.  

 

 We conclude by observing that learners of 

physics generally have a fear psychosis about 

mathematical derivation, the main cause behind it 

being their examination phobia. They are to be 

encouraged to appreciate the vital link between 

mathematics and physics. For example, they can be 

told that the Taylor series is tailor-made for the 

introduction of Harmonic Approximation  It is 

indeed a testimony about mathematics playing a 

guiding role for a principle of physics. 

After going through this article we shall 

expect the undergraduate students to have a 

paradigm shift in their approach towards 

mathematical derivations  which would be oriented 

towards viewing mathematics as a foundation for 

explaining applications in physics. 
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Abstract 

The changing of water into wine at the Marriage at Cana is the earliest miracle credited to Jesus in the Gospel 
of John. In this paper, I calculate the change in the chemical potential across the reaction first suggested by 
Irwin, Hicks, and Lerman. Using the simple concepts from statistical physics is not only easier to get the 
message, but even High-school students can develop a deeper understanding of the process. 
 
 

1. Introduction 
 In the Gospel of John (2 : 1-11) [1], Jesus, 
Maria and his disciples were welcomed to a 
wedding at Cana. When the wine was over, Maria 
asked Jesus to endorse his glory by turning water 
into wine. The main constituents of wine are: water, 
carbohydrates, acids, alcohols, phenolics, 
nitrogenous compounds, and inorganic substances. 
Table I shows the typical concentration ranges of 
the major chemical components of dry table wine. 
To provide somewhat larger view of the 
thermodynamic considerations in the making of 
wine, the  reader is referred to reference  [2]. 
 Irwin, Hicks, and Lerman[3] investigated 
the change in enthalpy across their proposed 
reaction and determined it to be 1255 kJmol-1, 
indicating an endothermic reaction.  They supposed 
that pure water was changed into a basic form of 
water mixed with ethanol, with the strength of 12% 
ABV (Alcohol by volume). They found the change 
in entropy to be 4.21 kJmol-1K-1 and estimated the 
energy required for the entire reaction occur as 
0.25- 

 
 
 
 
0.37GJ. The turning from water (H2O) to ethanol 
(C2H6O) requires a source of carbon. Irwin, Hicks, 
and Lerman assumed that the most probable source 
would be carbon dioxidein the air. Then, they set up 
the reaction which conserves the number of each 
type of atom. 

 
3H2O (liquid) + 2CO2 (gaseous)  
C2H6O (liquid) +3O2 (gaseous)               (1) 

 
This reaction was supposed to occur under 

standard pressure (1 atm) and temperature (298 K). 
To inspect whether this reaction would occur 
spontaneously, the authors calculated the total 
change in bond enthalpy. If it were negative, more 
energy would be liberated from forming the new 
bonds than it was required to initially break the 
original bonds. Consequently, the reaction will 
occur spontaneously. On the other hand, if it were 
positive, the reaction would be endothermic and 
would require a heat input. The authors also 
assumed that Jesus was able to provide the perfect 
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catalyst (the agent that modifies the transition state 
to lower the activation energy) to the reaction by 
making the additional activation energy negligible.  

In this paper, I suggest an alternative and 
more pedagogical way inspect this reaction. The 
tendency of water to react with CO2 via Eq.1 can be 
expressed quantitatively by means of some simple 
ideas that are the building blocks of statistical 
physics. Supplementing the orthodox 
thermodynamics lecture with these ideas can 
improve understanding and enthusiasm to 
introductory physics. 
 

 
Constituent Wine (g/L) 

Water 800 – 900 
Carbohydrates 1 – 10 

Glucose 0.5 – 5 
Fructose 0.5 – 5 
Pectins Trace 
Acids 4.5 – 11 

Tartaric 1 – 6 
Malic 0 – 8 
Lactic 1 – 5 
Acetic 0.2 - 1.5 

Alcohols  
Ethanol 80 – 150 
Glycerol 3 – 14 
Phenolics From trace – 5 

Simple phenolics Trace - 0.2 
Anthocyanins 0 - 0.5 

Tannins T – 5 
Nitrogenous compounds 0.1 – 1 
Inorganic constituents 1.5 – 4 

Potassium 0.5 – 2 
 

Table I - typical concentration ranges of the major chemical 
components of grape juice and dry table wine. 

 
 

2. Introducing the Gibbs free energy 
 

 This section introduces the Gibbs free 
energy to justify the use of the chemical potencial, 

. For a less formal approach, the teacher may skip 
this part without lack of content.  

Processes in biology and chemistry often 
proceed under conditions of constant temperature T 
and constant (external) pressure P. For a given 
energy input energy by heating Q, and volume 
change V, What does the basic entropy inequality, 

T

VPE

T

Q
S


 ,                        (2) 

 
imply under those circumstances  
 The temperature T denotes the temperature 
of the environment. If that temperature remains 
constant during whatever process is being 
described, then we may multiply on both sides by T 
and may include T within the S term: 
 

  VPETS  .             (3) 

 
 Similarly, the work done in expansion 
depends on the force put that opposes the 
expansion; so the pressure P may be taken to be an 
external pressure. If that pressure remains constant, 
then P may included within the V term: 
 

   PVETS  .            (4) 

  
Finally, we collect all terms onto the right-

hand side: 
 

 PVTSE 0 .           (5) 

 
 Reading from right to left, we find that the 
combination E-TS+ PV must decrease or remain 
constant. Given the inequality in equation (5), the 
combination E-TS+ PV warrants a name: 
 

Gibs free energy = G  E- TS + PV. (6) 
  

3. Water into Wine and chemical 
potential  

 

The chemical potential, , of a substance 
characterizes the tendency of the decomposition 
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reaction of this substance into the elements in their 
final states [4]. The calculation of chemical 
reactions begins with the presentation of the 
chemical potentials of the reactants and products. 
The tendency for the Gibbs free energy to decrease 
under conditions of constant temperature and 
constant (external) pressure is the key concept. The 
chemical potential provides a way to use the Gibbs 
free energy efficiently. This approach is elementary, 
as it does not demand previous knowledge and leads 
straightforward to results. The line of attack is 
through the potential differences between the 
reactants and products of reaction represented in Eq. 
1. 

The entropy change, S equals the amount 
of energy transferred by heating to a system divided 
by the temperature at which the process takes place, 
provided the process proceeds slowly. According to 
the second law of thermodynamics, nature has a 
tendency for entropy to increase in an isolated 
system, and the system changes in answer to this 
propensity. Therefore, alike to the chemical 
potential, the increase in entropy is the driving force 
for a spontaneous process in an isolated system.  

To each substance, a chemical potential and 
a standard entropy can be associated.  Table II 
presents the chemical potentials of the substances in 
Eq. 1.  
 

 
Substance  Phase  (kG) S(kJ.mol-

1.K-1) 
H2O Liquid -237,2 69.9 
CO2 Gas -394,4 213.6 

C2H6O Liquid - 174,7 283.59 
O2 Gas 0 205 

 
Table II – chemical potentials (in kiloGibbs, 1 kG = 1 kJ.mol

-1
) and 

standard entropies at T = 298.15 K and P = 101325 Pa. 

 
 

First, let me define the chemical potential of 

the reactants as
22

2 COOHR   , and the 

corresponding chemical potential of the products a

262
3 OOHCP   .So, as to inspect whether the 

reaction takes places freely or not, we weight R 

against P. If μR>μP, then the transformation of 

water into wine takes place spontaneously. If μR = 

μP, then there is a chemical equilibrium. Finally, if 

μR<μA, then the transformation of water into wine 

does not occur spontaneously. From Table I, we 

obtain 

4.150023
22

 COOHR  kG 

and 

7.1743
262

 OOHCP  kG 

Thus, we have μP>μR. This result was to be 

expected since it is well known that water does not 

transform spontaneously into wine. 

Analogically, water could be converted into 

wine spontaneously (under conditions of constant 

temperature and pressure) only if the Gibbs free 

energy would decrease. The change of the Gibbs 

free energy when a molecular constituent is 

changed by one mole (or, in some circunstances, by 

one molecule) is called chemical potential for that 

constituent and is denoted by the Greek letter . 

Thus, the change in the Gibbs free energy when the 

reaction (1) is imagined to proceed by one step may 

be written as 

 
   

22262
233 COOHOOHCG    

 
Tabulated data (see Table II) show that the 

right-hand side has the numerical value 
 

    7.13254.15007.174 G kJ.mol-1 

 
The positive value for the imagined reaction 

indicates that the reaction will not proceed 
spontaneously. 

 The entropy change can be calculated in the 

same way. From Table II: 
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    89.261233
22262
 COOHOOHC SSSSS

kJ.mol-1K-1 

Since S > 0, the reaction is physically 

allowed and irreversible. In fact, the second law of 

thermodynamics states that the overall entropy of 

an isolated system always increases, or stays 

constant in reversible process. S > 0 accounts for 

the irreversibility of natural processes. The second 

law of thermodynamics also states that for any 

spontaneous process, the overall ΔS must be greater 

than or equal to zero, which it is not the case for Eq. 

1, since, as we saw,  G > 0 . It is worth to note that  

spontaneous reactions can result in a negative 

change in entropy. This fact does not refute the 

second law of thermodynamics, though. The 

increase in temperature of the surroundings gives 

rise to an appropriately large increase in entropy, 

such that the total change in entropy is still positive. 

In other words, the ΔS of the surroundings increases 

sufficiently due to  theexothermicity of the reaction 

so that it overcompensates for the negative ΔS of 

the system. Thus, the overall change in entropy is 

still positive. 

In order to get a quick estimate for the 

probability of reaction (1) takes place, using 

kB=1.3810-23 J/K (for room temperature), where kB 

is Boltzmann constant, one obtains  Bk

S

water

wine e
P

P




 [5-

8], which is so small (my calculator even refused to 

calculate it). Then, the extract from John persists a 

miracle. 

Conclusions 

The ideas discussed in this paper can be introduced 

smoothly into high-school or introductory college 

physics with least work. I believe that the 

contextualization presented here is interesting, and 

exemplifies the power of the statistical physics.   

References : 

[1] Gospel of John (2 : 1-11). 

[2] E.Covaci, Thermodynamic Parameters Of 
Potassium Bitartrate During The Young Wines Cold 
Stabilization, Chemistry Journal of Moldova. 
General, Industrial and Ecological Chemistry10, 42-
45(2015)  

[3] B. Irwin, P. Hicks, H. Lerman ,Water into Wine, 
Journal of Physics Special Topics P5_11  (2013). 

[4] G. Job and F.  Herrmann, Chemical potential - a 
quantity in search of recognition, Eur. J.  Phys. 27, 
353 (2006). 

 

[5] R. Baierlein, The elusive chemical potential, 
Am. J. Phys. 69, 423 (2001).  

[6] M. D'Anna and P. Lubini, Chemical potential, 
The Physics Teacher 48, 358 (2010). 

[7] G. Cook and R. H. Dickerson, Understanding 
the chemical potential, Am. J. of Phys. 63, 737 
(1995). 

[8] J. J. Prentis, Thank you, Boltzmann, your 
constant is so small, The Physics Teacher 34, 392 
(1996). 

 



The paradox of power loss in a lossless infinite

transmission line

Ashok K. Singal

Astronomy and Astrophysics Division
Physical Research Laboratory

Navrangpura, Ahmedabad - 380 009, India.
ashokkumar.singal@gmail.com

(Submitted 14-11-2015)

Abstract

We discuss here the famous paradox of a continuous power drainage from the source at the
input of an otherwise lossless infinite transmission line. The solution of the paradox lies in
the realization that in an open-circuit finite transmission line/ladder network, there is an
incident as well as a reflected wave and the input impedence is determined by the
superposition of both waves. It is explicitly shown that the reactive input impedance of
even a single block, comprising say a simple LC circuit, is determined at all driving
frequencies from the superposition of incident and reflected waves, and that the input
impedance remains reactive in nature (i.e., an imaginary value) even when additional
blocks are added indefinitely. However in a ladder network or transmission line, taken to
be infinite right from the beginning, there is no reflected wave (assuming the circuit to be
ideal with no discontinuities en route). Thus the source while continuously supplying
power in the forward direction, does not retrieve it from a reflected wave and unlike in the
case of a finite line, there is a net power loss. This apparently lost energy ultimately
appears in the electromagnetic fields in the reactive elements (capacitances and
inductances which to begin with had no such stored energy), further down the line as the
incident wave advances forward. It is also shown that radiation plays absolutely no role in
resolving this intriguing paradox.

1



Physics Education 3 Jan - Mar 2017

Introduction

A transmission line is a channel for transmit-
ting electric signals or power from one point
to another along a guided path [1, 2, 3, 4]. A
line could be of a finite length or be of infinite
length (at least in principle). A circuit com-
prising lumped parameters is generally called
a ladder network, on the other hand if it con-
sists of a continuous distribution of parame-
ters, then it is usually called a transmission
line. The two are almost identical in their
behavior [1]. The elements of a transmission
line could be either reactances (with no power
dissipation within them) like capacitances or
inductances, or could comprise resistances or
shunt leakage conductances, which dissipate
power into heat. Most lines will have a mix-
ture of reactances and dissipative elements.
An ideal transmission line may be thought
of as the one which delivers signal or power
across its length without any dissipation on
the way. Intuitively one would think a line
devoid of elements like resistances should be-
have as a lossless line without a continuous
power drainage from the source at the input,
and this does seem to hold true for a line of
finite length. However, for an infinite line,
even if there were no resistive elements along
its length that could dissipate power, the line
presents a real value of input impedance, im-
plying that power will be drained from the
source at a constant rate [5].

Where does this energy go as it is not dissi-
pated in the inductors and capacitors of the
circuit? For this Feynman [4] writes “But
how can the circuit continuously absorb en-

ergy, as a resistance does, if it is made only
of inductances and capacitances? Answer:
Because there are an infinite number of in-
ductances and capacitances, so that when a
source is connected to the circuit, it supplies
energy to the first inductance and capaci-
tance, then to the second, to the third, and so
on. In a circuit of this kind, energy is contin-
ually absorbed from the generator at a con-
stant rate and flows constantly out into the
network, supplying energy which is stored in
the inductances and capacitances down the
line.”
In an alterntive approach [6, 7] it has been

shown that the input impedance of an open-
circuit ladder network, initially consisting of
a finite number of blocks comprising induc-
tors and capacitors, does not converge to
a unique fixed value when additional iden-
tical blocks are added, and always yields
pure imaginary (reactive) input impedance
value irrespective of the number of the blocks
added. The input impedance does not have
a real (dissipative) part for any driving fre-
quency, even when the number of blocks is
increased indefinitely. This contradicts Feyn-
man’s observation [4] that the infinite lad-
der network has an input impedance which
has a real part at frequencies below certain
value. It was argued afterwards [8] that a
non-zero real part of impedance appears only
if there is a termination in an impedance that
has a real part and that a circuit consist-
ing solely of components with purely imag-
inary impedances has a purely imaginary in-
put impedance. Later the behavior of infinite
ladder network, its convergence and solutions
have been analyzed in a greater detail [9, 10].
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In this paper we examine this intriguing
paradox from a fresh view point trying to un-
derstand why two alternate approaches lead
to conflicting results. We will first review
the relevant characteristics of a transmission
line/ladder network; the detailed description
of various terms and the derivation of the for-
mulas used can be found in standard text-
books [1, 2, 3, 4]. Then we shall show how
one arrives at a paradoxical result of an un-
interrupted power drain in an otherwise loss-
less infinite transmission line. This will be
followed by a brief account of the alterna-
tive approach of extending a finite ladder net-
work by the addition of further blocks, with
the circuit always comprising only reactive el-
ements. Subsequently we shall present the
resolution of the paradoxical results both for
a ladder network as well as the transmission
line; the resolution basically ensues the real-
ization that there is an absence of a reflected
wave in an infinite ladder network or a trans-
mission line. That reflection could play a role
in the paradox had a brief mention without
further elaboration [10], which we do here
in detail by explicitly calculating the input
impedance of a finite ladder network by a su-
perposition of incident and reflected waves.
We shall demonstrate that unlike in a finite
case, where a termination in a load matched
to the characteristic impedance of the line
could dissipate all power, or at an open-ended
termination could reflect it all back towards
the source, in the case of a line taken to be
infinite right from the start, there is no ter-
mination point to start a reflected wave (pro-
vided of course no discontinuities along the
line to trigger any reflection) and that results

in the current being in phase with the voltage
and net power being drained from the source.

A non-ideal behavior of an

ideal circuit

A transmission line

A transmission line is described by its line
parameters R,L,C,G, where R is the se-
ries resistance per unit length of line (includ-
ing both wires), L is the series inductance
per unit length of line, C is the capacitance
between the two conducing wires per unit
length of line and G is the shunt leakage con-
ductance between the two conducing wires
per unit length of line. For an incremental
length ∆z of the line, the equivalent circuit
is shown in Fig. 1. The increments in voltage
and current along the line are [1, 2, 3, 5],

∆V (z) = −I(z)(R + jωL)∆z (1)

∆I(z) = −V (z)(G+ jωC)∆z. (2)

These could be written in limit ∆z → 0 as,

dV (z)/dz = −I(z)(R + jωL) (3)

dI(z)/dz = −V (z)(G+ jωC). (4)

From Eqs. (3) and (4) one gets a general
solution for voltage along the line,

V (z) = V ′

0e
−γz + V ′′

0 e
γz (5)

γ =
√

(R + jωL) (G+ jωC) = α + jβ, (6)

where γ is the propagation constant. The
phasor part is written with an assumed ejωt
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Figure 1: Increments of voltage and current over an incremental length ∆z of the transmis-
sion line.

time dependence throughout. Now of the
two terms in Eq. (5), the first one repre-
sents a wave traveling along increasing z com-
mencing at z = 0, while the second repre-
sents a wave traveling towards decreasing z
which in case of an infinite line would have to
start from z = ∞ an infinite time back and
thus must be dropped. Therefore the volt-
age along an infinite transmission line can be
written as,

V (z) = V0 e
−γz = V0 e

−αze−jβz. (7)

From this one gets for the electric current,

I(z) = (V0/Z0) e
−γz = (V0/Z0) e

−αze−jβz. (8)

Here Z0, the characteristic impedance of the
line given by,

Z0 =
√

(R + jωL) / (G+ jωC). (9)

Equations (7) and (8) represent an attenu-
ated sinusoidal wave along z, with α as the

attenuation constant and β = 2π/λ as the
wave number.
For an infinite line, the input impedance

(at z = 0) is calculated from Eqs. (7) and (8)
as,

Zi = V (0)/I(0) = Z0. (10)

In a lossless line, R = 0 and G = 0, and from
Eq. (6) we have, α = 0 and β = ω

√
LC,

i.e., a sinusoidal wave without any atten-
uation along the line. But we also have
Zi = Z0 =

√

L/C, i.e., its impedance has a
real value. This is a paradox because though
the transmission line contains no resistive el-
ement so there could be no Ohmic losses in
the line, yet its input impedance is a pure re-
sistance. That means for an input voltage
V0, power will be drained from the source
at the rate of V2

0/(2
√

L/C) [5]. The ques-
tions therefore arise as to why does a pure
resistance show up in a circuit comprising

Volume 33, Number 1, Article Number :04. www.physedu.in
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Figure 2: (a) An infinite ladder network comprising lumped parameters. (b) A finite ladder
network terminated in its characteristic impedance Z0. A typical block in the network is
shown by a rectangular box of dashed lines.

only reactances, thereby implying a contin-
uous power drainage and where does this en-
ergy ultimately go?
The paradox can be also seen from the

Smith chart where the input impedance of
a lossless open-circuit line, goes through cy-
cles when its length is varied. Not only does
the input impedance not converge to a sin-
gle unique value when the length of the line
is increased indefinitely but also in general it
is an imaginary value, i.e., a pure reactance
[1, 2, 3] for any length of the line, which con-
tradicts the conclusion that the infinite line
presents a real input impedance.

A ladder network

A transmission line with distributed param-
eters is almost identical in behavior to a lad-
der network comprising lumped parameters

[1], and the above paradox appears in the in-
finite ladder network too. A Ladder network
of n blocks, with each block a symmetrical
T section consisting of two L/2 inductances
and a capacitance C, has a characteristic
impedance Z0 =

√

L/C − ω2L2/4) [1, 2, 3].
The number n of blocks could be finite, or
it could even be infinite (n → ∞). Figure
2(a) shows an infinite ladder network while
Fig. 2(b) shows a finite ladder network, but
terminated in its characteristic impedance
Z0 =

√

L/C − ω2L2/4).

A solution for the input impedance Zi of
the infinite network is obtained in the follow-
ing manner [4, 6, 7, 11, 12]. Since adding
another block to the beginning of an infi-
nite ladder network does not change the input
impedance (it still remains the same infinite
network), Zi must equal the impedance of a

Volume 33, Number 1, Article Number :04. www.physedu.in
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circuit having a single block terminated in a
load impedance equal to Zi. Therefore we
have,

Zi =
jωL

2
+

(Zi + jωL/2)(1/jωC)

Zi + jωL/2 + 1/jωC
, (11)

which has a solution,

Zi =
√

L/C − ω2L2/4. (12)

The input impedance of the infinite net-
work equals its characteristic impedance, i.e.,
Zi = Z0, and the circuit behaves as if it were
terminated in Z0 somewhere along the line
as in Fig. 2(b). Now for ω < ω0 = 2/

√
LC,

Zi is a real value. This leads to the same
paradox as for the infinite transmission line of
distributed parameters – how come a circuit
containing only purely imaginary impedances
has for its input impedance a real value which
could absorb energy continuously?

Where does the energy

disappear? – Could

radiation losses be the

answer?

Could the energy be lost into the surround-
ing medium by the process of radiation, with
Z0 =

√

L/C as the radiation resistance?
In transmission line or ladder network con-
taining resistive elements, power loss by the
source is fully accounted for by the energy
dissipation in the circuit, for any value of R
and G.

Consider the lossy infinite line (i.e., with
R and G non-zero), where input power from
the source is [5],

Pi = [V 2
0 /(2|Z0|)] cos(∠Z0)

= [V 2
0/(2|Z0|2)]Re(Z0). (13)

On the other hand the power dissipated in an
infinitesimal line element (Fig. 1) is,

dPd = (1/2)
(

|I(z)|2R + |V (z)|2G
)

dz

= (V 2
0 /2)

[(

R/|Z0|2
)

+G
]

e−2αzdz . (14)

Hence the total power dissipated in the infi-
nite line is

Pd = (V 2
0 /2)

[(

R/|Z0|2
)

+G
]

∫

∞

0

e−2αzdz

= (V 2
0 /2)

[(

R/|Z0|2
)

+G
]

/ (2α) . (15)

Substitution for |Z0| and α shows that Pd =
Pi [5], and all power losses are accounted for
without anything going into radiation. This
is true for all R and G, in particular even
when in limit R → 0 and G → 0. Now
it cannot happen that when R = 0 and
G = 0 radiation suddenly shows up into pic-
ture from somewhere. Further, even in a loss-
less line, all the power (assumed to be lost
by the source) can at any stage be either re-
flected back by making the circuit open just
after that point, or it could be consumed
by terminating the line in its characteris-
tic impedance, irrespective of the length of
the line up to that stage. This implies that
up to any arbitrarily selected length of the
line, the radiation losses had not yet taken
place. Therefore for resolving this paradox
there does not seem any scope for radiation
hypothesis at all and a satisfactory resolution
of the paradox lies elsewhere.
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The paradox reappears!

Actually while writing Eq. (11) for Zi [4],
one implicitly assumed that the infinite series
converges to a unique value and it is only un-
der this existence supposition that a unique
solution Eq. (12) could be obtained. If the
series does not converge, then of course this
basic assumption itself breaks down and the
solution obtained thereby may not represent
a true value.

On the other hand if one started with an
open-circuit ladder network of a finite num-
ber of identical blocks comprising inductors
and capacitors, and then added more sim-
ilar blocks, the input impedance does not
converge to a unique fixed value even when
the number of blocks is increased indefinitely
[6, 7]. Moreover, the input impedance always
turns out to be a pure imaginary value with
no real (dissipative) part for any driving fre-
quency, even when the number of blocks ap-
proaches infinity.

It seems that the infinite ladder networks
of type in Fig 2(a) may have different answers
for the input impedance, and thereby imply-
ing different power consumptions depending
upon the method of solution. Hence a para-
dox still exists as one arrives at different an-
swers using different arguments, and a ques-
tion still remains whether or not does an in-
finite ladder network converge to a pure re-
sistance drawing continuous power from an
input source, and if so where does this en-
ergy go. What could be the missing factor, if
any, in these arguments?

Resolution of the paradox

– incident versus

reflected waves

Here we demonstrate with a detailed analy-
sis that the resolution of the paradox lies in
the realization that there is an absence of a
reflected wave in an infinite ladder network
or an infinite transmission line. That should
also help us comprehend why the two alter-
nate approaches led to two conflicing conclu-
sions.

The case of an infinite ladder

network

Let us examine the propagation factor e−γ be-
tween successive blocks in a ladder network.
To do this we terminate the ladder network
in its characteristic impedance Z0, which is
basically to ensure that there is no reflected
wave and thus we are dealing only with the
incident wave. The propagation factor in this
way is found to be [1, 4],

e−γ =
V ′

n

V ′

n−1

=
I ′n
I ′n−1

=

√

L/C − ω2L2/4− jωL/2
√

L/C − ω2L2/4 + jωL/2
, (16)

which can be simplified to give,

e−γ = 1− ω2LC/2

−j
√
ω2LC

√

1− ω2LC/4. (17)

A prime (′) over voltages and currents merely
indicates that these represent an incident
wave.
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The ladder network at low frequencies

For frequencies below a critical value ω0 =
2/
√
LC, the characteristic impedance Z0 =

√

L/C − ω2L2/4 can be written as Z0 =
√

L/C
√

1− (ω/ω0)2, which is a real quan-
tity, meaning a pure resistance. In the low
frequency (ω < ω0) case the propagation fac-
tor from Eq. (17) can be written as,

e−γ = 1− 2(ω/ω0)
2

−j2(ω/ω0)
√

1− (ω/ω0)2. (18)

From the real and imaginary parts in Eq.
(18), it can be readily seen that the propa-
gation factor has a unit magnitude and rep-
resents a simple phase change e−jβ = cos β−
j sin β, between successive blocks in the net-
work.
Although for calculating the propagation

factor of the circuit we needed to isolate the
incident wave by terminating this network
with its characteristic impedance Z0, yet the
propagation properties of the incident wave
(that is, the propagation constant calculated
from Eq. (18) of incident wave between two
neighboring blocks, say, n − 1 and n) does
not depend upon this termination. The in-
cident wave has an input impedance every-
where equal to the characteristic impedance
Z0 of the network. Of course the voltages
and currents at any point are decided by the
superposition of the incident and reflected
waves at that point and the input impedance
of a network calculated using the standard
procedure [6, 9, 10, 11] is actually what re-
sults from the superposition of the incident
and the reflected wave with their phases duly
taken into account.

To prove our assertion that this indeed is
the case in general, we want to calculate input
impedance of an open-circuit line, made of
any finite number of blocks (say, n), by eval-
uating voltage and current at z = 0 due to
the sum of the incident and reflected waves,
the latter arising from the termination just
after the nth block. For a cascaded network
of n identical blocks, the propagation factor
is simply e−jnβ. The angle β here is half of θ
defined in Eq. (21) of that in Ref. [9]. If the
network has a total of n blocks, then voltage
V0 at z = 0 includes a reflected wave with a
phase change of angle 2nβ from the incident
wave, while the current I0 has a phase change
of angle 2nβ + π (an extra phase of angle π
in the current wave at the refection point).
Therefore the input impedance is given by,

Zi = V0/I0 = Z0
1 + e−j2nβ

1− e−j2nβ

= −jZ0 cot(nβ). (19)

We see that the calculated input impedance
is the same what was calculated in an alter-
native method for a finite open-circuit ladder
network [9, 10], which thus proves our asser-
tion that the propagation factor of the inci-
dent wave is unaffected by the termination
impedance. As n increases, Zi ever remains
an imaginary value that goes through cycles,
even becoming a 0 or an ∞, and in general
not converging to a unique value even when
n → ∞.
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Energy transport - a physical

perspective

In a finite open-circuit network there is a re-
flected wave from its terminated end as it
has to match the conditions for a zero net
current (implying the electric currents out of
phase by angle π for the incident and the re-
flected waves), although the voltages will be
in phase for the incident and reflected waves
at the termination point. It is important to
note that when we analyze a finite network,
barring transients, the voltages and currents
being considered are the superposition of inci-
dent and reflected waves. Therefore the cal-
culated Zi may depend upon the length of
the line or equivalently the number of blocks
in the network as that would determine the
relative phases of the incident and reflected
waves at the input point.

Suppose a generator is connected to the cir-
cuit at input terminals AA (Fig. 2(a)). The
generator drives the circuit at a frequency ω
(say) and will give rise to a voltage as well as
a current in the 1st electric block, which (a
pure reactance) does not consume the electric
power itself, and in turn gives rise to voltage
and current in the 2nd block and so on. As
we showed above, for ω < ω0, there will be no
decrease in the amplitude of voltage or cur-
rent from one block to the next and there will
only be a progressive phase change between
successive blocks. This “incident wave” will
move along the network until a discontinu-
ity, say an open-circuit termination after nth
block, is encountered which will cause a re-
flected wave towards the block n − 1, then
n − 2 and so on continuing onto the genera-

tor.
The generator meanwhile still keeps on

supplying further power as incident wave to
the 1st block which gets passed further on,
until it is finally reflected back towards the
generator. This is true even when the line
terminates just after the very first block (just
a simple LC circuit, see Appendix). And
when we have two or more but a finite num-
ber of blocks, then the discussion still entails
reflected waves implicitly. However when we
consider an infinite ladder network or an in-
finite transmission line, all by itself (and not
by an indefinite extension of finite network
by adding more successive blocks or increas-
ing the length of the line), then we do not
consider the reflected wave since the incident
wave does not ever reach a termination point
to start a reflected wave.
In that case we have only the incident wave

and the source at the input keeps on con-
tinuously supplying power to the network or
the transmission line but does not get it back
as a reflected wave. Therefore in an infi-
nite network or transmission line, it results
in a net power drain from the source and
this energy of course appears from one block
to the next down the line where it has not
yet reached due to the long extent of the
line. Of course as it will never reach a ter-
mination point (at infinity!), so the energy
transfer further down the line continues for
ever. Initially none of the circuit elements
had electric energy (say just before time t = 0
when the generator was just connected), but
afterwards up to a certain stage the circuit
elements have stored electromagnetic energy
(shared between the capacitances and induc-
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tances or equivalently between the electric
and magnetic fields and getting continuously
exchanged between them). Ultimately this
energy has come from the generator. The en-
ergy is not lost as it can be still consumed
by terminating the circuit in a matched load
somewhere still further down the line or re-
covered by terminating the line as an open
circuit and getting the energy returned as a
reflected wave.

The ladder network at high

frequencies

The propagation factor e−γ between adjacent
blocks, for a high frequency (ω > ω0) case can
be written from Eq. (17) as,

e−γ = 1− 2(ω/ω0)
2

+ 2(ω/ω0)
2
√

1− (ω0/ω)2. (20)

From Eq. (20) it can be seen that for ω > ω0

the propagation factor, written as e−(α+jπ) =
−(coshα− sinhα), is of magnitude less than
unity and is always of a negative value, imply-
ing a phase change of angle π between suc-
cessive blocks accompanied by an exponen-
tial decrease in amplitude. The voltages and
currents do not penetrate too far in the cir-
cuit, and there is no continuous transport of
energy along z. The input impedance at fre-
quencies ω > ω0 for a cascade network of n
blocks is,

Zi = V0/I0 = Z0
1 + e−2nα

1− e−2nα

= Z0 coth(nα), (21)

which is imaginary, in spite of coth(nα)
being always a real value. This is be-

cause the characteristic impedance Z0 =
(jωL/2)

√

1− (ω0/ω)2 is imaginary for ω >
ω0. For n → ∞, Zi → Z0, a pure reactance,
thus there is no paradox for the ω > ω0 case.

While the incident wave, when condsidered
alone, presents a real input impedance for fre-
quencies ω < ω0 = 2/

√
LC, whenever a su-

perposition of incident and reflected waves is
considered then we get an imaginary input
impedance for all driving frequencies, imply-
ing in turn the current at the input being
π/2 out of phase with the voltage and as a
result no continuous power absorption from
the source.

Infinite transmission line

The characteristic impedance of a ladder net-
work in 2.2 could be rewritten as Z0 =
√

(L∆z)/(C∆z)− ω2L2(∆z)2/4 in case of
a lossless ideal transmission line with dis-
tributed parameters (Fig. 1) and which re-
duces to Z0 =

√

L/C as in limit ∆z → 0.
Therefore unlike the ladder network case, in
the transmission line case there is no cut-
off frequency and for all driving frequencies
a wave travels along the line without any
amplitude attenuation since propagation con-
stant has an imaginary value implying only a
phase change.

In general the input impedance of a line of
length l is given by [1],

Zi = Z0

(

eγl +Ke−γl

eγl −Ke−γl

)

, (22)

where K(=reflected voltage at load/incident
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voltage at load) is the reflection coefficient,

K =

(

Zr − Z0

Zr + Z0

)

. (23)

with Zr as the impedance at the receiving
(load) end. The input impedance reduces to
Z0 when there is no reflected wave, i.e., when
K = 0.
Now the absence of a reflected wave in a

transmission line can be due to three reasons.
First, the line is finite but terminates in a load
matched to the characteristic impedance of
the line, i.e., when Zr = Z0. Second, the line
has small resistance which causes the incident
voltage to attenuate over its long length l,
i.e., if γl → ∞, so that the amplitude of the
incident and thence of the reflected wave in
limit is zero, and then the series does con-
verge to a unique solution [6, 11] which is
consistent with Zi = Z0. Thirdly the line
is lossless but truly of infinite extent so that
it could be assumed that the incident wave,
which presumably started a finite time back,
never reaches a termination point to start a
reflected wave. In all three cases, the input
impedance, which is the ratio of the voltage
and current at the input point, is the same
as that is not affected by what happens at its
termination point, and we obtain the same
result for the input impedance, viz. Zi = Z0.
On the other hand, for an open-circuit line

of finite length l (Zr = ∞, K = 1), the input
impedance is given by,

Zi = Z0

(

eγl + e−γl

eγl − e−γl

)

. (24)

In a lossless line, γ = jβ = jω
√
LC, the input

impedance becomes,

Zi = Z0

(

ejβl + e−jβl

ejβl − e−jβl

)

= −jZ0 cot(βl)

= −jZ0 cot(2πl/λ), (25)

which is a pure reactance, and thereby no
net power consumed, and which is similar to
the result derived for the ladder network (Eq.
(19)). It should be noted that in case of a lad-
der network, the quantities γ, α, β, or even
L,C etc. are specified as per block of the cir-
cuit while in the case of a transmission line
with distributed parameters all such quanti-
ties are defined per unit length of the line.
Therefore in Eq. (19) it is the phase angle
change nβ over n blocks while in Eq. (25)
it is the phase angle change βl over length l
of the line. In fact with increasing l, Zi/Z0

from Eq. (25) is cyclic and is indeed the
value read from the Smith chart. One thing
that we notice from Eq. (25) is that the in-
put impedance Zi depends on the length l
of the line in terms of wavelength λ. Thus
depending upon 2πl/λ, Zi could be zero, a fi-
nite value or even infinity, but always a pure
imaginary value, with a zero real part similar
to what was seen for the ladder network in
5.1.1. Here as much amount of power is re-
flected back to the generator as much it sup-
plies in the incident wave.
In the case where there is only an inci-

dent wave, i.e., there is no reflected wave,
the current is in fact in phase with the volt-
age, implying power is being drawn from the
source. However, if there is a reflected wave
as well, then the voltage and current are not
in phase everywhere. Thus it is the absence
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of reflected wave in infinite transmission line
that results in a continuous positive energy
flux along the line. The relative phases of V
and I depend upon the reflected wave, which
in turn depends upon at how far away along
the line reflection took place. Of course no
reflection will ever take place in a uniform
infinite line as the incident wave will never
reach the termination point which is at infin-
ity. However if we consider the lossless case
when there is a reflected wave from an open-
circuit termination, then equal power is being
returned to the source by the reflected wave
and in that case the current is indeed π/2
out of phase with the voltage (Eqs. (19) and
(25)).
If we consider a transmission line with no

discontinuities whatsoever, then it will have
to be an infinite line and the energy will be
getting stored as electric and magnetic fields
in its reactive elements further and further
along the line. There is no violation of the
energy conservation, and since there is no re-
flected wave to restore energy to the source,
the latter would be continuously supplying
energy, which gets stored in electric and mag-
netic fields in more and more inductances and
capacitances down the line. Seen this way
there does not seem to be any paradox.
The paradox actually had arisen only be-

cause we were comparing two sets of solu-
tions which are for quite different situations.
One involves only an incident wave (i.e., with-
out any reflected wave) and then the input
impedance Zi = Z0 is a real quantity, and
the voltages and currents are in phase every-
where along the circuit, with energy getting
apparently “spent” as it is getting stored in

the inductors and capacitors down the line as
the incident keeps on advancing for ever in an
infinite transmission line. The other solution
was for the case with a reflected wave, and
there the superposition of the incident and
reflected waves results in Zi to have imagi-

nary value with no net power loss since the
source gets the energy back as the reflected
wave.

Conclusions

It was shown that while an open-circuit fi-
nite ladder network or a transmission line
with distributed network has a characteristic
impedance Z0 which is only reactive (imagi-
nary), an infinite ladder network or an infi-
nite transmission line has a finite real compo-
nent of the input impedance. It was shown
that the famous paradox of power loss in a
lossless infinite transmission line is success-
fully resolved when one takes into account
both the incident and reflected waves. The
solution of the paradox lies in the realization
that there is an absence of a reflected wave in
an infinite transmission line. In a finite trans-
mission line or ladder network, the source still
keeps on supplying power as an incident wave
but gets it equally back in terms of the re-
flected wave. Therefore there is no further
net power transfer from the source which is
consistent with the reactive elements present-
ing zero net resistance.
However in the case of an infinite ladder

network or an infinite transmission line there
is no discontinuity to start a reflected wave,
thus the source supplies power in a forward
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direction, but does not get it back in terms of
a reflected wave from the termination point.
Therefore there is an apparent net power loss,
which actually appears as stored energy in
its reactive elements (capacitances and induc-
tances) further down the line. It was also
shown that radiation plays absolutely no role
in resolving this paradox.

Appendix – Input

impedance of a driven

LC circuit computed

from a superposition of

incident and reflected

waves

Here we explicitly demonstrate that a driven
LC circuit can be treated as an open-circuit
1-block ladder network having incident and
reflected waves and from their superposition,
the voltages and currents, and in particular,
input impedance of the LC circuit can be cal-
culated for all driving frequencies. We denote
by V0, I0 and V1, I1 the voltages and currents
at the input (AA) and termination (BB) re-
spectively, and which are related (Fig. 3(a))
by V0 − V1 = jωLI0/2 , I0 = jωCV1 , where
ω is the frequency at which the circuit is be-
ing driven by, say, a generator at the input
end AA. The input impedance Zi = V0/I0 is
given by,

Zi = jωL/2 + 1/(jωC). (26)

Denoting voltages and currents for the inci-
dent and reflected waves by V ′, I ′ and V ′′, I ′′

respectively, the boundary conditions at open
end BB in Fig. (3a) imply V ′′

1 = V ′

1 and
I ′′1 = −I ′1, the minus sign arising because the
reflected current is out of phase with the in-
cident wave by an angle π, so as to make the
net current I1 = I ′1 + I ′′1 = 0. However to
evaluate I ′1, we need to isolate the incident
wave and which can be done by terminating
the circuit in its characteristic impedance Z0

(Fig. 3(b)). The propagation factor for the
incident wave from Eq. (17) is,

V ′

1

V ′

0

=
I ′1
I ′0

= 1− ω2LC/2

−j
√
ω2LC

√

1− ω2LC/4, (27)

with V ′

0/I
′

0 = V ′

1/I
′

1 = Z0. As demonstrated
in 5.1.1, the incident wave is not affected by
the termination impedance. The difference
it makes is only in the reflected wave. For
instance, in the open circuit case (Fig. 3(a))
there also exists a reflected wave, while there
is no reflected wave present when the circuit
is terminated in its characteristic impedance
Z0 (Fig. 3(b)).

For the reflected wave in Fig. 3(a) one can
write the propagation factor as,

V ′′

0

V ′′

1

=
I ′′0
I ′′1

= 1− ω2LC/2

−j
√
ω2LC

√

1− ω2LC/4. (28)

Equation (27) can be rewritten as,

V ′

0

V ′

1

=
I ′0
I ′1

= 1− ω2LC/2

+j
√
ω2LC

√

1− ω2LC/4. (29)
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Figure 3: A driven LC Circuit or a single-block network (a) open-circuited (b) terminated in
its characteristic impedance Z0 and thereby carrying only the incident voltage and current
with no reflection at the end BB.

From Eqs. (28) and (29) we get for the
voltage V0 and current I0 as the superposition
of the incident and reflected waves,

V0 = V ′

0 + V ′′

0 = 2V ′

1(1− ω2LC/2) (30)

I0 = I ′0 + I ′′0

= 2I ′1j
√
ω2LC

√

1− ω2LC/4. (31)

Therefore we get the input impedance Zi as,

Zi =
V0

I0
=

V ′

1

I ′1

1− ω2LC/2

j
√
ω2LC

√

1− ω2LC/4
. (32)

Using V ′

1/I
′

1 = Z0 =
√

L/C − ω2L2/4 =
√

L/C
√

1− ω2LC/4 , we get Zi = jωL/2 +
1/(jωC) , which of course is the expected
result (Eq. (26)). The input impedance is
imaginary for all driving frequencies.
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Abstract

In this article, we would like to discuss the implications of Mermin-Wagner theorem, a well
known theorem used in condensed matter physics to rule out the possibility of spontaneous
magnetisation at non-zero finite temperature in one and two dimension for some class of
model Hamiltonian having continuous symmetry. This similiraity of the absence of
spontaneous magnetization can be invoked in other branches of condensed matter physics.
Finally, we will try to shed some light on the debate related to the stability of 2D graphene
sheet and magnetism of 1d finite linear chain consisting of Co atoms in the context of this
theorem.

Keywords: Continuous Symmetry, Spontaneous Magnetization, Short-range
Interaction, Magnetic Anisotropy

1.Introduction

In recent years, there is considerable interest
in looking up some intriguing effects of
external magnetic field on the properties of
various emerging materials and magnetic
phase transition. This is also to be noted

that the effect of magnetic field on materials
can be understood in the framework of
quantum mechanics only. The word phase
according to Gibbs[1] refers to a state of
matter which is uniform both in chemical
composition as well as in physically. The
role of uniformity is important. For example,
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the density or the conductivty must be same
throughout the system in addition to the
uniformity associated with the chemical
composition. In condensed matter physics,
the occurrence of a phase transition is
connected to the failure of one of the phases
to exhibit a certain symmetry property
associated with the underlying Hamiltonian.
As an example, crystals by their very lattice
structures, break the translational symmetry
encountered in the continuum description of
fluids. On the otherhand, ferromagnets, are
not invariant under rotations (denoted as
O(3)) in spin-space, although the underlying
Heisenberg Hamiltonian describing the
system may well be. In case of superfluids
and superconductors, a breaking of gauge
invariance (U(1) continuous) occurs. It is
known that a single spin is unable to show a
phase transition in the thermodynamic sense.
Thus, the suitable interaction is necessary
for the occurrence of phase transition. If the
nearest-neighbor spins in a system possess a
lower energy if they are oriented parallel to
each other than if they are anti-parallel, then,
the system is known as ferromagnet (FM)
and is chacterized by a positive value of the
strength of interaction (J > 0). There exists
other class of materials in which neighboring
spins align in opposite directions. These sys-
tem are called antiferromagnets (AFMs) and
are eventually chracterized by the negative
value of J . In the absence of an external ap-
plied magnetic field, ferromagnetic materials
exhibit a cooperative phenomenon known as
spontaneous magnetization at low enough
temperatures. However, when the material
is heated, the magnetization decreases and

vanishes at a critical temperature, known as
the Curie temperature. Beyond this critical
temperature (at higher temperatures), the
material possesses no net magnetization
and beomces paramagnet (PM). The PM
spin state is less ordered but more sym-
metric compared to FM one as there is
no restriction on the alignment of spins.
The continuous O(3) symmetry associated
with PM is spontaneously broken [2, 3] in
FM state when the temperature becomes
below the critical transition temperature
and thus establishing more ordered but less
symmetry in the spin state. This transition
is categorised as second order or continuous
phase transition as the first derivative of
the free energy continuosly changes with
temperature while the second derivatives
either diverge or change discontinously.
Hohenberg, Mermin, and Wagner, in a series
of papers [3, 4], proved in 1960’s that one
or two dimensional (2d) systems with a
continuous symmetry cannot have a broken
symmetry at finite temperature. Hohenberg
considers superfluid problem while Mermin-
Wagner took magnetism associated with one
or two dimensional system having continuous
symmetery. Ironically, the title of the paper
by Hohenberg was “Existence of long range
order in one and two dimensions”. The
non-existence of spontaneous magnetization
in one dimensionsional ferromagnetic linear
chain was rigorously proved by Dyson [5].
Sidney Coleman [6] showed the absence of
spontaneous symmetry breaking (SSB) in
d ≤ 2 dimensional systems in quantum field
theory. Later, Añaños [7] has generalized
Coleman-Mermin-Wagner theorem in φ6
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scalar field theory in (2 + 1) dimension at
finite temperature. Many intriguing aspects
of Mermin-Wagner (MW) theorem have been
comprehensively reviewed by Gelfert and
Nolting [8]. A quantum version of quantum
rotors in two dimensions has been described
in detail by Kelbert and Suhov [9]. The
versatile aspects of MW theorem in two
dimensional statistical models have been dis-
cussed in the literature [10, 11, 12, 13, 14, 15].
Ghosh [16] more specifically, recovered the
MW theorem for the Hubbard model, an
impotant key model in many body systems.

The paper is organized as follows. Intro-
ducing the two important models in statis-
tical mechanics, we proceed to convey the
reader the simplest proof of MW theorem via
scaling theory in section 3. After discussing
the proof, We demonstrate a field theoretic
approach to this theorem in section 4. We
also present another approach to MW theo-
rem via Landau-Ginzburg model in section 5.
In section 6, the implications are indicated.
Finally, in section 7, we give our conclusions.

2.Ising vs Heisenberg

Model

Ising and Heiserberg are two important key
models in statistical physics. In both models,
spins are attached to the lattice points having
nearest neighbour interaction. The simplest
Ising type model in an external magnetic field

Hext can be written as

H = −
∑

<ij>

JijSiSj −Hext

∑

i

Si (1)

with Jij is the strength of interaction be-
tween the nearest neighbour spin pairs i and
j. However, the spins in Ising model can-
not be rotated rather only flipped by a sign
(Si → −Si). In other words, Ising model con-
strains the spins to point either up or down.
But the Heisenberg model defined as

H = −
∑

<ij>

Jij ~Si · ~Sj − ~Hext ·
∑

i

~Si (2)

allows the spins to point any direction
leading to O(3) symmetry with respect to
short range spin interaction. Note that O(3)
has nothing to do with translation or point
group symmetry which will generally be dis-
crete in nature. Mathematically speaking,
if H(~S1, ~S2, ....~SN ), then H(R~Si) = H(~Si)
where R belongs to O(3). Note that classical
model uses classical spin (a fixed length vec-
tor) instead of the quantum mechanical spin
operator.

3.Statement of the MW

theorem and A simple

proof

The theorem is related with low dimensional
(one and two) system having continuous
symmetry associated with the model Hamil-
tonian. It is not applicable to discrete
symmetry such as Z2 associated with Ising
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spin Hamiltonian. The statement of the
theorem goes as follows: In one and two
dimensions, continuous symmetries cannot
be spontaneously broken at finite temper-
ature in isotropic systems with sufficiently
short-range interactions. Stated in another
way, at any non-zero finite temperature, a
one or two dimensional (2d) isotropic spin-S
Heisenberg model with finite-range exchange
interaction can be neither FM nor AFM.

In other words, the spontaneous magneti-
zation at finite non-zero temperature is not
possible for one dimensional ferromagnetic
system. Thus, FM exists with short range
interaction for the istropic case only in three
spatial dimensions. The long range ordered
state that breaks a continuous symmetry
spoantaneously at non-zero finite tempera-
ture in low dimensions is impossible. The
fluctuations in lower dimension are strong
enough to destroy the SSB. It is essential
to note that the theorem is restricted only
to the non-existence of spontaneous magne-
tization. It does not however, necessarily
exclude other types of phase transitions such
as the divergence associated with suscepti-
bility or correlation length. In fact, in 2d
XY model, there exists a phase transition
known as Kosterlitz-Thouless [17] one in a
topological sense. This result is a universal
in the sense that it can be applicable not
only to magnets but also to solids, super-
fluids and other systems having a broken
continuous symmetry. This theorem is also
valid for arbitrary spin S. For T = 0, the
corresponding rigorous statements have been
given by Pitaevskii and Stringari [18]. This

important theorem is mostly proved via
the rigorous Bogolibov inequality [2, 19].
Some interesting applications of Bogolibov’s
inequality in equlibrium statistical mechanics
have been demonstrated by Mermin [20].

However, in this pedagogical approach, we
would like to have an alternative approach
the problem from a simple scaling theory
given by Bloch [21] long before Mermin-
Wagner came into the picture. The ele-
mentary excitations in ordered distribution
of magnetic moments (whether parallel or
antiparallel) are known as magnons. Like
phonons, they obey Bose-Einstein distribu-
tions as there are no restrictions on the num-
ber of magnons in any of the quantized en-
ergy levels connected with spin waves. The
magnetization M at any finite non-zero finite
temperature (T ) of a ferromagnetic system
can be defined as

M(T ) = M(0)−∆M(T ) (3)

where ∆M(T ) indicates the contribution of
thermally excited magnons in spin waves. Us-
ing Bose-Einstein distribution, (Noting that
for both phonons as well as magnons, the
chemical potential is zero) ∆M(T ) can be ex-
pressed as

∆M(T ) =

∫ ∞

0

N(E)dE

exp(βE)− 1
(4)

with β = (kBT )
−1 and N(E) is the spin den-

sity of states. At this junction, it is impor-
tant to point out the argument leading to
the proof of MW theorem depends critically
on the dependence of spin density of states
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N(E) on the spatial arbitrary dimension d

for a given elementary excitation of magnons
in the form E(k) ∼ ks (s > 0). Noting that
N(k)ddk = N(E)dE, it is easy to establish
that

N(E) ∼ E(d−s)/s (5)

Now, for ferrommagnetic spin waves [2]
(E(k) ∼ k2 ) in 2d, it is easy to convince
that spin density of states N(E) ∼ constant,
independent of energy E. Hence, the contri-
bution of thermally excited spin waves at low
temperature can be written

∆M(T ) = const.T

∫ ∞

0

dx

ex − 1
(6)

A careful look into the above integral ( for
small x) reveals that the integral diverges
logarithmically. This indicates that ∆M(T )
diverges for finite T signalling a breakdown
of magnetic order for T > 0. The essential
point to note that at any finite temperature,
it is quite easy to excite spinwaves thus
destroying the magnetic order for ferrom-
magnetic system in two spatial dimensions.

But what happens at one dimension? In
this case, it is evident from equation (5) that
N(E) ∼ E−1/2 . Therefore, the equation (6)
takes the form

∆M(T ) = const.T−1/2

∫ ∞

0

dx

x(ex − 1)
(7)

that diverges in the lower integral limit
indicating the absence of FM or spontaneous
magnetization at finite non-zero temperature
in one spatial dimension. However, in three
spatial dimensions, the similar analysis

yields a finite non-zero value of ∆M(T ) and
the order is restored. The extension to the
case of AFM is immediate by introducing a
staggered field and staggered magnetization
as done by Mermin and Wagner [4]. For
2d antiferromagnetic system, N(E) ∝ E

and the scaling arguments result a divergent
integral of staggered magnetization for small
value of x.This completes the proof for FM
and AFM systems.The proof of absence of
AFM in low dimensional systems has also
been beautifully illustrated by Keffler et al.
[22]. For d = 3, the above analysis for FM
system points out M(T ) = M(0) − AT 3/2 (
the famous Bloch’s T 3/2 law).

The theorem is strictly valid for T > 0.
It does not rule out the possibility for the
system to exhibit SSB and ordering even at
T = 0. The theroem also points out an im-
portant aspect regarding the lower critical di-
mension of a model used in statistical me-
chanics. The lower critical dimension of a
model is defined as the space dimension at
and below which there is no SSB and no tran-
sition to an ordered state. Thus, the theorem
predicts that the lower criitical dimension for
the Heisenberg model is two while that of the
Ising (Z2) model is one.
However, few comments are necessary to

justify the important terms associated with
MW theorem.

• Isotropic Interactions: The theorem is
valid only for the isotropic Heisenberg
model. Suppose, the interaction be-
tween two spins at neighboring vertices
i and j takes the form in 2d (XY model)
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−J ~Si·~Sj . The isotropy is essential in the
sense that if we replace the above inter-
action by −J1Sx(1)Sy(1)−J2Sx(2)Sy(2),
with different constants J1 and J2, then
there would be spontaneous magnetiza-
tion at low temperatures. This can be
visualized as follows. In presence of fer-
romagnetic anisotropy, the dispersion re-
lation [23] takes the form

E(k) = A+ Ck2, A = const. (8)

signalling a gap at k = 0 in constrast to
gapless excitations of isotropic FM sys-
tem. This is however expected in the
sense that in presence of an anisotropy
(J1 6= J2 ) even a rotation of the mag-
netic moment in the limit of k → 0 re-
quires a finite energy. The presence of
such a gap is reflected in the exponen-
tial dependence of specific heat and mag-
netization at low enough temperature in
contrast to power law dependence of the
same physical quantity on T for isotropic
one. The equation (6) now reduces to

∆M(T ) = const.T

∫ ∞

A

dx

ex − 1
(9)

Thus, we notice that the lower bound-
ary is now shifted (A > 0) the integral
does not diverge at this boundary and
the magnetic order is thus stabilised by
anisotropy. It has been shown by Bander
and Mills [24] that even arbitrarily small
anisotropies can restore long-range order
in the system. This explains the exis-
tence of a number of 2d Heisenberg FMs
and AFMs like K2CuF4.

• Sufficiently Short Range: The MW theo-
rem is strictly valid for such systems for
which the exchange integral J decreases
sufficiently fast with increasing distance
r for N spins so that the quantity

Q = lim
N→∞

1

N

∫ ∞

0

r2J(r)Dr (10)

remains finite. In Mermin-Wagner’s pa-
per [4], the above short-range condition
is stated as

∑

r

r2|J |r < +∞ (11)

For interactions with a finite range or
with an exponential decay, the condi-
tion in equation (11) is easily satisfied.
For interactions dictated by power law
decay such as |J |r ∼ r−α , the con-
dition (11) is satisfied only when α >

d+ 2, where d is the space dimensional-
ity (i.e., α > 4 for d = 2 or α > 3 for
d = 1) Note that in metallic magnetic
systems, the exchange interactions are
of the Ruderman-Kittel- Kasuya- Yosida
(RKKY) type [2], which have a long-
range oscillatory behavior for large r as
J(r) ∼ cos(q0r+φ)

rd
. It is clear that the

RKKY interactions do not satisfy the
criterion of short rangedness as given in
equation (11). As a result, no conclu-
sion on the magnetism related to 1d and
2d RKKY systems can be obtained from
MW theorem. However, later on Bruno
[25], extended the result of Mermin and
Wagner to Heisenberg and XY systems
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with a long-range interaction not satisf-
ing the condition (11). In terms of en-

ergy E(k) =
∑

r J(r)(1− ei
~k·~r) = E(−k)

MW theorem is restated in the first Bril-
louin zone (BZ) in d = 1 or 2 dimensional
Heisenberg and XY model as

1

Λd

∫

ddk

E(k)
= +∞ (12)

where Λd is the volume of the first BZ.
For long range interaction, the disper-
sion relation [26] as E(k) ∼

√
k, then

the spin density of states at two dimen-
sion turns out as N(E) ∼ E3 . In that
situation, the equation (6) turns out

∆M(T ) = const.T 2

∫ ∞

A

x3dx

ex − 1
(13)

And it is easily seen that the integral
does not diverge at the lower limit.
Thus, the magnetic order is stabilized
for order such long range interaction
even at 2d.

The reason for the observation of the
magnetism or long range order is due
to the presence of an essential magneto-
crystalline anisotropy and the dipolar in-
teraction (although very small indeed)
[27, 28]. They are just enough in break-
ing the claims of MW theorem. Even
the layered crystal structures are gen-
erally anisotropic in nature. The ori-
gin of anisotropy lies in the relativistic
spin-orbit interaction. The isotropy in
Heisenberg model can be destroyed by ei-
ther by making Jx 6= Jy 6= Jz or adding

terms of the form −K
∑

i (Sz
i )

2. The
typical dipolar term looks as

Hdipol = −1

2

∑

i 6=j

Q
αβ
ij

~Sα
i · ~Sβ

j

Q
αβ
ij = (gµB)

2
3Rα

ijR
β
ij − δαβR

2
ij

R5
ij

(14)

For easy axis, K > 0, because of the
presence of gap at k = 0 as noted in
equation (8), there is no divergence of
∆M(T ) at low T in 2d indicating the
presence of long range order. However,
for easy plane anisotropy (K < 0), there
is no spin gap and the dispersion looks
like E(k) ∼ K and again ∆M(T ) be-
comes divergent in 2d.

• d as a continuous parameter: Suppose
we assume the spatial dimension d as a
continuous parameter with d = 2+ǫ with
ǫ ≪ 1. Again, assuming the conven-
tional ferromagnetic magnon dispersion
relation E ∼ k2 , we find N(E) ∼ kǫ/2 .
Therefore, the equation (5) becomes

∆M(T ) = const.T ǫ/2

∫ ∞

0

xǫ/2dx

ex − 1
(15)

In the limit of small but finite ǫ, the
above integral does not diverge. This
immediately indicates that not the strict
two-dimensionality, but rather slightly higher
dimension such as a film with finite thickness
may stabilize the order.
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It is interesting to note that although the
assumptions (isotropic and short-range) is
usually not strictly fulfilled, it is hard to conf-
firm MW theorem in a real system. Nev-
ertheless, this theorem provides an impor-
tant benchmark and gives a qualitative ex-
planation why the ordering temperature Tc is
usually reduced for thinner films [29]. Ben-
sch et al.[30] have found a strong correla-
tion between the onset of FM and of mag-
netic anisotropy in epitaxial Fe films on GaAs
(001). The study involving magnetic and re-
lated structural issues for ultrathin Fe films
grown epitaxially as wedge structures onto
Ag(100) and Cu(100) shows [31] that ther-
mal fluctuations in a nearly isotropic 2d does
not diverge at the lower limit. Heisenberg
system can suppress long-range order and/or
give rise to domain structures with unusual
characteristics.
It is interesting to note that power lay

decay is much slower than exponential decay
which is indeed characteristic of short ranger
present in the system. On the otherhand,
power law implies that there is no length
scale in the problem. The system is thus
scale-invariant leading to quasi-long range
order.

In one dimension, there exists an isotropic
discrete quantum Heisenberg model having
SU(3) symmetry where it has been shown
[32, 33] to possess a long range order in
thermodynamic sense.The arguments de-
pend critically on the effecive radius of the
exchange interaction between spins. In this
model, the energy contribution exceeds the
entropic contribution.

A general mechanism of random field in-
duced order occurring in system having con-
tinuous symmetry has been proposed by
Wehr et al.[34] and illustrated in 2d classical
ferromagnetic XY model in a random uniax-
ial dield. A non-zero spentaneous magnetiza-
tion has been shown to persist even for small
T > 0.

4.Field Theoretic approach

to the Theorem

Let us start with classical XY 2d model to
derive the correlation function. The model is
intrinsically defined on 2d square lattice and
the spin has only two components namely Sx

and Sy. Thus, the model Hamiltonian with
J > 0 is defined as

H = −J
∑

<ij>

~Si · ~Sj = −J
∑

<ij>

cos(φi − φj)

(16)
The angular bracket < ij > denotes that the
interaction is restricted to nearest neighbor
only. The system described by the above
Hamiltonian is rotationally invariant (O(2))
or in terms of φ as translationally invariant
φi → φi + c(constant). It is clear that the
energy is minimized when all the spins point
in the same direction hence breaking sponta-
neously O(2) in the ground state. The ques-
tion is whether this order does indeed survive
at non-zero finite temperature. To account
for this, we would like to define the correla-
tion function as

C(~r − ~r′) =
〈

ei(φ(~r)−φ(~r′))
〉

(17)
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Note that here 〈..〉 indicates the usual ther-
mal average adopted in canonical distribu-
tion. Note that the correlation function is 1
at zero temperature when all the spins orient
in the same direction. We claim that a long
range order is established in the system at
non-zero finite temperature when this corre-
lation function is non-zero at large distances.
Similarly, in case of disordered state when
the two spins at large distances are uncor-
related, this correlation function goes to zero
after finite correlation length. In the ordered
state, the fluctuations between the neighbor-
ing spins being small, we can approximate the
above Hamiltonian defined in (16) as

H = E0 +
J

2

∑

<ij>

(φi − φj)
2 (18)

Since, the Hamiltonian is quadratic in na-
ture, it is easy to calculate the correlation
function. However, we would like to have a
continuum field theory of this Hamiltonian in
the limit when the correlation length is sig-
nificantly larger than the lattice constant (a)
of the underlying lattice. Thus, the field the-
oretic version of the Hamiltonian [35] looks
as

H ≈ J

2

∫

d2r (∇φ(~r))2 (19)

Assuming the Fourier decomposition of φ(~r)
as

φ(~r) =
1

2π

∫

d2k φ(~k) ei
~k·~r (20)

we find the continuum Hamiltonian reduces
to

H =
1

2

∫

E(k) d2k φ(~k)φ(−~k)

=
1

2

∫

E(k) d2k |φ(k)|2 (21)

with E(k) = Jk2. In the last step, we have
used that fact φ(~r) is real. With the above
form of the Hamiltonian, we can compute the
correlation of φ(~k) and φ(~k′) as

〈

φ(~k)φ(~k′)
〉

=

∫

Dφ φ(~k) φ(~k′) e−βH

∫

Dφ e−βH

=
δ(~k + ~k′)

βE(k)
(22)

where β = (kBT )
−1. It is interesting to note

that
〈

φ(~k)
〉

= 0 indicating the absence of

spotaneous magnetization according to MW
theorem at any finite non-zero temperature.
Since the Hamiltonian is quadratic or Gaus-
sian, the correlation function as defined in
equation (17) reduces to

C(~r − ~r′) = e−
1

2
〈(φ(~r)−φ(~r′))2〉 (23)

Thus, the calculation of correlation function
simply reduces to the calculation of expecta-
tion value of (φ(~r)− φ(~r′))2. Therefore,

〈

(φ(~r)− φ(~r′))2
〉

=

∫ ∫

d2k d2k′

(2π)2
(

ei
~k·~r − ei

~k·~r′
)

(

ei
~k′·~r − ei

~k′·~r′
)〈

φ(~k)φ(~k′)
〉

(24)

Substituting the value of
〈

φ(~k)φ(~k′)
〉

from

(22), we find

〈

(φ(~r)− φ(~r′))2
〉

=
1

2βπ2

∫

d2k
1− cos(δ~r · ~k)

E(k)
(25)
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where δ~r = ~r − ~r′. In the limit of k ≫
(δr)−1, we notice a logarithmic divergence
( 1
Jβπ

∫

(δr)−1

dk
k
) at higher momenta. Consid-

ering the orginal lattice model, if we put in
hand the high momentum cut-off α ∝ a−1,
we find that

〈

(φ(~r)− φ(~r′))2
〉

=
1

Jβπ
log(αδr) (26)

and the correlation function turns out as

C(~r − ~r′) ∝ (αδr)−η(T ) (27)

with η(T ) = T
2πJ

. The result eventually in-
dicates the correlation function between dis-
tant spins vanishes and the system is not
ordered at any finite non-zero temperature.
However, one important thing to notice here
is that the correlation function decays in a
power law fashion without any length scale.
The correlation length is in fact infinite in the
sense of second order phase transition. How-
ever, instead of an isolated point in second
order phase transition, the phenomenon oc-
curs over a region of parameters. Thus, we
call it as quasi-long range behavior. At high
enough temperature, this model also shows a
topological phase transition known Kosterliz-
Thouless [17] phase transition different from
the symmetry breaking one. Note that the
integral defined in equation (25) is perfectly
finite for d > 2 ensuring the presence of mag-
netization and hence the breaking of sponta-
neous symmetry O(n).

5.MW theorem From

Landau-Ginzburg (LG)

Model

Near the critical point TC , the free energy in
the Landau-Ginzburg Model[23] can be writ-
ten in terms of order parameter (magnetiza-

tion ~M(~r)) as

F =

∫

ddr

[

1

2
a(T )(M(~r))2 +

g

2

(

~∇M(~r)
)2

+
1

4
b(M(~r))4 − ~M(~r) · ~Hext

]

(28)

Higher powers of ~∇M can be only neglected
in the limit of small spatial fluctuations. It is
important to note that the above expansion
is not valid for small value of TC because in
that case quantum fluctuations are important
than the usual thermal fluctuations. The uni-
form magnetization (neglecting ~∇M term) at
any temperature T can be determined from

a(T )M + bM3 = Hext (29)

Thus, the equilibrium value of magnetization
M0 in the absence of the external magnetic
field is simply M2

0 = −a(T )
b

for T < TC and
is zero for T > TC . If we now write M(~r) =
M0 +m(~r), where m(~r) is the small fluctua-
tion over the equilibrium value M0, then one
can write the thermal average of small fluctu-
taions for various q (assuming Fourier trans-
form M(r) =

∑

q M(q) ei~q·~r) in the absence
of the external field Hext as

〈

|m(q)|2
〉

∼ kBT

a(T ) + gq2 + 3bM2
0

(30)
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The above formula indicates the large fluctu-
ations at small value of q. From this, we can
obtain

〈

M(r)2
〉

= M2
0 +

〈

m(r)2
〉

= −a(T )

b
+
∑

q

〈

|m(q)|2
〉

= −a(T )

b
+

B
∑

q

kBT

a(T ) + gq2 + 3bM2
0

(31)

with B being a constant. In 1d as well as in
2d, the above integral diverges near TC and
the fluctuations become larger than M0 in-
dicating the absence of long range order at
T 6= 0,

6. Implication of MW

theorem

We can use the above logic to check the sta-
bility of infinte 2d solid. If we approximate
the deviations of the potential from the equi-
librium as harmonic, then the potential looks
in terms of the displacement vector ~ui of i-th
atom in a square 2d lattice as

K

2

∑

<ij>

(ui − uj)
2 (32)

This form of the potential is similar to that
adopted in XY model.
This indicates that the relative displac-

ment vector between distant sites is wildly

fluctuating leading to an unstability of infi-
nite 2d square lattice structure [36].
A 2d lattice is simply a crystal lattice

periodical in two dimensions and confined
in the third direction. Nature however tries
to find the equilibrium by folding the low
dimensional crystal as done in fullerene or
DNA molecules. MW theorem applies only
to infinite 2d crystals while stable films of
finite sizes have sufficient thicknesses to show
magnetism below a finite non-zero critical
transition temperature Tc, generally lower
than their bulk counterpart. In recent years,
the existence and stability of free-standing
graphene [37] sheets have drawn again the
attention of MW theorem. Sometimes, it has
been argued that the free-standing 2d crystal
would be disrupted by thermodynamic forces
and hence, 2d materials were expected not
to exist. Even the ultraflat graphene grown
on mica surfaces has invoked rippling to
explain the thermodynamic stability of free
standing graphene sheets. Sometimes, it has
been pointed out that the low-amplitude
ripples protect graphene from disruption
by perturbing it away from exact flatness
thereby making the MW theorem technically
inapplicable to the situation. In fact, time
to time, it has been observed that there has
been basic misreading about this MW theo-
rem. As has been clearly explained above,
that it talks about the long wavelength
thermal fluctuations so called ealstic defor-
mation in 2d structures. This has nothing
to do in fact with the disrupting structure.
Note that in infinite 3d crystal, thermal
fluctuations displace atoms from their mean
equilibrium positions centered about the
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lattice points. The MW strictly proves that
in an infinite 2d crystal, thermal fluctuations
will destroy long range alignment with a
lattice. However, graphene (including other
2d structures) can maintain this crystalline
order except in the sense that they cannot
maintain strict periodicity in the limit of
infinite size.
In otherwords, MW theorem is not about
the stability of finite structures but about
the crucial and important property of long
range elastic deformation of inifinite systems.
Most recently, the stability of graphene and
graphene like other 2D materials ( Silicene,
Germanene etc) has been argued [38] on the
basis of transverse short-range displacements
of appropriate atoms. The distortions pro-
duced in these exotic 2D materials although
being small can be however described in a
framework of Ising model with competing
interactionson in 2D hexagonal lattice and
predict various patterns and buckling transi-
tions to be observed in Raman and infrared
experiments. In fact, the preference of the
buckled structures of silicene and germanene,
are consistent with the MW theorem due
to the vainishing of the effective bending
for a very broad range of electron-phonon
interactions [39].

It is known that a macroscopic piece of
Co remains ferromagnetic below its Curie
temperature 1388 K. Can one engineer mag-
netism in atomic scale (nanoscale)[40]? Or
in otherwords, what will happen if we con-
sider a finite nanowire consisting of few Co
atoms on platinum (Pt) surface? But the
measurements of Gambardella and colleagues

[41, 42, 43, 44] have shown unambiguously by
two methods that the chain is indeed a fer-
romagnet with a Curie temperature of about
15 K. Is MW theorem applicable here or in
error? In fact, the measurements pointed out
the presence of a giant magnetic anisotropy
[42, 44] existing in the system thus render-
ing MW theorem to be invalid here. An-
other point is important here about the fi-
nite length of the chain (∼ 50 Co atoms).
The original MW theorem assumes the chain
to be infinitely long while the system pre-
pared by Gambardella and colleagues is of fi-
nite length. These two aspects clearly show
the presence of finite magnetsim in this one-
dimensional system. A simple argument due
to Landau [45, 46] can be given to show that
the finite chains are stable magnets [41, 43].

Let us consider a chain consisting of (N−1)
with nearest- of N moments described by the
Ising Hamiltonian H = −J

∑N
i=1 S

z
i S

z
i+1 with

neighbour exchange coupling energy J > 0
(FM interaction). The ground state energy
of the system can be computed when all the
spins are either up (Si = +1) or down (Si =
−1) and is thus doubly degenerate. Thus the
energy is given as E0 = −J(N − 1) and the
situation corresponds to the case where all
the moments are aligned. The lowest-lying
excitations are those in which a single break
occurs at any one of the N sites of parallel
aligned states. In practice, however, there
are only N−1 such excited states, all of them
having the same energy E = E0 + 2J . At a
finite non-zero temperature T the change in
free energy due to these excitations

∆G = 2J − kBT ln(N − 1) (33)
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In the limit N → ∞, we have ∆G < 0 at
any finite temperature and the ferromagnetic
state becomes unstable against thermal fluc-

tuations. For (N − 1) < e
2J

kBT , however, it
is possible to have energetically stable ferro-
magnetic order. As an explicit order of mag-
nitude of a critical transition temperature of
50 atoms in linear chain having 2J = 15 meV
[47, 48], we get an estimation of TC = 45K.
In fact, the measurements of the magnetiza-
tion in the above Co monatomic chains agree
with this limit. If this chain is stable at room
temperature, then it can be used as high den-
sity magnetic storage material on computer
disk.

7. Conclusions

To conclude, we have discussed a simple scal-
ing proof of Mermin-Wagner Theorem and
indicated the important roles placed by the
isotropic and long range nature of the inter-
action. The field theoretical calculations to
show the validity of this MW theorem have
also been included. We have also argued the
validity of this MW theorem to graphene and
1d finite linear chain consisting of Co atoms.
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Abstract

The standard exposition of the internal resistance of a battery, that a battery comprises a
source of emf in series with an internal resistance, as given in engineering and physics
text-books, is lacking in proper explanation. It is treated merely as an experimental fact,
and not something that should follow from logic. The battery has a tendency to maintain
electric potential difference across its terminals equal to its chemical potential, and in an
open circuit, when no current flows, these two do match. However in a closed circuit, a
drop in electric potential across the battery terminals is inevitable for a steady flow of
electric current throughout the circuit, because the chemical reactions driving the electric
current within the battery can proceed only if the electric potential at its terminals differs
from the chemical potential. It is shown that for small voltage changes, the current passing
through the battery is linearly proportional to the change in potential from the open-circuit
value (i.e., its chemical potential), giving rise to a semblance of an internal resistance in
series with the external resistance. It follows that a battery has to have an internal
resistance in order to function as a power source. It is also shown that Thevenin’s theorem
does not make our results superfluous, in fact our results are presupposed in its derivation.

1
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Introduction

In almost all physics or engineering under-
graduate text-books [1, 2, 3, 4], the inter-
nal resistance of a battery is introduced more
or less as a factual statement that a battery
comprises a source of emf in series with an in-
ternal resistance Ri (Fig. (1a)), which is the
resistance of the electrolyte of the battery. In
general there is not much exposition as to the
genesis of the internal resistance of the bat-
tery and more specifically why it needs to be
put outside the battery in series with the ex-
ternal resistance. A student soon learns to
live with it and, at most taking it as an ex-
perimental fact, moves on. But a feeling re-
mains that something is lacking. After all the
internal resistance is due to the constituents
of the battery within it, therefore the word
“internal resistance” conjures up a vision like
that of a resistance internal to the battery
like in Fig. (1b), or equivalently where the
emf of the battery is across its internal resis-
tance. Then with a finite voltage at its ends
(positive and negative electrodes of the bat-
tery) one expects from Ohm’s law that there
should be a finite current flowing through the
resistor within the battery (even if the ex-
ternal circuit were open) as long as a finite
electric potential difference exists across the
resistor. Further, in an actual circuit when
the circuit is closed and an electric current
does flow through the internal resistance, it
is in a direction from a lower electric potential
(negative electrode) to a higher one (positive
electrode) within the battery (Fig. (1c)), con-
trary to that expected from Ohm’s law for

a normal resistor where the electric current
should flow from higher to a lower electric
potential which is not seen within the bat-
tery. Additionally, as the internal resistance
is supposedly that of the electrolyte residing
in-between the two electrodes of the battery,
how come the internal resistance is shown to
exist not between the two electrodes as in
Fig. (1b), but – somewhat mysteriously – is
instead put in series with the external resis-
tance outside the battery Fig. (1c)? More-
over, why should it be causing a drop in po-
tential from the open-circuit value when the
internal resistance itself is a part and parcel of
the battery system, giving rise to that poten-
tial? Here we should clarify that we are not
doubting the truth of the long-known exper-
imental facts (for example, we know experi-
mentally that Fig. (1a) and Fig. (1c) are fac-
tually correct while Fig. (1b) is not), we are
only attempting to logically examine these
facts from a simple physical perspective.

EMF, voltage and current

A battery or cell is an electrochemical device
[5] that converts chemical energy to electric
energy by driving an electric current through
a circuit containing a load (an external resis-
tance). Historically, a single chemical source
of emf was called a cell and a set of intercon-
nected cells was called a battery, however, it
is now common practice to refer to even a sin-
gle cell as a battery, as is done here too. Bat-
teries could be of different kinds, for exam-
ple, disposable ones designed to be used only
once and the rechargeable ones, which can
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Figure 1: The voltages and currents in a battery of emf E for (a) an open circuit with internal
resistance Ri in series outside the battery (b) Ri “inside” the battery and (c) a closed circuit
with Ri in series with the external resistance.

be used more than once. A common exam-
ple of the former is the zinc-carbon battery,
often used in torch-lights. The rechargeable
batteries include lead-acid batteries used in
automobiles while others like nickel-cadmium
or lithium-ion are used in mobile phones and
laptop computers. A battery in general, con-
sists of two electrodes of different material
immersed in an electrolyte, which could be a
fluid or a moist paste. The electrolyte inter-
acts chemically with the electrodes and due
to their chemical reactions a push is exerted
on the positive charges towards one termi-
nal, called the positive electrode, and on the
negative charges towards the other terminal,
called the negative electrode. Irrespective of
the make of a battery (its type, size, vol-
ume, the nature of the electrodes and the

electrolyte and the details of their chemical
reactions etc.), a battery ultimately causes a
separation of positive and negative charges,
giving rise to an electric potential across the
battery. The chemical potential, which is the
line integral of the force per unit charge due
to chemical reactions (from the negative elec-
trode to the positive electrode), is called the
emf E of the battery (historically called elec-
tromotive force which actually is a misnomer
as E is not a force but is instead a poten-
tial difference between the two electrodes).
To a first approximation we can write the ef-
fective force due to chemical reactions on a
charge e as Fc = eE/d, where d is the dis-
tance between the two electrodes. It is this
force Fc due to the chemical reactions that
pushes positive charges towards the positive
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electrode and the negative charges towards
the negative electrode inside the battery or
cell, giving rise to an electric potential dif-
ference between the two electrodes. In gen-
eral the change in electric potential within the
battery may not be linear and is mostly lo-
calized at the electrode–electrolyte interfaces,
but from energetic point of view what finally
matters is the net potential difference V be-
tween the two electrodes. This in turn gives
rise to an electric field E = −V/d within
the battery which exerts on every charge e
an electric force eE in a direction opposite
to the force Fc due to the chemical reactions.
As a result the net force on a charge pushing
it towards its respective electrode within the
battery becomes,

F = Fc + eE = e
E − V

d
. (1)

As long as V is smaller than E , the force F >
0 and the charges will continue to move in-
side the battery toward their respective elec-
trodes, with more and more charges getting
deposited there. However with increasing V ,
F will decrease, reducing the current flow in-
side the battery, until the electrodes achieves
a voltage difference V = E . Then from Eq.
(1), F = 0 and the charge movement reduces
to zero inside the battery. Thus in an open
circuit the battery will acquire across its ter-
minals a voltage V equal to its emf E , i.e.
its chemical potential (Fig. (1a)), with no net
force on the charges and hence no electric cur-
rent within the battery in spite of the electric
potential V across its terminals.
Now let a load (an external resistor R)

be connected across the battery, closing the

circuit. Immediately an electric current will
start from the positive terminal towards the
negative one through the external resistance.
Actually the electric current in a circuit is
due to the flow of electrons in a direction op-
posite to that of the current conventionally
shown in a circuit (Fig. (1c)), but it does not
alter the physics of the problem. The exter-
nal current causes a deficiency of some nega-
tive charges at the negative electrode as well
as neutralizes some positive charges at the
positive electrode, the reduction of charges
causing a slight drop in voltage from the ini-
tial open-circuit value V = E . This means
that the electric field within the battery will
now be less than the open-circuit value (i.e.,
V < E or from Eq. (1), F = Fc + eE > 0)
and the electric force will not fully cancel
the force Fc on the charges within the bat-
tery due to the chemical reactions. This in
turn will cause the charges to move accord-
ing to Eq. (1) giving rise to a positive current
from the negative electrode to the positive
electrode inside the battery. Initially as the
current within the battery may be less than
that in the external circuit, the charges get-
ting replenished at the terminals will be less
in quantity than those getting depleted by the
external current flow, therefore the voltage V
will be falling still further. And as E − V in-
creases, this should give rise to not only a still
higher current within the battery, it will also
cause a drop, even if only slight, in the exter-
nal current as the voltage V across the exter-
nal resistor drops. A stage however, will be
reached very soon when the internal current
within the battery becomes equal to that in
the external circuit. Now onwards there will
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Figure 2: The voltages and currents in a bat-
tery of emf E when recharging with another
battery of emf E1 > E .

be no further change in the voltage at the
battery terminals and a state of equilibrium
has been reached. However it will remain a
constant struggle for the battery, through the
internal current, to keep replenishing charges
being depleted at its terminals by the exter-
nal current. Thus we see that a current will
be flowing from a lower electric potential to
the higher one within the battery because of
the larger push on the charges in that direc-
tion by the force Fc = eE/d due to the chem-
ical reactions than the opposing force by the
electric field eV/d from a higher to a lower
potential.

The internal resistance

In a closed circuit the electric current flow-
ing within the battery is due to the chem-
ical reactions, which will take place only if
the voltage across the battery V is different
from the chemical potential E . A steady state
means the internal current within the bat-
tery must be equal to the current I = V/R
through the external resistance R. The in-
ternal resistance could be defined by Ri =
1/ | dI/dV |V=E . It should be noted that
the current increases when V decreases. As-
suming a constant dI/dV in a certain range
of V around E and noting that I = 0 when
V = E , we get Ri = (E − V )/I. From this
we could write V = E − IRi, which justi-
fies representing the battery as a source of
emf E with its internal resistance Ri in se-
ries (Fig. (1c)). The current I = V/R is then
given by I = E/(R+Ri). One could even have
a reverse current through the battery when V
across the battery is made higher than E . For
that another source of emf, say E1 and with
an internal resistance Ri1, so that E1 > E of
the battery in question, is connected across
its terminals (Fig. (2)). This is done, for ex-
ample, to recharge the lead-acid battery or
other rechargeable batteries. The magnitude
of the reverse current through the battery will
now be given by I = (V − E)/Ri, as the
recharging voltage V = E1 − IRi1 is larger
than E , then I = (E1 − E)/(Ri +R). The re-
verse current means that the positive charges
move towards the negative electrode while
the negative charges move towards the posi-
tive electrode, thereby reversing the chemical
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reaction and recharging the battery. In the
case of non-rechargeable battery no reverse
current takes place and we could say it has a
discontinuity in its internal resistance at V =
E+0. (One is in general, cautioned against at-
tempts to recharge non-rechargeable batter-
ies as these could explode).

Now eE is the amount of chemical energy
expended as work on a charge e in transport-
ing it from one electrode to the other. Out
of this, an amount eV is spent against the
electric field, which ultimately gets delivered
to the external load, the remaining energy
e(E − V ) represents the ohmic losses within
the battery. Thus (E − V )I = I2Ri are the
power losses in the battery as expected from
a resistance Ri lying outside the battery in
series.

The actual value of the internal resistance
of a cell may depend upon a combination of
various factors. If the effective cross-section
areas of the electrodes are large, more cur-
rent may flow through the battery even for
the same E − V change, implying a lower Ri

value. Similarly a larger separation between
the electrodes would imply a smaller push on
the charges even for the same E − V change
(Eq. 1), resulting in a smaller current, im-
plying a higher Ri value. The nature of the
constituents (electrodes and the electrolyte)
of a battery also matter as a better conduct-
ing electrolyte means a higher current for the
same E−V and thereby a smaller Ri. Further
as with usage the density of chemical com-
ponents within the battery may decrease, it
would lead to an increase in the internal re-
sistance.

Thevenin’s theorem

Thevenin’s theorem [6] states that any two-
terminal network containing energy sources
(generators) and impedances can be replaced
with an equivalent circuit consisting of a volt-
age source in series with an impedance. Thus
at a first look it may appear to preempt
all our above discussion, which may in fact
appear redundant. But a careful look at
the proof of the Thevenin’s theorem shows
that our above results are rather presupposed
there. In the proof offered [6] one may have
batteries/generators and impedances in series
or in parallels or in other complicated dis-
tributions but to begin with one always has
the internal impedances, if any, of the bat-
teries/generators always in series with them.
Therefore Thevenin’s theorem does not make
our results superflous, in fact our results are
made use of in its derivation.

Conclusions

We have shown that due to the tendency of
the battery to attain a voltage across its ter-
minals equal to the chemical potential E , a
finite drop in voltage from the open circuit
value E is essential for a steady current in
the circuit because then and only then will
there be chemical reactions taking place so
that a current flows within the battery. Thus
a drop in the voltage is essential for a steady
state current implying the existence of a fi-
nite internal resistance in any practical bat-
tery, which can be justifiably represented as
a source of emf E with a resistance Ri in
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series. Therefore a battery has to have an
internal resistance in order to function as a
power source. Further we have shown that
Thevenin’s theorem does not make our re-
sults superfluous, in fact our results are made
use of in its derivation.
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Abstract 

Experiments devised to explore the hidden mechanical components in an arrangement by external 

measurements are known as mechanical black box (MBB). The philosophy behind any black box 

experiments is non-destructive testing of the hidden components supported by logical reasoning. This 

paper presents an experimental problem from the Physics Olympiadprogramme, where the students were 

asked to figure out the dimensions of two co-axial cylindrical cavities hidden inside a mechanical black box 

(MBB), by measuring length, mass and time. This paper discusses in detail the situation of two coaxial 

cavities of the same diameter but different lengths. In addition, possible variations of the problems are 

suggested. Finally, challenges and student learning in relation to this problem are discussed. 

 

1. Introduction 
Mechanical black boxes are essentially an 

arrangement which consist of some hidden 

mechanical components. These are designed in  

 

such a way that by performing some suitable 

external non-destructive experiments the hidden 

components may be determined.
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Figure 1:  Schematic diagram of the Mechanical Black Box 

 

Figure 2: Photograph of the mechanical black box 

In this experiment, MBB has been made out from 

an iron (density 7.9 g cm-3) bar with square cross 

section (rectangular parallelepiped) of side R(= 

3.8 cm) and having a length H(= 24.0 cm). The 

weight of this solid piece (without cavities) is (Ms) 

2737.8 g. Two coaxial cylindrical cavities are 

drilled out from the two ends of the 

parallelepiped. Both of these drills have same 

diameter (3.2 cm) but one is having a length of 

13.0 cm while the other has a length of 5.0 cm. 

The open ends of the cavities were covered with 

thin light bakelite sheets. Paper scales with least 

count of 0.1cm was pasted along the length of the 

square bar on all its sides. The box (with cavities) 

now weighs about (MMBB) 1639.0 g indicating that 

a mass of about 1100.0 g has been drilled out. 

Figures 1 and 2 show the schematic diagram and 

the actual photograph of the MBB respectively. 

The task is now to find out the radius r of the 

cylindrical drills and their respective lengthsh1 and 

h2. 

2. The problem 

The problem consists of three unknown quantities 

r,h1,h2which needs three independent equationsto 

solve.The density of iron has been supplied 

(riron=7.9 g×cm-3). 

 

The actual mass of the MBB (MMBB) is supplied. This gives us the first equation that comes from the 

removed mass (m). By subtracting the actual mass of the MBB from this projected mass of the solid box 

(Ms) one gets the removed mass m (masses m1 and m2 removed to form cavities), we get 

21 mmmMM MBBs +==-     (1) 

( ) ironhhrm rp 21
2 +=      (2) 

h1 + h2 =
m

pr2riron

= k say( )     (2a) 

Nextthe MBB is made to undergo torsional 

oscillation about the axis along its length after 

suspending it from a suitable steel wire 

(Fig.5c).The time period of its oscillation will be 

governed by the moment of inertia of the MBB 

(IMBB) about this axis. Moment of inertia of the 

box (Is), had it been completely solid, will be 

greater than IMBB. The contribution to the moment 

of inertia from the two cavitieshas caused the 

moment of inertia to reduce from Is to IMBB. Is can 

be calculated by making measurements of the 

dimensions of the MBB.

 

So we may write 
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2

2

1
mrII MBBs =-      (3) 

( )
m

II
r MBBs -=

2
     (3a) 

Determination of IMBB: 

By oscillating the MBB from thepoint of 

suspension, we obtain TMBB. IMBB corresponding 

to TMBB can be obtained from a calibration curve 

between moment of inertia against square of the 

time period of oscillation. To develop this 

calibration curve, following assembly was used.  

 

Figure 3: Assembly for calibration curve 

In this assembly, the change in the position of 

discs will give different moment of inertia(Fig.3). 

When this assembly is given torsional oscillations 

about an axis perpendicular to the axis of the 

central cylinder, it gives corresponding time 

period of oscillation. Thus by repeating this 

exercise for different positions of discs (i.e. 

different moments of inertia), a calibration curve 

between the moment of inertia and the square of 

the period of oscillation can be obtained.  

Next the geometric midpoint of the MBB is kept 

over a knifeedge. Since the removed masses are 

not equal,the MBB naturally remains in a tilted 

position with larger cavity side going up as more 

mass has been removed from that part.An external 

mass m3 is placed over the MBB at a suitable 

distance z from the geometric midpoint so as to 

bring back the balancing equilibrium over the 

knife edge(Fig. 4). 

 

Figure 4: Moments about the geometric midpoint 

Consider the cavity with length h2and radius r. 

The MBB has a length H and the square cross 

section has each side equal to R (Fig.4).

 

The moment of force acting on that half of MBB with the cavity of length h2 about the midpoint is given by: 

H

2
R2r

H

4





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-pr2rh2

H

2
-

h2

2













g 

Similarly the moment of force acting on that half of MBB with the cavity of length h1 about the geometric 

midpoint is given by:  

H

2
R2r

H

4





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-pr2rh1

H

2
-

h1

2













g  

Taking moment about the geometric mid point 
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After rearranging the terms we get 

m3 = h2 - h1( )
H

2
-

k

2






pr2r

z









    (4) 

From the plot of 3m against 















-

z

rkH rp 2

22
we get a straight line (Fig.8) and the slope of the graph is (h2 – 

h1). 

This slope obtained can be added with equation (2a)to get the values of h1 and h2.  

3. Description of apparatus 

  
 

Figure 5a: Steel wire with magnetic 

attachment 

Figure 5b: Magnetic attachment placed 

symmetrically on MBB 

Figure 5c: MBB clamped to the 

magnetic attachment 

  

 

Figure 5d: Iron cylinder attached to the 

suspension wire 
Figure 5e: Knife edge with support 

Figure 5f: Magnetic stand on the 

MBB 

The suspension wire is already attached to the 

square acrylic piece (9.0 g). Two strong bar 

magnets are attached to this acrylic piece (Fig.5a). 

Each of the magnets weighs 11.1 g. The 

mechanical black box should be attached to this 

attachment (Fig. 5b and 5c). The iron cylinder also 

needs to be placed at the centre of the two 

magnets(Fig.5d). The iron cylinder with rods 

protruding from its ends and slotted weights slid 

along them can be used to get values of periodic 

time of oscillationcorresponding to various values 

of moment of inertia of the system and for 

drawing the corresponding graph. The two 50.0 g 

slotted weights are placed at suitable distances. 

Markings have beenmade on the rod to adjust the 

positions of these weights. The knife edge 
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mounted on a supporting plate has been used to 

balance the MBB (Fig.5e). Magnetic stand (a 

small magnet inserted at the bottom of the 

stand)could be placed upright on the MBB 

(Fig.5f). Slotted weights of 50.0 g andring weights 

of 5.0 g can be slid along therod of the stand. The 

weights used for bringing in the equilibrium could 

be measured with the help of a digital weighing 

machine. 

4. Experiment 

A] Determination of IMBB 

The MBB is clampedto the magnetic attachment 

(Fig.5c) and it is subjected to torsional 

oscillations. 

TMBB = 3.820 s 

Then the MBB is removed and the iron cylinder is 

attached to the magnetic attachment (Fig.5d). Two 

50.0 g slotted weights are used for suitably 

changing the moment of inertia of the assembly 

(Fig.6). These masses are treated as point masses 

for the calculation. The calibration graph (Fig.7) is 

obtained by suitably changing the moment of 

inertia of the assembly (table 1). 

 

Figure 6: Assembly for obtaining calibration graph 

222 xmIIIII discdisccylrodatt ++++=  

where, I is the moment of inertia of the assembly, 

Iatt is the moment of inertia of the attachment 

which is negligible, Irod is the moment of inertia of 

the rod, Icyl is the moment of inertia of the 

cylinder, Idisc is the moment of inertia of the disc 

(50.0 g slotted weight).

 

 

 

 

 

 

 

 

d /cm x /cm 
2mx2 

/g×cm2 

Time period 
for 5 oscillations 

 
T /s T2 /s2 

t1 /s t2 /s t3 /s t /s 
Without disc 0 12.40 12.38 12.32 12.37 2.473 6.117 
0.0 2.925 855.6 15.16 15.16 15.06 15.13 3.025 9.153 
1.0 3.925 1540.6 16.59 16.68 16.57 16.61 3.323 11.04 
2.0 4.925 2425.6 18.41 18.44 18.49 18.45 3.689 13.61 
3.0 5.925 3510.6 20.31 20.35 20.34 20.33 4.067 16.54 
4.0 6.925 4795.6 22.34 22.40 22.37 22.37 4.474 20.02 
5.0 7.925 6280.6 24.41 24.47 24.52 24.47 4.893 23.95 
6.0 8.925 7965.6 26.88 26.91 26.88 26.89 5.378 28.92 

Table 1: Observations for the periodic time T for oscillating system 
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where,c is torsion constant. 
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Figure 7: graph of T2 vs the moment of inertia of different combinations 

From the slope of the graph, torsion constant c 

isobtained. IMBB is obtained by using this value of 

c. 
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B] Calculation of the radius of the cavity 

Using the value of IMBBand c, the radius of the 

cavity, r is determined. 

a] Calculation of removed mass due to cavities: 

Removed mass forming cavity 1: rp 1
2

1 hrm =  

Removed mass forming cavity 2: rp 2
2

2 hrm =  

rprp 2
2

1
2

21 hrhrmmm +==+  

The MBB has a length H = 24.0 cm and width R = 

3.8 cm 

Volume of the MBB (had it been completely 

solid) can be given as: 

( ) 322 cm6.3460.248.3 =´=´= HRVs  

Density of Material of MBB is: -3cmg9.7 ×=r  

Hence, mass of MBB had it been completely solid 

would be, 

Ms = rVs = 7.9 ´ 346.6 = 2737.8g. 

Mass of the MBB (given): MMBB = 1639.0 g 

Removed mass: 

m = Ms -MMBB = 2737.8-1639.0 =1098.8g  
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b] Calculation of radius: 

The moment of inertia of MBB (had it been 

completely solid) would have been given by: 

 

Moment of inertia of the removed mass can be 

obtained: 

IRM = Is – IMBB 

IRM = 6589.0 – 5210.7 = 1378.3 g×cm2 

But, 
2

2mr
IRM =  

\r2 =
2 ´ IRM

m
=

2 ´1378.3

1098.8
= 2.509 cm2  

r = 1.584 cm 

[Actual value r = 1.6 cm] 

 

Substituting the value of r in equation (2a) 

k =
44.30

1.584( )2 =17.66cm 

cm66.1721 =+\ hh    (5)

C] Determination of the lengths of the cavities, 

h1 and h2  

The MBB is balanced bykeeping its geometrical 

midpoint on the knife edge and adjusting the 

magnitude of mass m3 at suitable points along the 

MBB (Fig.4 and 5f). The mass m3 is placed on the 

magnetic stand that can stand erect on the MBB 

because of the magnet at the bottom. The stand is 

shifted and the z changed and the m3is accordingly 

chosen.All the values of m3aremeasured by the 

digital weighing machine (Table 2).  

Moments about the midpoint: (Midpoint of MBB 

= 12.0 cm). 

 

z /cm 1/z /cm-1 
















-

z

rkH rp 2

22
/g×cm-1 

m3/g 

11.5 0.0870 17.165 104.5 
11.0 0.0909 17.935 113.6 
10.5 0.0952 18.783 119.2 
10.0 0.1000 19.730 130.1 
9.5 0.1053 20.776 136.0 
9.0 0.1111 21.920 147.2 
8.5 0.1176 23.202 157.6 
8.0 0.1250 24.662 172.4 
7.5 0.1333 26.300 182.7 
7.0 0.1429 28.194 202.6 

Table 2: Observations of mass m3 for its different positions, z, from the midpoint 

Graph:m3 vs 















-

z

rkH rp 2

22
 

Is =
M s

12
R2 + R2  =

2737.8 ´ 3.82 + 3.82 
12

IS = 6589.0g ×cm2 \k =
m

pr2r
=

1098.8

3.14 ´ 7.9 ´ r2
=

44.30

r2
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Figure 8: Graph for the determination of (h2 – h1) 

Hence, using equation (4),the slope of the 

graph(Fig.8) can now be written as, 

cm68.812 =-\ hh    (6) 

Adding equations (5) and (6) we get 2h2 = 26.34 

cm,  

h2 =13.2 ±1.2 cm 

Subtracting equation (6) from (5) we get 2h1 = 

8.98 cm,  

h1 = 4.5±1.2 cm  

Actual values of h1is 5.0 cm and that of h2is13.0 

cm. 

 

 

 

5. Discussion and Conclusion 
a. Possible variations of the problem: 

The value of the density of the metal from which 

the MBB has been made (iron in this case) is very 

critical for the calculations. A small change in the 

actual value creates a huge deviation in the 

experimental values of the unknown quantities. So 

we decided to supply the density of the materials 

to the students while they performed the 

experiment.  However the determination of 

density from a sample material by one of the 

many well-known and reasonably reliable 

methods could have been the part of the 

experiment.  

 

This MBB had three unknown parameters in the 

form of the radius r of the cylindrical cavities and 

the two heights (h1,h2) of the two cavities. This 

experiment involves most of the measurements 

normally required in a mechanics experiment. The 

MBB was not an expensive one as it was made of 

iron but it was indeed a bit heavy and one needs to 

be careful while handling the experimental MBB. 

While designing the MBB certain aspects are 

necessary to look after. For example, the removed 

mass in this case was actually about 40% of the 

solid piece of metal. The diameter of the cavities 

was more than 80% of the side of the square cross 

sections. All these produce a perceptible change in 
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the moment of inertia of the MBB compared to 

the solid metal piece of similar external 

dimensions. This is necessary as we need to have 

a distinct difference in the time period of torsional 

oscillation of the MBB and the corresponding 

solid mass for reliable calculations.  

 

In principle by keeping the number of unknown 

parameters to three one can have other designs of 

similar MBBs.  

 

1. Suppose the MBB is constructed with one 

single co axial cavity that does not start from 

the one end of the MBB but a few centimeters 

inside from either of the ends of the MBB then 

similar experiment permits us to find out three 

unknowns in the form of r, h and x where x is 

the distance of the cavity from one end of the 

MBB. This experiment not only gives us the 

dimension of the coaxial cylindrical cavity but 

its location inside the MBB as well.  

 

2. In another design the MBB may contain one 

single drill starting from one of its ends and the 

drill may be stuffed with some suitable solid 

material of uniform density. In this problem the 

first two unknowns are radius r and length h of 

the cylinder. The third unknown is the density 

of the material that has completely filled up the 

cavity. By performing the experiments 

described here and by forming three equations 

the three unknowns can be found out. However 

the stuffing in of the cavity with another 

material brings down the value of the amount 

of reduced mass. To have a significant change 

in the moment of inertia, proper size of the 

cavity and material of suitable density need to 

be chosen.  

 

b. Importance of the black box experiment in 

student learning: 

The black box experiments are open-ended 

experiments in which students are not aware of 

end results. Moreover such experiments go 

beyond mere verification of a principle or 

determination of a constant.  

Students are provided with measured and relevant 

information and hints with respect to the parts of 

the black box and the testing to be done. They are 

rigorously tested on their present content 

knowledge and the skill to apply that knowledge 

in the given situation to solve the problem. Many 

times the content knowledge required is quite 

elementary. For example in a simplest electrical 

black box, students are supposed to take 

observationsand analyze it with their 

understanding of I-V characteristics of the 

resistors, diodes and their combinations. For an 

optical black box, they are expected to know how 

a lens, a grating or similar optical elements 

respond to the given source. Similarly mechanical 

black box experiments test their basic 

understanding of the problem through the 

equations that they develop on centre of mass, 

oscillatory motions, etc. 

Apart from the formulation of the equations, the 

most important aspect which can be tested is the 

students’ confidence in their own observations. 

Another is the skill of making meticulous 

observations at all required possibilities which 

indicates inquisitiveness on the students’ 

part.Once the data is collected, critically looking 

through the data and logically arriving at the 

required solution is equally significant. 

The mechanical black box presented here can be 

modified to different difficulty levels. In order to 

guide students through different stages, we have 

given students many hints at different parts of the 

problem. If these hints are removed then it can 

become a real challenge to arrive at the values of 

the cavities. In this experiment, a student arrives at 

an equation which looks complicated. The 
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challenge it to linearize the equation which will 

enable the students to plot suitable graphs and 

obtain desired quantities either from slope or from 

the intercept. 

This experiment also hints the student to plot a 

calibration graph between moment of inertia and 

period of oscillation. This is an indirect method of 

getting moment of inertia of irregular object about 

an axis. Through linearization the students should 

know that it is the term mdiscx
2 only which is 

important in getting the calibration equation and 

that the calculation of moment of inertia of the 

other objects like central cylinder, connecting rod, 

etc is not required. 

Though such kind of testing makes black box 

experiment a favourite choice for Olympiad 

examinations,the scope of these experiments can 

be extended to every undergraduate level. 

 

Acknowledgement 

The authors wish to thank Prof. D.A. Desai and 

Prof. R. M. Dharkar for fruitful suggestions. We 

would also like to thank the Indian Physics 

Olympiadstudents who patiently performed the 

experiment. Authors would also like to express the 

Physics Olympiad programme for funding this 

activity.

 

References 

[1] Experimental Question 2004 International 

Physics Olympiad 2004, Pohang, South Korea 

http://ipho.phy.ntnu.edu.tw/problems-and-

solutions.html#2004 

[2] Experimental Question 2011 International 

Physics Olympiad 2011, Bangkok, Thailand 

http://ipho.phy.ntnu.edu.tw/problems-and-

solutions 5.html#2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] Worsnop B L and Flint H T 1927 Advanced 

Practical Physics for Students (London:Methuen) 

p 61 

[4] Chakrabarti B., Pathare, S. Huli S., Nachane 

M. (2013), Experimental determination of 

unknown masses and their positions in a 

mechanical black box, Physics Education, 48 (4), 

477-483.  

 



Physics Education                                               1                                              Jan - Mar 2017 

 

 
Volume 33, Issue 1, Article Number : 08.                                                                                                                www.physedu.in  

Optical Imaging of Metallic and Semiconductor Nanostructures at Sub–

Wavelength Regime   

A. K. Sivadasan
1, Kishore K. Madapu

1 and Prajit Dhara2 

1Nanomaterials Characterization and Sensors Section, Surface and Nanoscience Division,  
Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute,  

Kalpakkam-603102, India 
 

21st Year Student, Dept. of Electrical and Electronics Engineering 
Birla Institute of Technology and Science-Pilani, Pilani Campus 

Pilani- 333031,India 
 

(Submitted: 17- 02- 2017) 
 

Abstract 
The near–field scanning optical microscopy (NSOM) is not only a tool for imaging of objects in the sub–
wavelength limit but also a prominent characteristic tool for understanding the intrinsic properties of the 
nanostructures. The effect of strong localized surface plasmon resonance absorption of excitation laser in 
the NSOM images for Au nanoparticles is observed. The role of electronic transitions from different native 
defect related energy states of AlGaN are also discussed in understanding the NSOM images for the 
semiconductor nanowire.  

1. Introduction 
The study of light–matter interaction in the near–
field regime at the vicinity of nanostructures is a 
very interesting as well as challenging task for the 
scientific community. Abbe’s diffraction limit 
prevents conventional optical microscopes to 
possess a spatial resolution beyond the value of 
~λ/2 (sub–wavelength limit), where λ is the 
wavelength of excitation light with a maximum 
numerical aperture value of unity for the probing 
objective. Thus, even for the visible light of λ=400 
nm cannot image nanostructures of size below 200 
nm. The near–field scanning optical microscopy 
(NSOM) assisted with the help of plasmonics is a 
unique tool to understand the light–matter 
interaction in the near field regime for optical 
imaging of nanostructures in the sub–wavelength 
limit. The light passing through the metal coated tip 
of NSOM probe with a circular aperture of diameter 
around few nanometers at the apex is capable of 

surpassing the diffraction limit [1]. In the near–field 
regime, the evanescent field emitting from the  

 

NSOM probe is not diffraction limited. Hence, it 
facilitates optical and spectroscopic imaging of 
objects with nanometer level spatial resolution.  

Light–matter interactions in metallic nanostructures 
have opened to a new branch of surface plasmon 
(SP) based photonics, known as plasmonics. The 
SPs are originated due to the collective oscillation 
of the free electrons about the fixed positive charge 
centers in the surface of metal nanostructures with a 
frequency of the oscillation of electrons, also known 
as plasma frequency, p =(nee

2/meff0)
½, where, ne is 

the density, meff is the effective mass, e is the charge 
of an electron and 0 is the permittivity of free space 
[1-3]. The coupling of the incident electromagnetic 
waves to the coherent oscillation of free–electron 
plasma near the metal surface is known as a surface 
plasmon polariton (SPP) and it is a propagating 
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surface wave at the continuous metal–dielectric 
interface. The electromagnetic field perpendicular 
to the metal surface decays exponentially and is 
known as evanescent wave providing sub–
wavelength confinement near to the metal surface. 

Matching of the incident excitation frequency () of 
electromagnetic wave with the plasmon frequency 
(p) of the electrons in metal nanostructures, leads 
to an enhanced and spatially localized light–matter 
interaction, known as surface plasmon resonance 
(SPR) [1-3].  

AlGaN is an intrinsically n–type semiconductor and 
one of the most prominent candidates among the 
group III nitride community with wide, direct and 
tunable band gap from 3.4 to 6.2 eV. Therefore, the 
group III nitrides including the ternary alloy of 
AlGaN nanostructures find tremendous applications 
in short wavelength and high frequency 
optoelectronic devices including light emitting 
diodes, displays and optical communications [4]. 

Consequently, by considering the above mentioned 
importance of AlGaN nanostructures in 
optoelectronic applications as well as 
semiconductor industries, it is also very important 
to understand the interaction of AlGaN nanowire 
(NW) with visible light.  
 
In the present report, we have investigated the 
light–matter interaction of metallic Au nanoparticle 
(NP) catalysts (diameter ~50–150 nm) along with 
semiconductor AlGaN NW (diameter ~120 nm) 
grown via vapor liquid solid (VLS) mechanism in 
the near–field regime by using NSOM technique 
with external laser excitation of 532 nm (2.33 eV). 
The variations in contrast and absorption 
phenomena observed in the NSOM images of Au 
NPs are understood by considering the plasmonic 
effects of metallic nanostructures. In order to 
understand the light–matter interaction of AlGaN 
NW, we invoked the different energy states related 
to native defects originating due to the unavoidable 
incorporation of C and O in the material during the 
growth process. 

 
 

2. Experimental section 
The semiconductor AlGaN NWs along with Au 
NPs were synthesized using chemical vapor 
deposition technique via VLS growth mechanism. 
The detailed synthesis and basic characterizations of 
the sample is available in one of our earlier reports 
[5].  

2.1 Atomic force microscopy  

The atomic force microscopy (AFM) is one of the 
types of scanning probe microscopic (SPM) system 
used for the study of topography related information 
of a sample with an order of atomic scale spatial 
resolution. The AFM probes consist with a sharp tip 
of the order of 100 Å used for probing the tip–
sample interactions [6]. There are several 
interactions possible to contribute the 
deflection/natural frequency of an AFM cantilever. 
The common force associated with AFM interaction 
is inter atomic force called as the van der Waals 
force and it varies with distance between the tip and 
the sample (FIG. 1(a)). The three modes of 
operations, available in the AFM setup (contact, 
non–contact and intermittent), can be selected by 
choosing the three different regimes of forces 
between tip and sample [6]. The major components 
commonly involved in the SPM systems are shown 
(schematic, FIG. 1(b)). The SPM system used in the 
present study works based on tuning fork feedback 
mechanism.  The change in natural frequency of the 
tuning fork with respect to the tip/sample 
interactions are considered as a feedback parameter 
to measure the tip/sample force to map the surface 
modulation or topography. Thus, the frequency of 
the tuning fork changes, as the surface morphology 
changes with the variation of force felt, providing 
an image of the surface.  

The AFM used for the studies on AlGaN NWs, 
reported in the present studies, is from a SPM 
system (Nanonics, MultiView 4000; Multiprobe 
imaging system). The MultiView 4000 uses normal 
force tuning fork technology with a high Q–factor 
and phase feedback to allow the control of 
probe/sample separation. Tuning forks in normal 
force mode with phase or amplitude feedback 
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permit high performance and ease of operation for 
AFM imaging in intermittent mode. 

FIG. 1: (a) Interaction force Vs distance between tip and sample. (b) 
Block diagram of general SPM system.    

 The AFM tips are glass–based probes. 
Unlike standard piezo scanners that keep probes 
separated, the 3D flat scanner with excellent AFM 
resolution, large vertical (axial) displacement of up 
to 100 μm for sample scanning and up to 30 μm for 
tip scanning, is used in this system. 
force microscopic (AFM) images are recorded by 
using a 20 nm tip configured with a tuning fork 
feedback mechanism (MultiView 4000; Nanonics, 
Israel).  

 2.2 Nearfield scanning optical 
microscopy 

The NSOM is a microscopic technique used to 
investigate the light–matter interaction of 
nanostructures in the sub diffraction regime by 
using the advantages of evanescent waves (or 
confined light) which surpass the conventional far
field resolution limit. The generation of evanescent 
waves can be achieved with the help of either by 
plasmonics or by the use of sub–
apertures coated with noble metals such as A
or combination of both. The evanescent waves 
emanated from the apertures/probe with higher 
momenta i.e., lower wave lengths and velocities 
compared to that of normal light can be used for 
achieving the high resolution by placing the 
detector very close (near–field regime, smaller 
than wavelength λ) to the sample specimen surface. 
This allows us to record the light
interactions with high spatial, spectral and 
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permit high performance and ease of operation for 

 
(a) Interaction force Vs distance between tip and sample. (b) 

based probes. 
Unlike standard piezo scanners that keep probes 
separated, the 3D flat scanner with excellent AFM 

vertical (axial) displacement of up 
to 100 μm for sample scanning and up to 30 μm for 
tip scanning, is used in this system. The atomic 

images are recorded by 
a tuning fork 

feedback mechanism (MultiView 4000; Nanonics, 

field scanning optical 

technique used to 
matter interaction of 

nanostructures in the sub diffraction regime by 
evanescent waves (or 

which surpass the conventional far–
of evanescent 

waves can be achieved with the help of either by 
–wavelength 

h noble metals such as Au, Ag 
or combination of both. The evanescent waves 
emanated from the apertures/probe with higher 

, lower wave lengths and velocities 
compared to that of normal light can be used for 

placing the 
field regime, smaller 

λ) to the sample specimen surface. 
This allows us to record the light–matter 
interactions with high spatial, spectral and 

temporal resolution [1-3]. 

resolution of the image is determined by the size 
and geometry of the aperture probe and not by the λ 
of the excitation light.  
simultaneous measurements of the topography and 
optoelectronic properties of nanostructures with 
high spatial resolution in the sub
regime. The detailed schematic of experimental set 
up used for recording the light
AlGaN single NW is shown (F
imaging of nanostructures was used to understand 
the interaction with 532 nm laser (~ 2.33 eV). 

FIG. 2: The schematic experimental setup for NSOM imaging of 
AlGaN NW and Au NPs. 

In order to perform an NSOM experiment, with 
near–field excitation and far
configuration (FIG. 2), a point light source 
emanated through the probe at the near
was scanned over the surface of the sample 
specimen with tuning fork
propagating optical signal emitted from the sample 
surface due to the dipole radiation 
the far–field. A band pass filter (532 nm) was
employed to extract the excitation laser after the 
light–matter interaction and before r
light to the single photon detector
field configuration. We used an optical 
circular aperture and metal (Au/Cr) coated probe 
with a tip apex (aperture) diameter of 150 nm for 
near–field excitation of laser light. T
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 In this technique, the 
on of the image is determined by the size 

and geometry of the aperture probe and not by the λ 
 The NSOM provides 

simultaneous measurements of the topography and 
optoelectronic properties of nanostructures with 

on in the sub–wavelength 
regime. The detailed schematic of experimental set 
up used for recording the light–matter interaction of 
AlGaN single NW is shown (FIG. 2). The NSOM 
imaging of nanostructures was used to understand 
the interaction with 532 nm laser (~ 2.33 eV).  

 
The schematic experimental setup for NSOM imaging of 

In order to perform an NSOM experiment, with 
ion and far–field collection 

), a point light source 
emanated through the probe at the near–field regime 

scanned over the surface of the sample 
tuning fork feedback and the 

propagating optical signal emitted from the sample 
surface due to the dipole radiation was detected at 

field. A band pass filter (532 nm) was 
employed to extract the excitation laser after the 

matter interaction and before reaching the 
detector (SPD) in the far–

field configuration. We used an optical fiber with a 
circular aperture and metal (Au/Cr) coated probe 
with a tip apex (aperture) diameter of 150 nm for 

field excitation of laser light. The optical fiber 
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coated with Cr (buffer layer) and Au (over layer) 
avoid leakage of optical power, was used to 
enhance the optical transmission and confine the 
light to the sample surface. The experimental setup
(SPM with coupled Raman spectroscopy syst
involved in the AFM/NSOM imaging 
shown in the figure 3. 

FIG. 3: The experimental set up; SPM (MultiView 4000; Nanonics, 
Israel) coupled Raman spectroscopy (Renishaw, UK) system
the AFM/NSOM imaging of the sample. The inset shows 
fiber carrying laser light of 532 nm (2.33 eV) to NSOM probe with an 
aperture of 150 nm. 

 The same instrument with NSOM configuration is 
used to understand the near–field light
interactions of nanostructures with visible laser 
nm (~2.33 eV). The scanning was performed either 
using the translational movement of NSOM probe 
(description for FIG. 2) or by motorized XY sample 
stage with very precise spatial resolution controlled
by inbuilt sensors and piezo–drivers. A band pass 
filter (532 nm) was used to extract the 
light, post light–matter interaction, before entering 
the SPD in the far field configuration. The same 
probe was used as an AFM tip for simultaneous 
scanning of the topography (description for FIG. 
1(b)), along with the NSOM image of the sample 
with the tuning fork feedback mechanism.

3. Results and discussions 
The morphological shape, size and distribution of 
mono–dispersed AlGaN NWs are shown in the 
AFM topographic image (FIG. 4(a))
resolution AFM image shows cylindrical shape
NWs with very smooth surface morphology along 
with Au NP catalyst at the tip (
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(over layer) to 
avoid leakage of optical power, was used to 
enhance the optical transmission and confine the 

experimental setup 
(SPM with coupled Raman spectroscopy system) 

imaging system is 

(MultiView 4000; Nanonics, 
system, used for 

. The inset shows an optical 
eV) to NSOM probe with an 

with NSOM configuration is 
field light–matter 

visible laser 532 
The scanning was performed either 

NSOM probe 
motorized XY sample 

ial resolution controlled 
drivers. A band pass 

) was used to extract the scattered 
ion, before entering 

in the far field configuration. The same 
tip for simultaneous 

(description for FIG. 
NSOM image of the sample 

with the tuning fork feedback mechanism. 

The morphological shape, size and distribution of 
dispersed AlGaN NWs are shown in the 

). The high 
cylindrical shaped 

NWs with very smooth surface morphology along 
(FIG. 4(b)). 

Uniformly sized and mono
average diameter of 120 nm were observed.
well separated Au NPs, which
VLS growth process of the NWs, were 
sized (~150 nm) (FIG. 4(
diameters around 50–100 nm, 
the growth process, were also found to be 
distributed uniformly over the substrate
 

FIG. 4: AFM topographic images (a) mono
nanowires and high resolution image of (b) single AlGaN 
(c) Au nanoparticles 

Since the diameter of  Au NPs (~100 nm) as well as 
AlGaN NW (~120 nm) is far below the diffraction 
limit for the excitation wavelength (532 nm), one 
needs to shorten the wavelength down to the sub
diffraction regime to obtain 
images. Using metal coated NSOM probe, it is 
possible to produce evanescent wave
momentum higher than that of th
excitation wavelength 0

vector of k0()=/c, where 
Therefore, the evanescent waves emanating from 
the NSOM probe aperture possess group of wave 
vectors higher than the original excitation laser as 
kev()=/v, with different velocities (
the excitation wave velocity (
the NSOM measurements are advantageous 
providing the super–resolution
localization of intense electric fields
time, it conserve the excitation energy
the frequency. Thus, it offers the possibility of 
optical as well as spectroscopic imaging in the sub
wavelength regime. So, from the scanned images 
using NSOM technique, we can understand even the 
intrinsic properties of a sample as revealed by its 
electronic or vibronic characteristics of the material
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d and mono–dispersed NWs with 
average diameter of 120 nm were observed. The 

, which participated in the 
VLS growth process of the NWs, were uniformly 

(c)). The Au NPs with 
nm, not participating in 

the growth process, were also found to be 
over the substrate (FIG. 4(a)). 

topographic images (a) mono–dispersed AlGaN 
ion image of (b) single AlGaN nanowire 

Au NPs (~100 nm) as well as 
120 nm) is far below the diffraction 

excitation wavelength (532 nm), one 
to shorten the wavelength down to the sub–

to obtain highly resolved optical 
. Using metal coated NSOM probe, it is 

possible to produce evanescent waves with 
momentum higher than that of the original 

0=2/k0() with wave 
, where c is the velocity of light. 

Therefore, the evanescent waves emanating from 
the NSOM probe aperture possess group of wave 
vectors higher than the original excitation laser as 

, with different velocities (v) slower than 
the excitation wave velocity (v<c) [1-3]. Therefore, 
the NSOM measurements are advantageous in 

resolution along with 
localization of intense electric fields. At the same 

the excitation energy and hence 
. Thus, it offers the possibility of 

optical as well as spectroscopic imaging in the sub–
regime. So, from the scanned images 

using NSOM technique, we can understand even the 
ies of a sample as revealed by its 

characteristics of the material. 
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The observed NSOM images (FIG. 5) 
shows a strong SPR related absorption
dimension (2D) and 3D. The high resolution 
topographic AFM image of the Au NPs
and 3D images in FIGs. 5(a) and 5(b), respectively
smooth and spherical shape of the NP with a 
diameter of ~100 nm. 
  

FIG. 5: AFM topographic images of Au nanoparticles in (a) 2D and (b) 
3D. The NSOM images of Au nanoparticles in (a) 2D and (b) 3D.

The NSOM image of Au NPs shows (
images in FIGs. 5(c) and 5(d), respectively
absorption of electromagnetic waves. The 
significant absorption of light with wavelength 532 
nm by Au NP is because of the fact that
peak value ~540 nm for Au NPs matches the 
excitation wavelength. At resonance, the incident 
electromagnetic waves coupled with collective 
oscillation of electrons, can produce SPPs which are 
perpendicular to the surface of the Au NP. The 
frequency dependent wave vector of SPP can be 
expressed in terms of frequency dependent 
dielectric constants of metal (m=m´
surrounding dielectric material (d = 1, for air or 

vacuum),  
md

md
spp

c
k









. . Therefore, the effective 

wavelength of the SPP is λspp=2π/kspp

SPPs of different wavelengths, lower
excitation, can propagate through the surface of Au 
NPs up to a propagation length which depends on 
the complex dielectric constants of the metal and 
dielectric medium [1-3]. Once the SPP propagates 
through the surface of Au NP and crosses the 
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 of Au NPs 
absorption in two 

high resolution 
s shows (2D 

, respectively) 
smooth and spherical shape of the NP with a 

 
s in (a) 2D and (b) 
and (b) 3D. 

(2D and 3D 
, respectively) a strong 

ption of electromagnetic waves. The 
absorption of light with wavelength 532 

nm by Au NP is because of the fact that, the SPR 
0 nm for Au NPs matches the 

At resonance, the incident 
electromagnetic waves coupled with collective 
oscillation of electrons, can produce SPPs which are 
perpendicular to the surface of the Au NP. The 

endent wave vector of SPP can be 
expressed in terms of frequency dependent 

+im´´) and 
= 1, for air or 

. Therefore, the effective 

spp [1-3]. The 
lower than the 

excitation, can propagate through the surface of Au 
NPs up to a propagation length which depends on 
the complex dielectric constants of the metal and 

the SPP propagates 
through the surface of Au NP and crosses the 

metallic region, then the electromagnetic wave may 
decouple from the SPP and it can be converted to a 
propagating wave. The intensity of the absorption is 
influenced by the frequency dependen
polarizability of the Au NPs and it can vary with 
respect to the size of the Au NPs.
the variation of different sizes of the Au NPs, it is 
possible to observe them with relatively different 
absorption intensities (FIGs. 5(c) and 5
from the formation of SPP, some portion of the 
absorbed excitation laser may also participate in 
lattice phonon generations leading to heating as 
well as inter–band transitions of Au NPs

The NSOM images obtained as a result 
field light–matter interaction is shown for AlGaN 
single NW along with Au NPs of various sizes 
(FIG. 6). The high resolution topographic AFM 
image of the single NW shows
in FIGs. 6(c) and 6(d), respectively)
cylindrical shape, as observed i
images. The NSOM images of AlGaN single NW as 
well as catalyst Au NPs are also observed (2D and 
3D images in FIGs. 6(c) and 6(d), respectively). 
The reported room temperature band gap of our 
AlGaN NWs is 3.55 eV [5], which is higher than 
the excitation energy of 2.33 eV. Therefore, a 
complete transmission of light through the AlGaN 
NW is expected. Surprisingly, we observed a 
prominent absorption of light along the AlGaN NW, 
as shown in the NSOM images (2D and 3D images 
in FIGs. 6(c) and 6(d), respectively).
 

FIG. 6: AFM topographic images of mono
in (a) 2D and (b) 3D. The NSOM images of AlGaN 
and (b) 3D. 

                                     Jan - Mar 2017 

                                                   www.physedu.in  

metallic region, then the electromagnetic wave may 
decouple from the SPP and it can be converted to a 
propagating wave. The intensity of the absorption is 
influenced by the frequency dependent 
polarizability of the Au NPs and it can vary with 
respect to the size of the Au NPs. Thus, because of 
the variation of different sizes of the Au NPs, it is 
possible to observe them with relatively different 

FIGs. 5(c) and 5(d)). Apart 
from the formation of SPP, some portion of the 
absorbed excitation laser may also participate in 
lattice phonon generations leading to heating as 

band transitions of Au NPs [7]. 

The NSOM images obtained as a result of near–
atter interaction is shown for AlGaN 

single NW along with Au NPs of various sizes 
The high resolution topographic AFM 

shows (2D and 3D images 
in FIGs. 6(c) and 6(d), respectively) smooth and 
cylindrical shape, as observed in the FESEM 

The NSOM images of AlGaN single NW as 
well as catalyst Au NPs are also observed (2D and 
3D images in FIGs. 6(c) and 6(d), respectively). 
The reported room temperature band gap of our 
AlGaN NWs is 3.55 eV [5], which is higher than 

citation energy of 2.33 eV. Therefore, a 
complete transmission of light through the AlGaN 
NW is expected. Surprisingly, we observed a 
prominent absorption of light along the AlGaN NW, 
as shown in the NSOM images (2D and 3D images 

spectively). 

 
topographic images of mono–dispersed AlGaN nanowire 

in (a) 2D and (b) 3D. The NSOM images of AlGaN nanowire in (a) 2D 
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This absorption of light by the semiconductor 
AlGaN NW is observed because of the presence of 
native defects originating due to the unavoidable 
incorporation of C and O in the material, which may 
create energy levels below 2.33 eV.   

In conclusion, we envisage the use of near field 
scanning optical microscopy (NSOM) technique for 
direct understanding of light–matter interaction of 
metallic as well as semiconductor nanostructures of 
sub–wavelength limited dimension in the near–field 
regime. The NSOM images of metallic Au 
nanoparticles with diameter ~100 nm shows a 
strong surface plasmon resonance related absorption 

of excitation laser with an energy of 2.33 eV (532 
nm) due to the formation of surface plasmon 
polaritons as well as the localized surface plasmon 
resonance near to the surface of the Au 
nanoparticles. The isolated single semiconductor 
AlGaN nanowire with a diameter ~120 nm shows a 
strong absorption of visible light due to the 
electronic transitions originated from the native 
defect related energy levels. 
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Abstract : 

The cell for transmitting and processing in the nerve systems and brains is nerve cell(neuron).Nerve cells 
conduct the necessary currents via the movement of ions. They communicate via electrochemical waves called 
action potentials. All of the important functional properties of the nerve cells can be represented by electrical. 
circuits. This is very interesting subject and should be considered in introductory Physics and biology 
textbooks. In this article we review on this topic 

 
 

1. The Resting Membrane of the Neuron 
 

Nerve cells via nerve fibers transmit electrical 

impulses to the muscles or to and from the brain. 

Nerve cells at rest are permeable to Na+ and Cl- 

ions in addition to K+ ions. How can the 

concentration gradients for these three ions be 

maintained permanently across the membrane of a 

single cell, and how do these three gradients 

interact to determine the cell’s resting membrane 

potential? To answer these questions, we first 

examine only diffusion of  

K+. Let us consider a cell having only K+ channels 

with concentration gradients for the three ions. 

Under these conditions the resting membrane 

potential is determined solely by the K+ 

concentration gradient and will be calculated by  

 

 

 

 

 

Nernst Equation. What is Nernst Equation? Simply 

put, as K+ ions are present at a high concentration 

inside the cell, and Na+ and Cl- have a high 

concentration outside the  

 

Figure.1 Sodium- potassium pump and diffusion( 

Adapted from nl.wikiped.org.) 
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cell, K+ ions tend to diffuse from inside to outside 

the cell, along their chemical concentration 

gradient. As a result, the outside of the membrane 

accumulates positive charges and the inside 

negative charges. The diffusion of K+ gives rise to 

an electrical potential difference that causes a self-

limiting separation of charges: positive outside, 

negative inside. This potential difference tends to 

oppose the further efflux of K+. Thus, ions are 

subject to two forces driving them across the 

membrane: First, a chemical driving force that 

depends on the concentration gradient across the 

membrane and secondly, an electrical driving force 

that depends on the electrical potential difference 

across the membrane. When the nerve cell is at rest, 

the electrical force driving K+ into the cell exactly 

balances the chemical force driving K+ ions out of 

the cell. The value of resting membrane potential in 

this case is called the potassium equilibrium 

potential, EK. However, the equilibrium potential 

for any ion X can be calculated from an equation 

derived in 1888 from basic thermodynamic 

principles by the German physical chemist Walter 

Nernst: 

Ex = (RT/ZF) ln([Xo]/[Xi])  

where R is the gas constant, T the temperature (in 

Kelvin), Z the valance of the ion, F the Faraday 

constant, and [Xo] and [Xi] are the concentrations of 

the ion outside and inside the cell, respectively. 

RT/F would be 25 mV at room temperature and the 

constant for converting natural logarithms to base 

10 logarithms is 2.3. So, the Nernst equation can 

also be written as: 

Ex   (58/Z) log ([Xo]/[Xi]) 

Thus for K+, with Xi = 400 mol/m3 and Xo = 20 

mol/m3, we obtain EK = -75.46 mV and in a similar 

way 

ENa = 54.78 mV (with Xi = 50 mol/m3, Xo = 

440 mol/m3) and  

ECl = -59.87mV (with Xi = 52 mol/m3, Xo = 

560 mol/m3). 

2. Equivalent Circuit Model for Neuron’s 

Resting Membrane Potential 

An electrical circuit consisting only of conductors 

or resistors (the ion channels), batteries (the 

concentration gradients) and capacitors (the ability 

of the membrane to store charge) can explain the 

functional properties of a neuron [1]. In an 

equivalent circuit, K+ channels can be represented 

as a resistor or conductor of ionic current with 

conductance of gK Then the gradients represented as 

the current through the K+ channels would be given 

by Ohm’s law: iK = gK U, where U is the membrane 

potential. Since there is a K+ concentration gradient, 

there will be a chemical force driving K+ across the 

membrane. In the equivalent circuit this chemical 

force is represented by a battery, whose 

electromotive force is given by the Nernst potential 

for K+. The K+ current that flows solely because of 

its concentration gradient is given by iK = -gKEK. 

The negative sign is required, because a negative 

equilibrium potential produces a positive current. 

Thus, for a real neuron that has both a membrane 

voltage and K+ concentration gradient, the net K+ 

current is given by the sum of the currents due to 

two electrical and chemical driving forces: iK = 

(gKU) – (gKEK) = gK(U - EK). The term U - EK is 

called the electrochemical driving force that 

determines the direction of the ionic current. 

If a few resting Na+ channels are added to the 

membrane, it becomes slightly permeable to Na+. 

Two forces act on Na+
 to drive it into the cell. First, 

Na+ is more concentrated outside than inside and 

therefore it tends to flow into the cell down its 

chemical concentration gradient. Second, Na+ is 
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driven into the cell by the negative electrical 

potential difference across the membrane. The 

influx of positive charge (Na+) depolarizes the cell, 

but only slightly from the K+ equilibrium potential (

  -75 mV). The new membrane potential does not 

come close to the Na+ equilibrium potential of   

+55 mV because there are many more resting K+ 

channels than Na+ channels in the membrane. As 

soon as the membrane potential begins to 

depolarize from the value of the K+ equilibrium 

potential, K+ flux is no longer in equilibrium across 

the membrane. The reduction in the negative 

electrical force driving K+ into the cell means that 

there will be a net efflux of K+ out of the cell, 

tending to counteract the Na+ influx. So far we have 

ignored the contribution of Cl- to the resting 

potential, even though many nerve cells have Cl- 

channels that are open in the resting membrane. 

This simplification is valid for nerve cells that do 

not have a mechanism for active transport of Cl- 

against an electrochemical gradient. In these cells 

the resting potential is ultimately determined by K+ 

and Na+ fluxes, because the intracellular 

concentration of K+ and Na+ are fixed by the 

Na+ - K+ pump (active transport), where Cl- 

concentration inside the cell is affected only by 

passive forces due to the electrical potential and 

concentration gradient. Thus, the movement of Cl- 

ions tends toward equilibrium across the 

membrane, so that ECl is equal to the resting 

potential, and there is no net Cl- flux at rest. 

However, we shall initially ignore Cl- channels 

and begin with just two types of channels, K+ and 

Na+. Moreover, since the membrane potential is 

constant in the resting state, we have dU/dt = 0 and 

the net current must be equal to zero: INa + IK = 0. In 

the other hand, the total potential difference is the 

sum of the potential differences across E’s across 

g’s:  

 

Figure.2 Electrical equivalent circuit which only includes the Na+ and K+.  

 

U = ENa + INa/gNa  ,    U = EK + IK/gK ,     

or 

INa = gNa(U - ENa) ,   IK = gK(U - EK) 

 

 

Now, by substituting INa, IK in charge conservation: 

INa + IK = 0 and solving for U, we have 

U = [(ENa gNa) + (EKgK)]/(gNa+gK) 

 

INa 

IK 

U 

RNa 

ENa 

RK 

EK 

Cm 

Inside the cell 

Outside the cell 
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Using the values of gNa = .5 × 10-6 S, ENa= + 

54.78 mV, gK = 10 ×10-6S and EK= -75.46 mV, we 

conclude U = -69.26 mV. 

We can derive a more general equation for U 

from an equivalent circuit that includes the Cl- 

pathway with associated Nernst potential (battery): 

 

 

Figure 3. Electrical equivalent circuit which includes the Cl-  pathway and omits the capacitor. 

 

U = [(ENa gNa) + (EKgK) +  

        (ECl gCl)]/(gNa+gK+gCl) 

Note, that since no net current flows through the Cl- 

channels we have ECl = - 69.26 mV and by using gCl 

= 2.5 ×10-6S, we obtain U = -69.26mV (rounded off 

to two places) which is only slightly more negative 

than the previous value. 

                                               

Figure 4. Simplified equivalent circuit of resting channels can be represented by a single 

equivalent conductance and a battery (no current flows through the Cl).  

  

g eq=g Na+ g K+ g Cl = 13×10-6 S 

Eeq=U=-69.26 mV 

INa 

IK 

U 

RNa 

ENa 

RK 

EK 

  Inside the cell 

  Outside the cell 

RCl 

ECl 

ICl 
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However, it has been shown that chloride is 

actively pumped out of some (but not all) cells. If we 

assume this situation for all cells, then we should use 

Nernst Potential instead of ECl (i.e., ECl = -59.87 mV) 

and obtain U = - 67.54 mV. Anyway, at rest, the 

membrane potential is close to Nernst potential for K+, 

the ion that the membrane is most permeable to. 

                                                                                

 

Figure 5. Simplified equivalent circuit, when current flows through the Cl. 

3. Hodgkin - Huxley Model 

As we showed in the previous section, we can 

represent neurons by RC circuits. As we know, a 

capacitor is short-circuits at t = 0 and open-circuit at t 

= ∞. Actually, t = ∞ relates to the membrane potential 

at rest. However, what happens in intermediate 

situations? Hodgkin and Huxley [2] had to change the 

concentration of sodium and potassium of the giant 

axon of the squid in voltage clamp experiments, in 

order to see how each affected the action potential [of 

course, in the 1960s, methods for blocking channels 

pharmacologically had been developed. Tetrodoxin 

(TTX) blocks Na+ channels and Tetraethylammonium 

(TEA) blocks K+ channels]. 

Let us now translate their consideration into 

mathematical equations [3]. In these situations dU/dt 

is not equal to zero and capacitive current is IC = 

CdU/dt. The conservation of electric charge on the 

membrane implies that input current I(t) which 

injected into the cell splits into IC and further 

components Ij which pass through the ion channels. 

Thus  

I(t) = IC(t)+ ( )j
j

I t ,            or 

 

C dU/dt = ( )j
j

I t +I(t) 

where the sum runs over all ion channels. The 

probability that a channel is open or closed is 

described by additional variables m, n and h. The K+ 

gates are controlled by n (activation channel) and Na+ 

gates are controlled by m (activation channel) and h 

(inactivation channel). Hodgkin and Huxley 

formulated the three current components as 

( )j
j

I t  = m3h gNa(U - ENa)+n4gK(U -  

                       EK)+gCl(U - ECl) 

where g’s are maximum conductance when all 

channels are open. The three gating variables evolve 

according to the following differential equations 

dm/dt = αm(U) (1 - m) – βm(U)m  

dn/dt =  αn(U) (1 - n) - βn(U)n  

dh/dt =  αh(U)(1 - h)  - βh(U)h  

where the various functions of α and β are given, 

respectively, in Table 1. 

g eq=13×10
6
 S 

Eeq=U= -67.54 mV 
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Table 1. The parameters of the Hodgkin-Huxley equation. 

x αx (U /mV) βx (U /mV) 

n (0.1-0.01U)/[exp(1-0.1U) - 

1] 

0.125exp(-U/80) 

m (2.5-0.1U)/[exp(2.5-0.1U) - 

1] 

4exp(-U/18) 

h 0.07exp(-U/20) 1/[exp(3-0.1U)+1] 

 

As with good numerical problems, the dynamics 

of the Hodgkin-Huxley model can be studied for 

different types of inputs such as constant input, step 

input, sinusoidal input and most important and 

realistic situation: time-dependent input, in turn. In 

addition we can also study neuronal refractoriness 

via Hodgkin-Huxley model [3]. For example, at a 

certain time the model is stimulated by a short 

current pulse that is sufficiently strong to excite a 

spike. We’ll find that a second current pulse of the 

same amplitude by certain interval time could not 

trigger a second action which is clear evidence of 

neuronal refractoriness. 

Post Script 

In this paper we've focused on classical view of 

neuron action  mechanism. But,  Stuart Hameroff 

and some other persons has thrown doubt upon it 

[4].Their research led them and other scientists into 

quantum realm [5] . Human thinking, as many of us 

know, often fails to respect the principles of 

classical logic [6].The classical approach is roughly 

speaking that neuron fires or it does not- 

comparable to a computer bit,1 and 0.However, it 

seems neurons are incredibly more complicated. A 

subject that could be left for possible future 

communications. Although it is very difficult to see 

how application of this formalism could produce 

anything practical in the current  situation when we 

are still trying to understand consensus in 

ontological and epistemological issues, it will be 

worth the effort to explore such possible quantum 

mechanisms. 
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