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EDITORIAL 

 (Submitted 25 - 09 - 2012) 

 

To begin with, I throw up a question to ponder upon, 

which concerns all of us. I do not have the exact 

demographic data, but the number of Indians with 

age between 5 years and 25 years is easily estimated 

to be about forty crores. How do we get these young 

people to be educated acquiring variety of skills and 

knowledge required to be useful to the society?  To 

escalate the challenge, this has to be achieved within 

a span of five to ten years, otherwise we lose a 

generation. Whatever we do, this goal simply cannot 

be reached by recruiting more and more teachers to 

teach in classrooms.  (Where are we going to get the 

teachers from?) A large part of the solution lies in 

building up the facility and culture of distance 

education. By employing appropriate technologies, it 

is possible to reach nook and corner of our country 

and the domain expertise of the available teachers 

can be used to make an impact on enormously large 

number of students as compared to class room 

teaching. The distance education may not completely 

make up for every educational requirement like 

laboratory training in physics and engineering or 

treating actual patients in medicine and surgery. 

These requirements need to be dealt with 

separately. In a nutshell a systematic planning and 

development of the field of distance education is 

inevitable in a country like India, where young 

people are looked upon as the major resource to its 

prosperity. An effective development and 

implementation of the infrastructure and the 

eduware for this program is a challenge that we have 

to take and succeed in it. In view of this, Physics 

Education is now an on-line journal, can be accessed 

from anywhere and will soon support multi-media 

inputs, so as to become an effective platform for 

distance education. We certainly welcome 

contributions involving distance education 

techniques like simulations of processes and from 

people who would like to describe their experiences 

in developing and using courses for distance 

education. 

Coming to this particular issue, I find it pretty 

interesting. I must mention the article by Archimann 

Raju, a junior college student, on the 

brachistochrone problem with resistance. The 

algorithm presented by him is of general applicability 

and can be actually used in practice. A similar kind of 

work dealing with Snell-Descartes law for massive 

particles is presented by D.N.Basu. S.Shivakumar’s 

article answers a long standing question in students’ 

mind: why are complex numbers needed in quantum 

mechanics? Although this question is succinctly dealt 

with in quantum mechanics text books like Modern 

Quantum Mechanics by Sakurai, we feel that this 

article will make the salient features clear to a large 

class of students, especially those who do not have 

an easy access to books like Sakurai.  The regular 

features like ‘Physics Through Problem Solving’ by 

Ahamad Sayeed and ‘Physics through Laboratory’ 

(the article on compound pendulum by Pathare et 

al.) are educative as always. The paper by Sanjay 

Harrison and Sindhu Vincent is an example of a quick 

estimate of the gas pressure in a balloon using very 

simple experiments. Finally, in his article on Higgs 

boson Prof. Ramachandran eliminates the myth that 

Higgs boson is responsible for creation of mass in all 

situations. 

I wish you a happy reading. 

 

Pramod S. Joag. 

Chief-editor@physedu.in, 

pramod@physics.unipune.ac.in 

Chief Editor      
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Abstract

Variational problems are ubiquitous in physics. But an introductory course on the calculus
of variations is typically restricted to solving a few standard problems like the classical
brachistochrone. Several experiments have clearly shown this theory to be inadequate,
because any actual physical situation involves resistance, but no attempt has been made so
far to reconcile experiment with theory. Adding resistive forces to the problem makes
analytical solutions intractable. We show how such hard variational problems can be easily
solved using a simple numerical approach. This allows a large variety of variational
problems to be solved at an introductory level and the solution checked against simple
experiments. We illustrate this by solving the brachistochrone problem with Coulomb
friction and fluid resistance. We outline an experiment which could be used to check the
result.

1 Introduction

Variational principles are ubiquitous in
physics. Yet an introductory course on the

calculus of variations treats very few prob-
lems. There is also no simple numerical
method (as with ordinary differential equa-
tions) through which a larger variety of prob-
lems can be examined. The classical brachis-
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tochrone problem is the standard problem
solved in introductory textbooks [1]. How-
ever, the addition of any kind of resistance
makes the problem much harder to solve. The
addition of Coulomb friction was first exam-
ined in [2] and requires a constrained varia-
tional technique. An examination of [3] re-
veals that simple models of fluid resistance
lead to very involved algebra.
There have been several experiments on

the brachistochrone performed at the under-
graduate/high school level and all of them
have shown significant deviations from the
expected result. Moreover, because the the-
ory with resistance is too complicated, there
has been no attempt to incorporate it. As
an example, take the isochronous property
of the cycloid which is also the brachis-
tochrone without resistance. Introductory
physics courses teach that the simple pen-
dulum has an amplitude dependent time pe-
riod which makes it unsuitable as a clock.
The cycloidal pendulum is proposed as the
solution to this problem on the belief that
it is isochronous. In a recent experiment
with high school students however [4], it was
found that that a real cycloidal path is not
truly isochronous and a definite amplitude-
dependence was observed, as is to be ex-
pected (however, no theoretical examination
was attempted). The obvious cause of the ex-
perimental deviations is that a real cycloidal
pendulum (as opposed to an idealised one)
involves resistance.
Similarly, an experiment with ‘Hot-

Wheels’ cars found the cycloid to be the
fastest path among those that were tried,
but the authors did not examine the differ-

ence in the experimental and theoretical time
[5]. Another experiment with undergraduates
again found significant difference in the the-
oretical and experimental time values [6] but
did not investigate the possibility that the cy-
cloid is no longer the brachistochrone when
friction is included.
We present a simple numerical method

which can be used to solve any variation of
the problem. In particular, it can be used to
quantitatively examine how resistive forces af-
fect the solution and hence obtain agreement
between theory and experiment. Using this,
one can even ask more complicated questions,
like, what is the shortest path underwater? Is
it still a cycloid? This, too, can be directly
linked to a simple experiment (as we explain
later).
The brachistochrone problem with fric-

tion has been considered by other authors
[7, 8, 9, 10]. The numerical approach found
in these references is mostly limited to ob-
taining numerical solutions to the Euler equa-
tion. Numerical solutions to partial differ-
ential equations are well known. The real
difficulty is to first formulate these problems
variationally. To get over this difficulty, we
use the fact that these situations are sim-
ple from a Newtonian point of view. This
makes it easy enough to be used in introduc-
tory courses.
In a different context, there is a numerical

approach to variational problems in mechan-
ics [11]. The algorithm used in [11] does not
directly apply to our problem because we seek
to minimize the time of descent in the pres-
ence of non-conservative forces. Further, our
numerical algorithm is useful not only as an
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educational tool, but can also be applied to
solve a wide variety of variational problems
where the analytical solution is not feasible.
We demonstrate this by solving the brachis-
tochrone problem with fluid resistance and
Coulomb friction.

2 Algorithm

The mathematical problem at hand becomes
much easier if seen as a physical problem (like
a bead sliding down a pipe filled with water).
We begin by discretizing the x axis into some
N points. Specifying the y values at those
points completely defines the curve. We now
need to minimize the time it takes for the
bead to slide down. It is simple to formulate
this from a Newtonian point of view. We need
to minimize the time it takes for the bead to
travel down a path. The time of travel is
obtained by solving the equations of motion.
While in most cases, an analytical solution
will not exist, it is easy to solve the equations
of motion numerically.
To calculate the time in this way we need,

first, to construct a path, given the y coor-
dinates at the N points. One could use a
straight line between the points. However,
this is not a very good choice for the present
problem from a numerical and algorithmic
point of view because the lines do not join
smoothly, and differentiability fails at those
points. A better choice is a smoothened poly-
nomial. Let us for the moment say that the
path is given by a function y(x). The forces
involved are the force of gravity, the buoy-
ant force, Coulomb friction and fluid resis-

tance. For the fluid resistance, we assume a
resistance proportional to the square of the
velocity. The coefficient will depend on the
nature of the fluid and the object. Then the
equations of motion for the system are

mẍ = mge sin θ cos θ − µmge cos
2 θ − kvẋ,

(1)

mÿ = −mge sin
2 θ + µmge cos θ sin θ − kvẏ,

(2)

θ = − tan−1 f ′(x), (3)

ge =
(m− 4

3
πρr3)g

m
. (4)

Here m is the mass, ρ is the density of the
fluid, µ is the coefficient of friction, k is the
drag coefficient and v =

√
ẋ2 + ẏ2. The

dot denotes derivative with respect to time
whereas the prime denotes derivative with re-
spect to x. g is the acceleration due to gravity
whereas ge is the effective acceleration due to
gravity when the buoyant force is taken into
account. The buoyant force has been calcu-
lated for a spherical object.
Let us say we want to find the brachis-

tochrone between points (0, 0) and (a, b).
The algorithm starts by calculating the time
it takes to cover this distance through some
initial path (like a straight line). This path is
defined by a set of N points (xi, yi) between
(0, 0) and (a, b), where the xi points are taken
to be fixed. Now, the algorithm proceeds by
sequentially updating the yi points by chang-
ing them by a specified small amount. So
it starts by increasing (decreasing) y1. This
gives a new curve y(x). The equations of mo-
tion are solved again to obtain a new time of
descent. If this time of descent is smaller than
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the previous one, y1 is increased (decreased)
again. This is continued till a change in y1
leads to an increase in the time of descent.
Then the algorithm proceeds to y2 and re-
peats the same process. After reaching yN the
algorithm comes back and updates y1 again.
It stops when no possible step leads to a de-
crease in time.

Figure 1: The plot shows typical curves the
algorithm tries before reaching the solution.

3 Results

For the present problem, we use a Bezier
curve to interpolate between the points. Even
though we are solving 2 equations of motion,
the curve is actually defined by 1 parameter,
say t. We use a Runge-Kutta 4th order solver
to solve the equations of motion. Though the
equations of motion implicitly constrain the
object to move along the curve, it is possible
for numerical errors to develop. Hence, for
each step the ODE solver takes, rather than
computing the derivative of the curve (which

is required in the equations of motion) from
either the current x or y position of the ob-
ject, the x, y position is first mapped to t
using a simple linear search. The derivative
of the curve is then calculated at point t. We
show typical steps in the algorithm in Fig-
ure 1. If needed, a more sophisticated opti-
mization algorithm can also easily be applied
to the problem as formulated. As an exam-
ple, the simulated annealing algorithm can be
used since the problem has a cost function as
well as a specified way to change its state. We
show simulation results for different values of
k
m
in Figure 2. The least time curves obtained

are between the cycloid and the straight line.
As the drag coefficient increases, the curves
start resembling a straight line. For a large
enough drag coefficient, the least time curve
is the straight line.

To check this independently, it is possi-
ble to perform a simple experiment for a
fluid (say, water) which we briefly describe.
This experiment requires only a flexible pipe
filled with water. By fastening the pipe
at some appropriate points it can be made
to resemble a smooth curve passing through
those points. Even though the exact shape
of the pipe might be difficult to ascertain,
the shape of the pipe can be approximated
by a smoothened polynomial through those
points. The time a ball bearing takes to slide
down the pipe can be measured and hence the
time it takes to slide down different curves
can be experimentally compared.
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Figure 2: The plot shows the brachistochrone
between points (0, 0) and (π

2
, -1). The effec-

tive gravity because of the buoyant force is
8.72 m/s2. We have µ = 0.1. Starting from
above the plots are that of a straight line, the
curve obtained for k

m
= 11, k

m
= 7, k

m
= 5,

k
m

= 3, k
m

= 1 and the cycloid between the
two points.

4 Concluding remarks

The brachistochrone problem has earlier been
suggested to be the best introduction to vari-
ational calculus. On this note, an earlier
project with undergraduates tried to analyze
this problem in detail using both theory and
experiment [6]. The difference in theory and
experiment (due to resistance) could not be
addressed since their numerical method was
limited to evaluating the time integral of the
classical brachistochrone problem for differ-
ent curves. We have shown how this problem,
which is hard even to formulate analytically,
from a variational point of view, can be eas-
ily solved using a simple numerical scheme.

Moreover, the solution can be checked with
experiments easy enough to perform in the
classroom.
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Abstract

This article describes: (i) the conditions to check whether Euler-Lagrange equation for
extremisation provides minimum or maximum and (ii) the derivation of Snell-Descartes
law for massive particles which is in contradiction to that for the light waves.

Keywords: Euler-Lagrange equation; Snell-Descartes law.

1 On the Euler-Lagrange

equation

In calculus of variations [1], the Euler-
Lagrange equation, Euler’s equation or La-
grange’s equation, is a differential equation
whose solutions are the functions for which
a given functional is stationary. The Euler-
Lagrange equation is useful for solving op-
timization problems in which, given some
functional, one seeks the function minimizing

(or maximizing) it because a differentiable
functional is stationary at its local maxima
and minima. In Lagrangian mechanics, be-
cause of Hamilton’s principle of stationary
action, the evolution of a physical system
is described by the solutions to the Euler-
Lagrange equation for the action of the sys-
tem. In classical mechanics, it is equivalent
to Newton’s laws of motion, but it has the
advantage that it takes the same form in any
system of generalized coordinates, and it is
better suited to generalizations. However,
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in other practical problems one, very often,
needs to know whether the solutions of Euler-
Lagrange equation provides local maxima or
minima. In this short note, the condition will
be obtained that determines whether these
solutions represent local maxima or minima.

Let us consider a fixed end point problem
defined by the integral

I =

∫ x2

x1

f(y′, y, x)dx (1)

where x1 and x2 are the fixed end points and
f(y′, y, x) is an explicit function of the y′ =
dy
dx

, y = y(x) and x. The problem is now of
extremising the functional I. For this let us
make variations as

y → y + αη, y′ → y′ + αη′ (2)

where η = η(x), η′ = dη
dx

and α is independent
of x and demand that the functional I is sta-
tionary under such variations brought about
by the parameter α such that the functional I
attains an extremum at α = 0 that is ∂I

∂α
|α=0.

Taylor’s expansion up to first order yields

f(y′+αη′, y+αη, x) = f(y′, y, x)+αηfy+αη
′fy′

(3)
where fy = ∂f

∂y
and fy′ = ∂f

∂y′
. The condi-

tion for extremum can be obtained using the
expansion of Eq.(3)in Eq.(1) to provide:

∂I

∂α
|α=0 = 0 =

∫ x2

x1

[ηfy + η′fy′ ]dx. (4)

The second term on the right hand side of the
above equation can be integrated by parts as

∫ x2

x1

η′fy′dx = [ηfy′ ]
x2
x1
−
∫ x2

x1

dfy′

dx
ηdx. (5)

Since it is a fixed end point problem, the val-
ues of y(x) should not vary at the end points
x1 and x2 implying η(x1) = 0 = η(x2) which
makes the first term on the right hand side of
Eq.(5) to vanish and one obtains∫ x2

x1

[fy −
dfy′

dx
]ηdx = 0. (6)

Since the function η(x) is quite arbitrary,
yields the Euler-Lagrange equation:

fy −
dfy′

dx
= 0 (7)

which ensures condition for extremum but
does not tell whether it corresponds to mini-
mum or maximum. To find these conditions,
let us perform Taylor’s expansion up to sec-
ond order:

f(y′ + αη′, y + αη, x) = f(y′, y, x) + αηfy + αη′fy′

+
(αη)2

2!
fyy + 2

(α2ηη′)

2!
fyy′ +

(αη′)2

2!
fy′y′ (8)

and therefore

∂2I

∂α2
|α=0 =

∫ x2

x1

[η2fyy + 2ηη′fyy′ + η′2fy′y′ ]dx.

(9)

Now
∫ x2
x1
ηη′fyy′dx =

∫ x2
x1

[ d
dx

(η
2

2
)]fyy′dx which

upon integration by parts gives [fyy′
η2

2
]x2x1 −∫ x2

x1
[ d
dx

(fyy′)]
η2

2
dx and since η(x1)=0=η(x2),

it is just −1
2

∫ x2
x1
η2[ d

dx
(fyy′)]. Thus

Volume 28, No. 3 Article Number : 2. www.physedu.in



Physics Education 3 Jul - Sep 2012

∂2I

∂α2
|α=0 =

∫ x2

x1

[η′2fy′y′+η
2{fyy−

d

dx
(fyy′)}]dx.

(10)
We can choose η(x) to be any arbitrary saw-
tooth function. Sawtooth function is a con-
tinuous function of x but its derivative η′(x)
is not, rather, η′ is alternately +m and −m
where m is a constant. But as η′2 appears
in the above equation, we have the advan-
tage that η′2 = m2 which is always posi-
tive and remains fixed. Also, the sawtooth
function η can be chosen as small as possi-
ble (|η| < ε) while keeping η′ same (= ±m).
Thus for |η| arbitrarily small, it follows that
∂2I
∂α2 > 0 ⇒ m2

∫ x2
x1
fy′y′dx > 0, and since m2

is positive and the preceding arguments hold
for any arbitrary fixed end points x1 and x2,
the inequality

fy′y′ > 0 (11)

represents the necessary condition that the
extremisation by Eq.(7) provides minimum
and vice versa. Therefore, whenever it is
necessary to ascertain whether extremisation
by Eq.(7) provides minimum or maximum,
fy′y′ > 0 or fy′y′ < 0 should be checked.

2 Snell’s law for waves

and massive particles

Snell’s law (also known as Snell-Descartes law
and the law of refraction) is a formula used to
describe the relationship between the angles
of incidence and refraction, when referring to

light or other waves passing through a bound-
ary between two different isotropic media. It
states that the ratio of the sines of the an-
gles of incidence and refraction is equivalent
to the ratio of phase velocities in the two me-
dia, or equivalent to the opposite ratio of the
indices of refraction (with respect to vacuum)
resulting in bending of a ray towards the nor-
mal (to the boundary separating the two me-
dia) for the medium in which velocity of light
or other waves is less. The indices of refrac-
tion of the media, labeled n1, n2 etc. rep-
resent the factor by which a light (or other)
ray’s speed decreases when traveling through
a refractive medium as opposed to its veloc-
ity in vacuum. Snell’s law for waves can be
readily proved by Fermat’s principle of least
time (taken by the light or other waves for
traveling from one point to the other across
a boundary) or derived from wave nature of
light (or other waves) using Huygen’s con-
struction [2].

Let us now consider the case of a massive
particle (such as neutron) which is incident
(from vacuum) with kinetic energy E on a
nucleus of radius R which offers a uniform
potential −V (where V is positive) to the
incident particle. Although massive, if this
particle is treated like wave and as its veloc-
ity inside the nucleus and vacuum are pro-
portional to

√
E + V (from energy conserva-

tion) and
√
E, respectively, it would result

in bending of the ray (as described above)
away from the normal (which is along the ra-
dius of the nucleus) inside the nucleus where
velocity is more. This would lead to the exis-
tence of critical angle sin−1

√
E/(E + V ) be-

yond which there is no transmission (even
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in an attractive potential of −V ) and a re-
fractive index n for the nuclear medium less
than that of vacuum (which is unity) which
are physically unacceptable. Thus, the case
of a massive particle can not be treated as
wave. For deriving Snell’s law for massive
particle one can use the principle of angu-
lar momentum conservation. If b (the im-
pact parameter) and x are the lengths of the
perpendiculars on the incident and deflected
paths from the centre of the nucleus, the an-
gular momentum conservation provides the
relation b

√
E = x

√
E + V where initial (in-

cident) angular momentum is equated to the
final angular momentum of the deflected par-
ticle. This immediately shows that x < b
implying that the refracted (deflected) parti-
cle bends towards the centre of the nucleus
and the refractive index n =

√
E + V /

√
E

which is greater than unity. These physically
correct results, which were also the intuitive
results, are just the opposite of those if the

particle were considered as a wave.

3 Summary and

Conclusion

In this short note, the necessary conditions
of minimum and maximum for extremisation
by Euler-Lagrange equation are obtained and
the Snell-Descartes law for massive particles
is derived which is in contradiction to that
for the light waves.
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Abstract

It is often stated that complex numbers are essential in quantum theory. In this article, the
need for complex numbers in quantum theory is motivated using the known results of
tandem Stern-Gerlach experiments.
Keywords: Stern-Gerlach experiment, complex numbers, superposition

1 Introduction

Complex numbers are essential in quan-
tum theory. In classical physics complex
quantities are often introduced to aid in
solving problems rather than as a necessity.
That makes it mysterious for students about
the role of complex numbers in quantum
theory. In this pedagogical report, it is illus-
trated that the need for complex numbers
in quantum theory can be made plausible

after discussing the results of Stern-Gerlach
(SG) experiment. This idea is presented
in many texts, for instance, Sakurai[1] or
Townsend[2]. Here, we wish to bring this to
the notice of physics students and make a
simplified presentation.

A SG apparatus is an arrangement to
provide a spatially inhomogeneous magnetic
field. The purpose of spatial inhomogeneity
is to exert force on spins, which are like mag-
netic moments, so that spins of different ori-
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entations are spatially separated. The direc-
tion of maximum gradient (a measure of in-
homogeneity) is the axis along which spatial
separation occurs. If this direction is chosen
to be the z-axis, the corresponding SG appa-
ratus is said to be oriented along z-axis and
it is denoted by SGz. If the ”spin” is indeed
like a classical magnetic moment, then every
possible orientation with respect to the ori-
entation of the SGz is possible and the out-
put beam is expected to be continuously dis-
tributed along z direction in in space. How-
ever, experiments indicated that there were
finite number of output streams. Particles in
each of the stream is assigned a ”spin” value.
If there are two outputs, the particles in one
of the beams are said to be in up-spin state
and those in the other output are said to be
in the down-spin state. Such particles are
said to be ”spin-half” particles. Electrons,
protons, neutrons, singly ionized silver atoms
are some examples of spin-half systems.

2 Tandem Stern-Gerlach

Experiments

The need for introducing complex numbers
is easily recognized by knowing the results
of experiments using two SG apparatuses in
tandem. Consider a beam of spin-half sys-
tem, for example, singly ionized silver atoms,
passing through a SGz. The output of the
apparatus will have two beams that are spa-
tially separated. This indicates that the spin
of an atom in the beam has two possible
values. In quantum theory this is taken to

mean that the required state space is two-
dimensional. Associated with these two pos-
sible spin values are two quantum states,
namely, |z+〉 and |z−〉, corresponding to up-
spin and down-spin respectively. . An arbi-
trary spin state |ψin〉 is described by a super-
position of the two states,

|ψin〉 = r1|z+〉+ r2|z−〉, (1)

where r1 and r2 are the superposition coeffi-
cients that satisfy r21 + r22 = 1. A short nota-
tion is used to present these facts. A SG ap-
paratus oriented along the z-axis is denoted
by Z enclosed in a box. The experimental
fact that an arbitrary beam of spin-half sys-
tems will give rise to two output beams is
represented by

|ψin〉 −→ Z −→ {|z+〉, |z−〉},

where the states corresponding to the two
output beams are enclosed in curly brackets.
The relative intensities of the output beams
decide the magnitude of the superposition co-
efficients. Let us assume that the superposi-
tion coefficients are real. According to the
Born’s rule for statistical interpretation, the
relative intensities of the beams correspond-
ing to orthogonal states are the squares of
the magnitudes of the respective superposi-
tion coefficients. In the case of SGz experi-
ment with two output beams of equal inten-
sity, the input state is a superposition of the
two output states:

|ψin〉 =
1√
2

[|z+〉+ |z−〉. (2)

If the input beam is in the state |z+〉, there
is a single output beam corresponding to the
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output stream represented by |z+〉. In the
short notation introduced earlier, tt is repre-
sented as

|z+〉 −→ Z −→ |z+〉.

That is, |z−〉 cannot be generated from |z+〉
using SGz. Similarly, if the input state is
|z−〉,

|z−〉 −→ Z −→ |z−〉,
implying that |z+〉 cannot be obtained from
|z−〉. In simple terms, SGz does not affect
|z+〉 and |z−〉. Hence, they qualify as ”eigen-
states” of SGz. More importantly, the fact
that SGz cannot generate |z+〉 from |z−〉 im-
plies that the two states |z+〉 and |z−〉 are
”orthogonal” to each other. In mathematical
terms, orthogonality means the inner product
between the two states is zero.

The choice of orientation of the SG appa-
ratus is arbitrary. For instance, if the SG
apparatus is oriented along x-direction, then
an arbitrary input beam of spin- half parti-
cles results in two output beams, separated
spatially along the x- direction. The respec-
tive states of the particles in the two beams
are denoted by |x+〉 and |x−〉. As in the case
of SGz, the following are true:

|ψin〉 −→ X −→ {|x+〉, |x−〉},

|x+〉 −→ X −→ |x+〉,
and

|x−〉 −→ X −→ |x−〉.
And the conclusion is that the states |x+〉
and |x−〉 are orthogonal, eigenstates of SGx.
Similarly, for an experiment with SGy ,

|ψin〉 −→ Y −→ {|y+〉, |y−〉},

|y+〉 −→ Y −→ |y+〉,

and
|y−〉 −→ Y −→ |y−〉.

As in the other cases, the states |y+〉 and
|y−〉 are orthogonal, eigenstates correspond-
ing to SGy.

2.1 Experiment I

Are |z+〉 and |z−〉 unaffected by SGx? To
find out, one of the outputs of SGz, say, the
beam of particles corresponding to |z+〉, is
used as input to SGx. The experimental re-
sult is that there are two output beams of
equal intensity. So, from |z+〉, both |x+〉 and
|x−〉 emerge. Then the following assignment
is possible:

|z+〉 =
1√
2

[|x+〉+ |x−〉], . (3)

Once this choice is made for |z+〉, the require-
ment for orthogonality implies that

|z−〉 =
1√
2

[|x+〉 − |x−〉]. (4)

These expressions are consistent with the re-
quirement that |z+〉 and |z−〉 are orthogonal
to each other. Note that the superposition
coefficients are chosen to be real. It does not
matter if the expressions for the states |z+〉
and |z−〉 are swapped.

2.2 Experiment II

Let one of the outputs of SGz be sent through
a SGy. Like the previous case, two output
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beams of equal intensity emerge from the ap-
paratus. Arguing as before, the results are

|z+〉 =
1√
2

[|y+〉+ |y−〉], (5)

|z−〉 =
1√
2

[|y+〉 − |y−〉], (6)

where the superposition coefficients have
been assumed to be real. There is no incon-
sistency so far.

2.3 Experiment III

The last piece of information required is a re-
lationship among the states |x±〉 and |y±〉.
For this, one of the output beams of SGx, for
instance, the output corresponding to |x+〉,
is fed as input to SGy. Two output beams
of equal intensity emerge. If the input is
changed to |x−〉, there are two output beams
of equal intensity. So, the results can be sum-
marized as

|x+〉 =
1√
2

[|y+〉+ |y−〉], (7)

|x−〉 =
1√
2

[|y+〉 − |y−〉], (8)

assuming that the superposition coefficients
are real.

3 Analysis of results

What can be inferred from the results of the
three experiments described above? First of
all, the conclusions from the Experiment III

can be used to rewrite the results of the Ex-
periment II. This yields

|z+〉 = |x+〉, (9)

|z−〉 = |x−〉. (10)

This is at variance with the results of the Ex-
periment I which indicate that |z+〉 and |z−〉
are linear combinations of |x+〉 and |x−〉.
Obviously, one of the assumptions used in ex-
pressing the results should be wrong. The
crucial assumption made is that the input
state is expressible as a linear combination of
output states with real coefficients. Now, it
needs to be argued that using complex coeffi-
cients yields consistent results. The require-
ments are that the two output beams are of
equal intensity and the corresponding states
orthogonal to each other. So, one possibil-
ity is to recast the results of Experiment III
using complex coefficients to give

|x+〉 =
1

2
[(1− i)|y+〉+ (1 + i)|y−〉], (11)

|x−〉 =
1

2
[(1 + i)|y+〉+ (1− i)|y−〉]. (12)

where i =
√
−1. The definition of inner prod-

uct between two states |ψ1〉 = a|z+〉+ b|z−〉
and |ψ2〉 = c|z+〉 + d|z−〉 is 〈ψ1|ψ2〉 = a∗c +
b∗d, where superposition coefficients a, b, c
and d are complex numbers, and the super-
script ∗ implies complex conjugation. With
this definition of inner product, the orthogo-
nality condition is satisfied. Further, the co-
efficients are of equal magnitude to account
for the observation that the output beams are
of equal intensity. This specific choice of su-
perposition coefficients ensures that the re-
sults of the Experiments I and II need not

Volume 28, No. 3 Article Number : 3. www.physedu.in



Physics Education 5 Jul - Sep 2012

be rewritten with complex coefficients, and it
concurs with the convention adopted in quan-
tum physics. Other choices such as

|x+〉 =
1√
2

[|y+〉+ i|y−〉], (13)

|x−〉 =
1√
2

[|y+〉 − i|y−〉], (14)

to express the results of Experiment III would
require rewriting the results of the Experi-
ment I and Experiment II using complex su-
perposition coefficients.

4 Discussion

Complex numbers are essential in the Hilbert
space formulation of quantum theory. With-
out invoking complex numbers, it is impos-
sible to consistently explain the outcomes of
some simple experiments performed with SG

devices in tandem. Another important point
to note is that the Schrodinger equation has
not been used in the arguments presented
here. Even though

√
−1 appears explicitly in

the Schrodinger equation which governs dy-
namics in quantum physics, the requirement
for complex numbers is not due to this partic-
ular rule of dynamics. It is the linear vector
space structure that is crucial in necessitating
complex numbers in quantum theory.
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Abstract

In this installment we shall do some problems with Poisson brackets. The Poisson brackets
can be used to state the equation of motion (i.e., time dependence in the form of a
differential equation) of any function of coordinates and momenta (i.e, ‘a dynamical
variable’) in a very elegant manner which emphasizes the role played by the Hamiltonian
function and the constants of motion. The problems are meant to demonstrate these
aspects of Poisson brackets

Consider a system n degrees of freedom,
whose phase space coordinates are q =
{q1, q2, . . . , qn} and p = {p1, p2, . . . , pn}. The
Poisson bracket (PB for short) of two dy-
namical variable of this system, u(p,q, t) and
v(p,q, t), is defined as

[u, v] =
∑
i

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
(1)

The range of summation is from i = 1 to

i = n, and will be assumed in all the following
expressions, unless otherwise mentioned. But
the index of summation will be always men-
tioned (no summation convention used any-
where).

Here we summarize some basic properties
of Poisson brackets which we will be using
in solving the problems of this issue. In the
following u, v and w are three dynamical vari-
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ables and c is a constant.

[u, v] = −[v, u] (2)

[u, u] = 0 (3)

[cu, v] = [u, cv] = c [u, v] (4)

[u+ v, w] = [u,w] + [v, w] (5)

[u, v + w] = [u, v] + [u,w] (6)

[uv, w] = u[v, w] + [u,w]v (7)

[u, vw] = v[u,w] + [u, v]w (8)

Problem 1: Find the PBs [Lx, Ly], [Ly, Lz]
and [Lz, Lx], where Lx, Ly, Lz are the Carte-
sian components of the angular momentum
of a particle.

Solution: We have Lx = ypz − zpy, Ly =
zpx − xpz, and Lz = xpy − ypx, where
px, py, pz are canonically conjugate momenta
for the Cartesian coordinates x, y, and z
respectively. For convenience, let us re-
name the variables as follows: {x, y, z} →
{x1, x2, x3}, {px, py, pz} → {p1, p2, p3}, and
{Lx, Ly, Lz} → {L1, L2, L3}. With this no-
tation we have L1 = x2p3 − x3p2, L2 =
x3p1 − x1p3, L3 = x1p2 − x2p1.

A compact and elegant method of carry-
ing out the algebra to find these PBs is by
using Levi-Civita symbol εijk and the Kro-
necker delta symbol δij. This you can find
in some text books, for example in Rana &
Joag [1]. Here we shall carry out the alge-
bra without using these neat mathematical
devices. In fact, we shall calculate only the
first PB [L1, L2], and the other two can be
readily calculated in the same manner by the

reader.

[L1, L2] =
3∑

i=1

(
∂L1

∂xi

∂L2

∂pi
− ∂L1

∂pi

∂L2

∂qi

)
(using eq. 1)

In the above sum the first two terms vanish
as ∂L1

∂x1
= ∂L1

∂p1
= ∂L2

∂p2
= ∂L2

∂x2
= 0. Thus

[L1, L2] =

(
∂L1

∂x3

∂L2

∂p3
− ∂L1

∂p3

∂L2

∂x3

)
= x1p2 − x2p1 = L3

In the same manner we get [L2, L3] = L1 and
[L3, L1] = L2. Note the cyclical order of the
indices. If the order is not cyclical we get
negative signs, e.g., [L2, L1] = −L3, from the
anti-commutative property of PBs as stated
in eq. 2. Also, by the property given by eq.
3 (which is actually a corollary of eq. 2) we
have [L1, L1] = [L2, L2] = [L3, L3] = 0. We
note that the quantum analogue of these
brackets ( commutator brackets ) are given
by [L1, L2] = i~L3 and so forth.

Problem 2: Using the Poisson theorem
for PBs show that the angular momentum
(about the centre of force) is a constant of
motion for the motion of a particle under an
inverse square law force.

Solution: Poisson theorem (also called
Poisson’s first theorem on PBs) states that
for a dynamical variable u(q,p, t)

du

dt
= [u,H] +

∂u

∂t
(9)

This is actually the equation of motion of u.
By definition u is a constant of motion if du

dt
=

0 .
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The angular momentum L is a vector, and
to show that it is conserved to we have to
show that all the three components Lx, Ly

and Lz are conserved. These components
have no explicit time dependence, so the par-
tial derivatives ∂Lx

∂t
= ∂Ly

∂t
= ∂Lz

∂t
= 0. Thus,

from eq. 9 the three components are con-
served if the three PBs [Lx, H] = [Ly, H] =

[Lz, H] = 0. We shall prove one of them, i.e,
[Lz, H] = 0, and the reader can easily prove
the other two in the same manner. Once
again for the components of position, momen-
tum and angular momentum we shall use the
notation used in problem 1.

We shall use Cartesian coordinates with
the centre of force at the origin. The Hamil-
tonian is given by

H(x1, x2, x3, p1, p2, p3) =
1

2m

(
p21 + p22 + p23

)
− k

r

=
1

2m

(
p21 + p22 + p23

)
− k√

x21 + x22 + x23
(10)

where k is a constant, positive for attractive
force and negative for repulsive force.

[L3, H] =
3∑

i=1

(
∂L3

∂xi

∂H

∂pi
− ∂L3

∂pi

∂H

∂xi

)
(11)

We have the partial derivatives

∂L3

∂x1
= p2,

∂L3

∂x2
= −p1,

∂L3

∂x3
= 0,

∂L3

∂p1
= −x2,

∂L3

∂p2
= x1,

∂L3

∂p3
= 0,

∂H

∂p1
=
p1
m
,
∂H

∂p2
=
p2
m
,
∂H

∂p3
=
p3
m
,

∂H

∂x1
=
kx1
r3/2

,
∂H

∂x2
=
kx2
r3/2

, and
∂H

∂x3
=
kx3
r3/2

Using these in eq. 11 we have [L3, H] = 0.

Problem 3: Show that for a free parti-
cle moving in one dimension, the function
F = x − pt

m
and ∂F

∂t
are constants of motion.

Here x, p, and m are position, momentum
and mass of the particle. Do this by direct
calculation of total time derivatives of F as
well as ∂F

∂t
, and by using Poisson’s first and

second theorem about PBs.

Solution: Note that F is explicitly a func-
tion of time, but nevertheless it is a constant
of motion. This is quite trivial to show by
taking the total time derivative of F . We use
that fact that for a free particle momentum
p is a constant.

dF

dt
=

dx

dt
− p

m

=
p

m
− p

m
= 0.
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And

d

dt

(
∂F

∂t

)
=

d

dt

(
− p

m

)
= 0

Now we use Poisson’s first theorem stated
above in the previous problem. Note that the
Hamiltonian for the free particle is H = p2

2m
.

dF

dt
= [F,H] +

∂F

∂t

=

(
∂F

∂x

∂H

∂p
− ∂F

∂p

∂H

∂x

)
− p

m

=
( p
m
− 0
)
− p

m
= 0

And, as ∂F
∂t

= − p
m

is not an explicit function
of time, if it is a constant of motion its PB
with H must be zero, as we can see:

[
∂F

∂t
,H

]
=

[
− p

m
,
p2

2m

]
= − 1

2m2

[
p, p2

]
= − 1

2m2
(p [p, p] + [p, p] p) = 0

In the above we have used PB properties
given by eqs. 3, 4 and 8 for illustration,
though here it is equally simple to take
the partial derivatives. We can also illus-
trate Poisson’s second theorem on PBs, which
states that the PB of two constants of mo-
tion is itself a constant of motion. Now that
we know F is a constant of motion, we can
take its PB with H, which is also a con-
stant of motion (because the particle is free).
This PB we already evaluated above, i.e.,

[F,H] = p
m

= −∂F
∂t

. So by Poisson’s second
theorem ∂F

∂t
must be a constant of motion, as

we already verified.
This demonstrates one valuable applica-

tion of Poisson’s second theorem: If we have
two constants of motion, we can take their
PB to construct one more constant of motion,
which might of interest. But it can also turn
out some function of already known constants
of motion, which can hardly be of any inter-
est. Consider this example. Here we have two
constants of motion, F and ∂F

∂t
, and their PB

is[
F,
∂F

∂t

]
=

[
x− pt

m
,− p

m

]
=

[
x,− p

m

]
+

[
−pt
m
,− p

m

]
= − 1

m
[x, p]− t

m2
[p, p] = − 1

m

(using the properties of PBs given by eqs. 3,
4 and 8, and [x, p] = 1), which is obviously
a constant of motion, and not a terribly
interesting one, as all it means is that mass
remains constant during the motion.

Problem 4: Consider the following func-
tions of position q and momentum p of a
one-dimensional harmonic oscillator (m is the
mass and ω angular frequency) :

a =

√
mω

2

(
q +

ip

mω

)
(12)

and its complex conjugate

a∗ =

√
mω

2

(
q − ip

mω

)
(13)
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Write down and solve the equations of motion
for a and a∗ in terms of PBs of these func-
tions with the Hamiltonian, and from these
solutions find the solutions q(t) and p(t).

Solution: The equations of motion for a
and a∗ are (from Poisson’s first theorem dis-
cussed above)

da

dt
= [a,H] (14)

and
da∗

dt
= [a∗, H] (15)

Note that the partial derivatives ∂a
∂t

and ∂a∗

∂t

are absent in the above equations of motion
as both are zero, because the functions a and
a∗ are not explicitly time-dependent. The
Hamiltonian is

H =
p2

2m
+

1

2
mω2q2 (16)

We can evaluate the the PBs [a,H] and
[a∗, H] by using the general definition given in
eq. 1 or by using the properties of PBs listed
in eqs. 2 – 8. We use the latter method, be-
cause that will also allow the reader to com-
pare the functions a and a∗ with their quan-
tum mechanical analogues – the lowering and
raising operators a and a†. Consider first the
product

aa∗ =

√
mω

2

(
q +

ip

mω

)√
mω

2

(
q − ip

mω

)
=

mω

2

(
q2 +

p2

m2ω2

)
Comparing this with eq.16 we immediately
get

H = ωaa∗ (17)

Let us also get

[a, a∗] =
∂a

∂q

∂a∗

∂p
− ∂a

∂p

∂a∗

∂q

=
mω

2

(
− i

mω

)
− mω

2

(
i

mω

)
= −i (18)

Now

[a,H] = [a, ωaa∗] (using eq. 17)

= ω [a, aa∗] (using eq. 4)

= ω (a [a, a∗] + [a, a] a∗) (using eq. 8)

= −iωa (19)

In the last line we used

[a, a] = 0 and [a, a∗] = −i.

Thus we have the equation of motion for a
(eq. 14)

da

dt
= −iωa (20)

which can be immediately integrated to give

a = a0e
−iωt (21)

where a0 is the constant of integration.
Similar calculations give us [a∗, H] = iωa∗

and using it in the equation motion of eq. 15,
and integrating we get

a∗ = a∗0e
iωt (22)

where a∗0 is the constant of integration.
Now to find the solutions q(t) and p(t), we

solve eqs. 12 and 13 for q and p to get

q =

√
1

2mω
(a+ a∗) (23)
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and

p = −i
√
mω

2
(a+ a∗) (24)

Now using eqs. 21 and 22 in eqs. 23 and 24
we have

q =

√
1

2mω

(
a0e
−iωt + a∗0e

iωt
)

(25)

p = −i
√
mω

2

(
a0e
−iωt − a∗0eiωt

)
(26)
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Abstract 

This is an edited version of the experiment set for the experimental examination conducted 
at the orientation cum selection camp held at Homi Bhabha Centre for Science Education 
(TIFR), Mumbai in May 2010. Generally, the compound pendulum studied in undergraduate 
laboratory is in the form of a uniform bar whose axis of oscillation is varied. In this 
experiment, a compound pendulum with a fixed axis of oscillation but with a movable mass 
is used to study the dependence of periodic time on the position of the movable mass and to 
determine the gravitational field strength.  

 
 

1. Introduction 
The compound pendulum provided for this 

experiment consists of a rod with a fixed knife-

edge, which acts as the axis of oscillation of the 

oscillating pendulum somewhere along its 

length. A cylindrical body of mass m1 is used 

which can be moved along the length of the rod. 

Another cylindrical body of mass m2 is fixed at 

the lower end of the rod. A plastic washer is used 

to support the mass m1 at various positions on 

the rod.  

 

When the pendulum is suspended with its knife-

edge on a rigid platform and set into oscillation, 

its periodic time of oscillation changes 

depending on the position of the movable mass. 

The experiment consists of studying the 

relationship of the distance of the movable mass 

from the axis of oscillation with the periodic 

time of the pendulum. 

 

 

 

 

 

2. APPARATUS 
 

1) A compound pendulum consisting of a rod with 

one mass attached at one of its ends, another mass 

capable of sliding along the rod and a knife edge to 

be fixed on the rod,    

2) An Allen key, 

3) A plastic washer for supporting movable mass, 

4) An acrylic support with fixed glass slides on 

which the knife edge is to rest, 

5) A G-clamp for clamping the acrylic support to the 

edge of the table, 

6) A stopwatch, 

7) A measuring tape, 

8) Vernier calipers and 

9) A micrometer screw gauge. 

 

 

 

 

Fig.1 
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Figure 1.The compound pendulum

3. Description of apparatus: 

  

 

 

 

 

 

 

 

 

        Figure 3. Knife Edge with Allen key   

 

  

 

    

 

 

 
Figure 2.  A rod with a mass m2 fixed at one end. 
 

 

 
Figure 4. Acrylic support with glass slides fixed on it and 

the G-clamp 
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Figure 5. Stopwatch, measuring tape and vernier calipers and micrometer screw gauge 

 

 
 

Figure 6. The complete setup 

4. Theory  
For small oscillations, the periodic time T of 

compound pendulum, with mass M and moment of 

inertia I about the axis of oscillation, is given to a 

good approximation by 

Mgl

I
T  , 

where, l is the distance between the axis of 

oscillation and the centre of mass of the 

pendulum. 

 

 

5. Experiment 
 

Given data: 

Masses of 

i) Rod: mr = 161 ± 1 g  

ii) Knife-edge: mke = 12 ± 1 g 

iii) Bodies: m1 = m2 = 99.5 ± 0.5 g 

 

1. Express the distance l and the moment of 

inertia I about the axis of oscillation in terms 

of the distance x of the movable mass m1 and 

other constants of the system. 
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Use the following symbols in your 

derivations. 

Length of the rod: L. 

Distance between the knife-edge and the end 

of the rod with fixed cylindrical body: x0 

Inner and outer radii of the cylindrical bodies: 

R1 and R2.     

Length of the cylindrical bodies with masses 

m1 and m2: h. 

Mass of the rod: mr 

Mass of the assembly of knife edge: mke.  

 

2. Hence express the periodic time T of the 

pendulum as a function of x. If you have made 

any assumptions in neglecting any terms in the 

above derivations mention them with 

supporting arguments.   

              

 

3. Make the necessary measurements of physical 

dimensions of the system forming the 

compound pendulum. You may use scales, 

vernier calipers and micrometer screw as 

required. Tabulate the measured values along 

with the uncertainties in measurements. 

  

4. Suspend the pendulum from the rigid support 

and determine its periodic time for different 

positions of the movable mass by moving it 

from the top of the rod to the fixed mass at the 

bottom in suitable steps. [For moving the mass 

below the knife edge remove the knife edge 

using the Allen key and after shifting the mass 

below its position fix it again.] Tabulate your 

results.     

       

5. Sketch graphs (rough sketches on the plain 

answer sheet) to show how I and l vary as the 

mass m1 is shifted from one end to the other. 

Plot T versus x and explain the significance of 

the minimum T in this graph.          

       

 

6. Reorganize the terms in the equation of T as a 

function of x and plot a linear graph from 

which g can be obtained. Determine the slope 

of the graph, calculate g and estimate the 

uncertainty in the obtained value.  

       

 

7. Obtain from the graph the value of T at x = 0. 

Determine the value of g using the formula for 

T with x = 0.    

       

 

8. If the movable mass is kept at the top end of 

the pendulum and you are allowed to move 

the axis of suspension, will it be possible to 

make T infinite? Explain the conditions under 

which this is possible. Will it be possible to 

achieve the condition experimentally? 

Substantiate your answer with reasons, if 

necessary.

 

 

6. TYPICAL OBSERVATIONS AND CALCULATIONS 
1)  

Equation for I: 

   

ke

r

r

I
h
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Equation for l:  

keker xmxm
h

xm
L

xmMl 







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L
xm

M
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    (2) 

 

Here, 
ker

mmmmM 
21

 

We can neglect the terms Ike in equation (1) and mke xke in equation (2) because they would be very small. 

 

2.  

Mgl

I
T 2  

Mg

I
lT

22
4

 
Reorganizing the terms in equation (1) we can write 
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The terms in the bracket are constant. Representing the constant by A, 

AxmI 
2

1
 

We can reorganize the terms in equation (2) as 






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
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Again, representing the terms in bracket by a constant B, 

Bx
M

m
l  1

 

 

 Axm
Mg

x
M

m
BT 










2

1
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12 4
 

 

3.  

Measurements of physical dimensions of the system: 

 

Quantity Value Uncertainty 

L 69.0 cm 0.1 cm 

h 2.500 cm 0.002 cm 

x0 45.9 cm 0.1 cm 

R1 1.265 cm 0.001 cm 

R2 0.300 cm 0.001 cm 

Diameter of the rod 0.588 cm 0.002 cm 
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4.  

Obs. 

No. 
(x ± ∆x)/cm 

2

h
x   /cm 

Time for 20 oscillations T /s 
t1 /s t2 /s t3 /s Mean t /s 

1 -21.75 ± 0.10 -23.0 36.44 36.56 36.40 36.467 1.823 ± 0.008 

2 -20.55 ± 0.10 -21.8 35.50 35.56 35.38 35.480 1.774 ± 0.009 

3 -18.85 ± 0.10 -20.1 34.22 34.22 34.28 34.240 1.712 ± 0.003 

4 -16.85 ± 0.10  -18.1 33.22 33.19 33.21 33.207 1.661 ± 0.002 

5 -13.95 ± 0.10 -15.2 31.72 31.75 31.62 31.697 1.585 ± 0.006 

6 -11.65 ± 0.10 -12.9 30.69 30.78 30.68 30.717 1.536 ± 0.005 

7 -8.65 ± 0.10 -9.9 29.41 29.47 29.43 29.437 1.472 ± 0.003 

8 -5.75 ± 0.10 -7.0 28.62 28.47 28.62 28.570 1.429 ± 0.008  

9 -2.15 ± 0.10 -3.4 27.53 27.53 27.47 27.510 1.376 ± 0.003 

10 3.75 ± 0.10 5.0 26.32 26.47 26.25 26.347 1.318 ± 0.011 

11 5.75 ± 0.10 7.0 26.06 26.03 26.00 26.030 1.302 ± 0.003 

12 9.15 ± 0.10 10.4 25.62 25.62 25.59 25.610 1.281 ± 0.002 

13 12.25 ± 0.10 13.5 25.37 25.37 25.28 25.340 1.267 ± 0.004 

14 15.25 ± 0.10 16.5 25.16 25.25 25.16 25.190 1.259 ± 0.004 

15 17.75 ± 0.10 19.0 25.00 25.07 25.19 25.087 1.255 ± 0.010 

16 21.65 ± 0.10 22.9 25.12 25.28 25.28 25.227 1.262 ± 0.008 

17 24.75 ± 0.10 26.0 25.13 25.06 25.06 25.083 1.255 ± 0.004 

18 28.05 ± 0.10 29.3 25.37 25.28 25.37 25.340 1.267 ± 0.004 

19 31.25 ± 0.10 32.5 25.41 25.50 25.40 25.437 1.272 ± 0.005 

20 34.75 ± 0.10 36.0 26.00 25.84 25.89 25.910 1.296 ± 0.008 

21 39.25 ± 0.10 40.5 26.28 26.25 26.25 26.260 1.313 ± 0.002 

22 41.95 ± 0.10 43.2 26.69 26.68 26.78 26.717 1.336 ± 0.005 

 

5.  

a. Plot T versus x.  
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b. Rough Sketches: 

 
6. 
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Plot a graph of 




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
 Bx

M

m
T 12

 versus x
2
. 

Here, 
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Hence, plot a graph of  xT 267.088.16
2

 versus x
2
.  

 

 T
2
(16.88 +0.267x)/cm s

2
 x

2
/cm

2
 

1 36.84 473 

2 35.86 422 

3 34.72 355 

4 34.16 284 

5 33.05 195 

6 32.49 136 

7 31.57 75 

8 31.33 33 

9 30.87 5 

10 31.06 14 

11 31.22 33 

12 31.71 84 

13 32.35 150 

14 33.21 233 

15 34.05 315 

16 36.09 469 

17 36.99 613 

18 39.12 787 

19 40.81 977 

20 43.94 1208 

21 47.17 1541 

22 50.12 1760 
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Graph: 
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The expanded uncertainty 

dynes/g174.162861.98500832.0 g
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7. 

From the graph of T versus x: 

T (at x = 0) = 1.355 s 
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At x = 0 
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8. 

If l is zero, the period will be infinite. This 

condition can be satisfied if the knife edge is 

moved and placed at the center of mass with both 

masses at the two ends of the rod. Another way 

can be to move the mass m1 such that the centre of 

mass of the system coincides with the position of 

the knife edge.  

In either of the case, when the pendulum is 

displaced from its equilibrium position, it will not 

return back to the equilibrium position as T is 

infinite. But the condition of unstable equilibrium 

will make it unrealizable experimentally. 

 

7. Discussion 
 
In the undergraduate laboratories, bar pendulum is 

a regular experiment. In that experiment, distance 

between the knife edge and centre of mass is 

varied in definite steps.  

This experiment explores another way to study the 

compound pendulum by varying the position of 

centre of mass by shifting mass m1 rather than the 

point of suspension. 

The linearization technique in this experiment (to 

plot the suitable graph) requires a rearrangement 

of variables which itself is a skill to be developed 

by students. 
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Abstract

The classical view of mass is that it quantifies the amount of substance and is a
kinematical parameter. All matter has an attribute of mass and is a conserved quantity in
any interaction. With the advent of Special Relativity, mass became no longer a conserved
quantity, since Energy and Momenta had the status of conserved variables. Nevertheless,√

(E2 − p2c2) = mc2 gives a Poincare invariant measure that can be associated as the
mass, an useful attribute of the body or system. In the quantum regime mass becomes
truly dynamical. Higgs field is said to provide mass for all species of elementary
constituents as widely popularized by the media in connection with the recent (most
likely) discovery of Higgs boson at CERN. However, we emphasize that the most abundant
component of matter Nucleons - derive their mass largely (95%) as a consequence of
quantum effects of (color gluonic QCD) radiation. Further, interestingly this arises out of
literally nothing, save the QCD scale, determined experimentally through a self consistent
perturbative analysis of nucleon structure, as the sole input.

∗Affiliated as retired Faculty; Communication ad-
dress: Flat 12, Khagol Society, Panchvati, Pashan,
Pune 411 008, India

1 Introduction

Higgs particle discovery [1],[2],[3] has received
much coverage and a perception that the
so called God Particle is responsible to give
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masses to all particles that make up the fun-
damental building blocks is prevalent. The
object of this note to give a more appropriate
perspective and provide non experts, particu-
larly Physics Teachers and Students, a deeper
view on what constitutes mass and what has
been understood so far1.

In classical physics, mass is a kinematical
attribute of all matter. It is a measure of the
quantity of matter and is perceived through
two laws, both attributed to Newton. Force
causes matter to accelerate and the propor-
tionality constant is termed its inertial mass.
Matter is also source of gravitational field it
carries with it. This field falls off in intensity
as Inverse Square of the distance from the
source and the proportionate constant here
is its gravitational mass. Galileo’s famous ex-
periment (at the leaning tower of Pisa?) and
many modern equivalents demonstrate iden-
tity between the two definitions of mass and
this implies a notion of universality of all bod-
ies under gravitation. In classical regime the
mass is a passive kinematical parameter and
is conserved in any interaction. As we move
to relativistic regime, we find that it is not
mass that is conserved, but the Momentum
(vector) p and Energy E. There is, however
an invariant mass for every body or system
which is given by

√
(E2 − p2c2/c2. Even this

(Poincare invariant) mass is not conserved
in any interaction, since mass of the system
can be released as energy, heralding the cel-
ebrated relationship E = mc2. In the ter-

1An excellent review is provided by F Wilczek [4];
supplement to 2011 Solvay conference, amplifies the
content of this note

minology of Nuclear Physics, the mass defect
shows up as the binding energy of nucleons in
nuclei. Lighter nuclei such as Hydrogen, He-
lium and Carbon fuse to form tighter bound
nucleus releasing the difference in mass as
thermonuclear energies in a fusion reaction;
and heavy nuclei, such as Uranium and Plu-
tonium can be induced to undergo fission into
medium heavy nuclei, releasing useful atomic
energy, making in the process the iron region
nuclei with highest binding energy per nu-
cleon.

In quantum regime, we see that mass,
whatever it may be, is dynamically gener-
ated. The notion of mass defect is an in-
dication that the mass of a system, say an
atom or nucleus is made up by a combina-
tion of the intrinsic mass of the constituents
suitably dressed by interactions. The system
may have a higher or lower mass than the sum
total of constituents, making it either a reso-
nant state or a bound state. For example, the
energy spectrum of an atom is a consequence
of the interaction of the constituents. Elec-
tromagnetic interaction between positively
charged nucleus and negatively charged elec-
trons results allowed energy levels in the
atomic spectrum. To begin with, we have
Schroedinger equation in Quantum mechan-
ical description of an atom, say Hydrogen,
give observed values of its spectra. This can
be further improved and made fully relativis-
tic in the language of Quantum Field The-
ory. Relevant field theory to deal with atomic
(and molecular) spectra is Quantum Electro-
dynamics (QED), which comes endowed with
Gauge symmetry. Gauge symmetry is a for-
mal way of implementing a notion that the
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Electric and Magnetic field, that enters in the
Lorentz Force law F = q(E + v × B) is ex-
pressible in terms of scalar and vector poten-
tials (E = −∇φ − ∂A

∂t
; B = ∇ × A). There

is a freedom in the choice, since A → A′ =
A + ∇χ(x, t) and φ → φ′ − ∂χ(x,t)

∂t
leaves E

and B invariant. Gauge theories formulated
in terms of potential functions instead of field
functions, necessary in quantum description
(since Aharonov - Bohm [5] effect shows that
the quantum electrons passing through mag-
netic field free region indeed detects change
in the interference pattern, making poten-
tials more fundamental than field strengths),
comes endowed with a symmetry so gener-
ated. Since there is one function that charac-
terises this symmetry, mathematically this is
represented by a unitary unimodular group
U(1). We are able to achieve highly pre-
cise computations of the Energy levels (or
masses) and transition rates, thanks to very
reliable perturbation techniques, developed
in the later half of the last century.

Proceeding further, nucleons in the nu-
clei are bound together by strong nuclear
forces and the nucleons are indeed made up
of quarks, bound by interactions mediated by
gluons. Quarks and Leptons (electrons and
the siblings) are the building blocks of all
matter in the Standard Model. Like QED,
the Standard Model is also a Gauge field
theory with an underlying local 2 symme-
try described by a symmetry group. While

2The term ‘local’ implies the symmetry transfor-
mation parametrised by χ(x, t) is a spacetime depen-
dent function. If χ is a constant value independent
of space and time, we will have a ‘global’ symmetry,
such as flavour Isospin

QED with symmetry group U(1), [using rel-
ativistic four dimensional potentials Aµ that
combines A and φ, a one parameter change
Aµ → A′µ = Aµ − ie∂µχ leaves the field
strength Fµν = ∂µAν − ∂νAµ unchanged] ad-
mits one (well known electric) charge and
one gauge field whose quanta are photons,
the Standard model has underlying symme-
try group as SU(3)×SU(2)×U(1) admits 3
coupling ‘constants’, 8+3+1 parameter sym-
metry transformations and has force fields
as due to gauge bosons (8 gluons, 3 weak
bosons and photon). They govern strong,
weak and electromagnetic interactions of all
basic constituents. An important difference is
that while U(1) of QED is commuting sym-
metry group (where two symmetry opera-
tions, one following the other in either or-
der gives same result), the gauge group of
Standard Model has non commuting compo-
nents SU(2) for weak interactions and SU(3)
of QCD for strong interactions. Here sym-
metry operations are represented by unitary
unimodular 2× 2 and 3× 3 matrices. These
are similar in character to rotations in space,
which we know, in three or more dimensions,
to be non-commuting. We may refer them as
operations in some internal weak isospin and
color space.

2 Massless Start

Theoretical description of basic interaction
employs the tools of Relativistic Quantum
Field Theory in the form of Gauge Theory.
There are three pillars on which it stands and
each of which needs, to begin with, massless

Volume 28, No. 3 Article Number : 6. www.physedu.in



Physics Education 4 Jul - Sep 2012

fields as basic input.

2.1 Scale Invariance and
Renormalization

We need our theories to be so that all ob-
servables yield finite values. It is necessary
to prevent divergences, if any, from appear-
ing in any measureable variable. This techni-
cal requirement is achieved by the process of
Regularisation and Renormalization and this
program is successful on account of the the-
ory possessing scale invariance. In a scale in-
variant theory it is possible to promote the
coupling constants, such as the ‘fine structure
constant’ α here, into scale dependent param-
eters. The constant α = e2/4π~c becomes
α(Q2) and it measures the coupling strength
or charge at different scales.

It is said that the ‘Vacuum polarization’
causes the bare charge to be screened, mak-
ing charge depend on the scale of the probe
used. A simple way to understand renormali-
sation is to note that in the quantum regime,
‘vacuum’ is anything but simple, since it can
be thought of as all types of particle and
antiparticle pairs to be continually created
and annihilated perpetually, making it a po-
larisable medium or an effective dielectric.
Just as effective charge in a dielectric medium
gets reduced by the dielectric constant of the
medium, a negatively charged electron with
bare charge e0 will polarise the nearby re-
gion of the ‘vacuum’ and consequently the
measured charge will be the screened value.
e(Q2) will be the effective charge when we
approach it with a probe that causes a mo-

mentum transfer Q2. Larger the value of Q2,
closer we approach it and lesser the screen-
ing. The value e = 1.6 × 10−19 Coulomb or
α = 1/137 is indeed the long range Thom-
son limit, when Q2 = 0. For all this to make
sense, the theory must possess an intrinsic
scale invariance. A closely related symmetry
is the angle preserving conformal invariance.
Since, angle is ratio between two lengths, it
does not change under scale transformation
that varies all lengths in the same way. It is
often convenient to use a set of units, such
that ~ = 1 = c and in such units dimension
of mass is just the inverse of the dimension of
length. Recall the Compton wavelength λ as-
sociated with mass m is given by λ = ~/mc.
If the theory has mass parameter, it possesses
an intrinsic length; obviously such a theory
can not be scale invariant. Thus basic ingre-
dients in a renormalizable theory have neces-
sarily to be massless. Presence of mass will
imply scale violation.

running_coupling.jpg

Figure 1: 1/α(Q2) vs log Q2
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2.2 Chiral Fermions

Among the basic interactions are weak in-
teractions, responsible for radioactivity. As
early as 1957, we knew these to be parity
violating. In order that this is so, we need
to differentiate between the left handed and
right handed states of fermions. In the Stan-
dard Model the left helicity states of quarks
and leptons are doublets (in weak isospin, not
to be confused with the more widely known

flavor isospin), QL =

(
uL
dL

)
, ψL =

(
ν
e−L

)
and the right helicity states of fermions uR,
dR and eR are singlets. Neutrino occurs in
left helicity state only. If we view the fermion
from a frame that moves faster than the par-
ticle (which is possible only if the particle
has mass and travels with speed v < c) we
will find in that frame, the helicity of the
particle is reversed. Thus a chiral fermion,
which is forced on us by the parity violation,
is not compatible if the fermion has a mass.
We require our fermions to be massless in or-
der that they are viewed as chiral fermions.
Fermionic matter consists of three copies (or
three generations) of the above set, which is

again forced on us as a need to accommodate
a baryon asymmetric universe, which is pop-
ulated mostly with nucleons with negligible
fraction ( 10−10) of anti-nucleons. That is an-
other story. Neutrinoes also seem to mix and
oscillate, which is possible when they have a
tiny mass. That is yet another story.
2.3 Gauge interaction and

massless bosons

The Standard Model describes interactions
governed by the gauge theory with sym-
metry group SU(3)C × SU(2)L × U(1)Y .
The subscripts C,L, Y refer to color
(strong/chromodynamic), weak Left helicity
isospin and a weak hypercharge Y respec-
tively. Correspondingly there are gauge
bosons; octet of gluons, electroweak bosons
W i, i =1, 2, 3 and W 0. W 3and W 0 combine
to form two orthogonal combinations, of
which one is the familiar electromagnetic
photon γ, call it A and the other neutral
weak boson Z. Together with W 1±i2 = W±,
we have weak intermediate bosons that
mediate both neutral and charge changing
weak interactions.

The Lagrangian density of the Standard model is given as:

L = −1

4
Ga
µνG

µν
a −

1

4
W i
µνW

µν
i −

1

4
W 0
µνW

µν
0

−QLγ
µ(∂µ − ig3λaGa

µ − ig2
τi
2
W i
µ −

1

6
ig1W

0
µ)QL

+uRγ
µ(∂µ − λaGa

µ −
2

3
ig1W

0
µ)uR + dRγ

µ(∂µ − λaGa
µ +

1

3
ig1W

0
µ)dR

+ψLγ
µ(∂µ − ig2

τi
2
W i
µ +

1

2
ig1W

0
µ)ψL + eR(∂µ + ig1W

0
µ)eR

Volume 28, No. 3 Article Number : 6. www.physedu.in



Physics Education 6 Jul - Sep 2012

where Ga
µν = ∂µG

a
ν − ∂νGa

µ + fabcG
b
µG

c
ν , with

a, b, c taking values 1, 2..8, fabc being the
structure constants of SU(3); W i

µν = ∂µW
i
ν−

∂νW
i
µ + εijkW

j
µW

k
ν , here i, j, k assume values

1, 2 and 3, εijk are structure constants for
SU(2); and W 0

µν = ∂µW
0
ν − ∂νW 0

µ .

Ga
µ is the octet vector field of of Gluons of

QCD. W±
µ = W 1

µ±iW 2
µ are the charged inter-

mediate vector bosons that couple to charge
changing weak currents, responsible for ra-
dioactivity (β decays); and the vector bosons
W 3
µ and W 0

µ combine to become the conven-

tional photon field Aµ(=
g1W 3

µ+g2W
0
µ√

g21+g
2
2

) and the

orthogonal neutral gauge boson Zµ that is
responsible for neutral weak current inter-
actions. The coefficients of g1 in the equa-
tion above reflect the weak hypercharge Y
of the fermion field in that term. The cou-
pling parameters gi, as discussed in the pre-
ceding section on account of the renormal-
ization process, get promoted into scale de-
pendent functions gi(Q

2), where Q2 is the
square of the momentum transfer used to
probe and their evolution as a function of Q2

depends on what is known as the beta func-
tion [∂g/∂logQ2 = β(g)], of the respective
symmetry group. A characteristic feature
of these functions is that they make g3 and
g2 logarithmically decrease as Q2 increases,
[while in contrast we have logrithmically in-
creasing property for g1] reflecting thus the
anti-screening of the non-abelian charges. At
extremely short distances, which need high
momentum transfers and hence high energies
to probe, the coupling is asymptotically van-
ishing. See the sketch in fig 1. Quarks color
interactions are then small, amenable to per-

turbation treatment. Quark interactions are
said to enjoy asymptotic freedom [6], [7] Deep
inelastic scattering (high energy, high mo-
mentum transfer) by e or µ off nucleon targets
revealed that quarks inside the nucleons can
be regarded as free and non interacting!

Notice that there is no term quadratic in
the gauge fields, such as Ga

µG
µ
a , W i

µW
µ
i or

W 0
µW

µ
0 , signifying that gauges bosons are like

massless photons. There is no way to intro-
duce a gauge preserving mass term. How-
ever, if the intermediate vector boson is mass-
less, this will make the weak radioactivity a
long ranged effect like electromagnetism! The
mechanism to give masses to gauge bosons
(without ruining the gauge symmetry), so
that weak interactions remain short ranged is
the celebrated Higgs mechanism. It achieves
two outcomes. It makes the symmetry hidden
(also referred to as spontaneously broken) in
a way that the solution of the theory reflects a
lesser symmetry (in our case SU(3)C×U(1)em
than that of the underlying Lagrangian. The
gauge bosons associated with the so called
hidden symmetries, for us W± and Z, ac-
quire mass. Further through the coupling the
Higgs field has with all matter fermions, it
also generates their masses. The minimum
Higgs scheme calls for a new complex (weak

isospin 1
2
) doublet scalar field Φ =

(
φ+

φ0

)
,

which is a color singlet and carries one unit
of weak hypercharge Y . Together with its
hermitean conjugate, we now have 4 scalar
fields added through the Higgs phenomenon,
with Lagrangian density (note wrong sign of
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Φ†Φ mass term)as

LHiggs = −[DµΦ†DµΦ− µ2(Φ†Φ) + λ(Φ†Φ)2]

where the covariant derivative term

DµΦ = (∂µ − ig2
τi
2
W i
µ −

1

2
ig1W

0
µ)Φ

The shape of V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2,

Figure 2: V (Φ) vs Φ illustrating degerate vac-
uum states

resembles a mexican hat as shown in the fig-
ure 2. On extremizing V (Φ), we find 〈Φ〉 = 0
as an unstable maxima and a degenerate set
of minima, each of which can be the vacuum
state, all characterized by a nonzero value of
the Higgs field. We may choose the vacuum
state to be given by

〈Φ〉 =
1√
2

(
0
v

)
,where v =

µ√
λ
.

It is easily verified that the unbroken gen-
erator is I3L + Y/2, that links the set of vac-
uum states and we associate it with the elec-
tromagnetism. Presence of non-vanishing v

gives masses to W± and Z that are indeed
observed at CERN with mass values 80 GeV
and 91 GeV respectively. By a field redefi-
nition we can demonstrate that three of the
four Higgs fields metamorphose into the lon-
gitudinal modes of W± and Z bosons (now
that these gauge bosons are massive they
should have all three spin polarizations as
against there being only two transverse po-
larizations for (massless) radiation), leaving
one surviving mode, the recently discovered
[1],[2] Higgs boson at 125 Gev.

Higgs coupling with the fermions (Yukawa
interaction) provides masses for all fermions,
such as quarks and leptons, the value of the
mass being proportionate to the coupling pa-
rameter. Yukawa terms in the Lagrangian
that give fermions their masses as well as
their interactions is given by

Lyukawa = huQLΦuR+hdΦdR+heψLΦeR+h.c..

hu, hd and he are free parameters and are pro-
portional to the relevant quarks and electron
masses. Masses of all fermion constituents
and vector bosons (the quanta that mediates
forces) derive their mass values as a conse-
quence Higgs phenomenon. This is the sense
in which it is claimed that Higgs field, that
pervades all space generates mass for the con-
stituents in the universe.

We wish to point out that this is a bit of
an exaggeration, given the fact the mass gen-
erated by the phenomenon yields very tiny
values (2.15, 4.70 and 0.51 MeV) for u, d
quarks and electron, which form almost all
stable matter found in the universe. The bulk
of mass for nucleons, in fact, arises from a
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different beautiful phenomenon and it is re-
markable that this is a consequence again of
the quantum principle. Recalling that spin
(half integral angular momentum) of fermion
has no classical analogue, we may assert that
mass and spin are quantum attributes with
little underpinnings in classical Physics.

3 Mass out of Nothing

We may suspend for a while the Higgs phe-
nomena and deal with just strong and elec-
tromagnetic regime. The dynamics is gov-
erned by SU(3)C × U(1)em gauge theory
that survives electroweak symmetry break-
ing. While electrodynamic forces govern the
atomic structure of all elements and thereby
all of chemistry, QCD is responsible to give
us the nucleons and mesons as color neutral
bound states of quarks with gluons as carriers
of chromodynamic forces. Further, the resid-
ual (van der Walls like) interactions mimic
the strong short range nuclear forces among
nucleons and mesons build up the various
nuclei, much like molecules are built out of
electrically neutral atoms. The non-abelian
gauge group is bestowed with asymptotic
freedom (or vanishing coupling at very high
frequencies or very short distances) and re-
ciprocally confinement of color. Quarks and
Gluons, that carry color quantum number are
not to be seen as asymptotic states and are
permanently confined within the color sin-
glet modes. Mesons and Baryons as solu-
tions of the dynamics constitute the spec-
trum of states. Their masses and the tran-
sition rates among them can be computed in

QCD, just like QED provide ab initio atomic
and molecular spectroscopy. Extreme preci-
sion in atomic spectroscopy and optics have
been possible as a consequence of the develop-
ment of high precision perturbative computa-
tion, since the small dimensionless coupling
parameter α = 1/137 renders reliability and
order by order convergence of the computed
quantities. In nuclear physics we do not have
a small parameter to help us. However, in the
underlying strong interaction, which we now
recognize as emerging from QCD, it is pos-
sible to invoke perturbative QCD for a short
distance (high Q2) probe and use it to find
both the scaling and quantitative scaling vi-
olation in deep inelastic scattering of leptons
off protons and neutrons in the nuclei. This
theory, however, is neither useful at predict-
ing the low energy spectrum of baryons and
mesons, nor determine the wave-functions of
quarks in the hadrons. We need turn to non
perturbative attempts to understand these
features of QCD.

Lattice gauge theory reconstructs the the-
ory on a space-time made up of lattice, such
that as the lattice spacing is reduced and
vanishes, the continuum theory is recovered.
Methods of statistical mechanics are used
to compute the various correlation functions
and extract values for physical observables,
such as masses of the bound states and reso-
nant states, transition rates etc. of the the-
ory, given just a few parameters that define
the theory. We refer the reader to several re-
view articles available (see [8]) and give here
just an overview of what goes into the theory
and the outcome thereof.

First, if there is no Higgs mechanism and
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no mass scales in the theory, how do we gener-
ate mass for the observed state? While clas-
sically the theory is scale invariant and hence
has no mass parameter in the theory, when
we deal the problem in quantum regime, a
scale gets introduced as a process of regu-
larization and renormalization. The coupling
constant becomes a scale dependent parame-
ter (Sidney Coleman called it a dimensional
permutation [9]). Scale invariance now im-
plies that as scale is changed there is a defi-
nite way all measured observables change. It
also serves to shield intrinsic divergences, if
any, in the theory to remain hidden in unob-
servable parameters of the theory. This pro-
vides us with a prescription to compute all
measureable quantities in terms of a few pa-
rameters of the theory. QCD is defined with
an intrinsic reference scale ΛQCD at around
100 MeV, which we determine experimentally
from the perturbative analysis of the deep in-
elastic scattering of leptons off nucleon tar-
gets [8].

The ingredients of theory is that we have
a SU(3) color gauge theory endowed with a
fermion content made up of three generations
of quarks. After the Higgs phenomenon we
have quarks acquiring mass and phenomeno-
logical observation is that there are three
light quarks and three heavy quarks. Of these
u and d quarks are very light, c, b, t quarks
are very heavy and s quark in the same order
as ΛQCD. We may begin with a toy model
(Wilczek calls it QCD lite), setting all light
quarks u, d and s massless and c, b and t in-
finite. The heavy flavours naturally decou-
ple; and the three light massless quarks in the
computation should give us a flavour SU(3)

spectra. Particle phenomenology of hadrons
reflect an approximate flavour SU(3) (with
isospin I and hypercharge Y (= B+S)) sym-
metry, known to consist of a pseudoscalar
meson octet (π±, π0, K±, K0, K0, and η),
a vector meson nonet (ρ±, ρ0, K∗±, K∗0,
K∗0, ω and φ), a baryon octet (p, n, Λ, Σ+,
Σ0, Σ−,Ξ0 and Ξ−) and an excited baryon
decimet (∆++, ∆+, ∆0, ∆−, Σ∗+, Σ∗0, Σ∗−,
Ξ∗0, Ξ∗− and Ω−) as the prominent low en-
ergy spectra. Lattice gauge theory computa-
tions are able to quantitatively postdict this
spectra. This computation has no input pa-
rameters, save the notion that g3(Q

2) de-
pends on QCD scale ΛQCD, which is obtained
perturbatively from studying scaling viola-
tions of proton structure functions in deep
inelastic scattering. In these experiments
one uses weak and electromagnetic probes
(e, µ, ν) to get the hadronic structure func-
tions, whose Q2 dependence gives us the scale
of QCD. With only ΛQCD as input, we make
a statistical analysis of the system in a lat-
tice framework of QCD. They yield a value
Mp,n ∼ 890 MeV, thus almost accounting for
95% of its mass as arising out of mass-less
quark gluon radiation reaction.

4 Realistic hadron

spectra from Lattice

QCD

Lattice Gauge Theory aims to study Quan-
tum Chromo Dynamics on a sufficiently large
space-time (with periodic boundary condi-
tions in all directions) regarded as a 4 dimen-
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sional grid of volume L4 with lattice spacing
of length a. A space time point x is speci-
fied by four integers through xµ = nµa and
the limit a → 0 and L → ∞ lets us pass
to continuum theory. Quark degrees of free-
dom qf (x), f = u, d, .. reside on the lattice
points and the gauge fields, gluons and pho-
tons, within Uµ̂(x) = exp(i

∫ x+µ̂
x

Gµ̂(x′)dx′)
on the links (numbering 8 for each site) that
join a pair of neighbouring lattice sites. One
then defines the partition function as the in-
tegral over all field variables of the Standard
Model action of Gluons and Fermions;

S = SG + SF .

Z =

∫
DUDψDψ exp(−S[U, ψ, ψ])

Statistical averaging of all possible config-
urations of the fields on the lattice allows us
to simulate QCD and compute sampling of
various field configurations on it. From these
it is possible to extract experimentally mea-
sureable quantities. Powerful computational
algorithms back up the effort to extract from
it the outcome of the particle spectra and var-
ious transition amplitudes.

We saw in the preceding section computa-
tions with exact chiral invariance (with mass-
less quarks) to obtain nucleon mass as 890
MeV. Next step is to let the parameters for
quark masses mu = md and ms free. In
a Full QCD computation recently reported,
BMW Collaboration, [10] used state of the
art lattices with L/a = 64 and thus the
space time has N = 644 = 16, 777, 216 sites.
Computation involved matrices of dimension
12N × 12N and storing about 4× 1016 com-

Figure 3: Spectrum of low energy spectra, com-
puted from first principles in QCD; source [10]

plex numbers. Adjoining figure illustrates the
results. With pion (π), kaon (K) and cascade
baryon (Ξ) masses as input values, we get the
values of ρ, K∗, N , Λ, Σ, ∆, Σ∗, Ξ∗ and Ω.
We have a remarkable agreement in the de-
scription of the observed set of pseudo scalar
mesons, vector mesons, baryons and excited
baryon states. Nucleon is, as expected, at 940
MeV.

Lattice characterization of QCD, should
not be seen as an approximation to con-
tinuum space-time, but (generically) an un-
avoidable interim part in the definition of the
theory. The procedure is intrinsically gauge
invariant since it deals with gauge invariant
content all the time, unlike in a perturba-
tive treatment, where a choice of a gauge
has to be made and care must be exercised
to ensure that the final outcome is gauge in-
variant. This Lagarangian - regulated renor-
malized extrapolation - respects confinement
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of color, chiral symmetry and scale invari-
ance limits adequately. We are able to ad-
dress many features of QCD in the low en-
ergy regime of hadron physics that are avail-
able for experimental study; such as decay
constants fπ, fK ; semileptonic form factors
that are appropriate for computing B →
Dlν,Klν, πlν; l = e, µ etc. To begin with one
computes in the so called quenched approx-
imation, in which quark degrees of freedom
are ignored in order to keep the ‘cost’ of com-
putation in terms of available computing re-
sources kept within manageable level. As tera
and penta flop speed in computing get devel-
oped more ambitious project of ‘full’ QCD
are possible as a major global collaborative
endeavour. We will paraphrase Wilczek[4] in
identifying the conceptual roots that shaped
the outcome as represented in the fig. 2.
Special theory of Relativity appears to de-
mand that the interactions are local; the lo-
cal interaction bring in fields with arbitrar-
ily large frequencies (energy) and short wave-
lengths (high momenta) that may cause di-
vergence that will render the calculations un-
reliable. Non abelian gauge theories avoid it,
by virtue of the property of asymptotic free-
dom that weakens the coupling of the dan-
gerous modes. This happy result occurs only
for the gauge invariant minimal couplings as
are considered in these exercises.

QCD, a gauge theory based on gauge group
SU(3) color triplet quarks and color octet
gluons, both degrees of freedom remaining
confined in gauge singlet hadrons is highly
constrained, supporting very few free param-
eters. A mass parameter for each flavor
quark (together with flavor mixing angles of

Cabibbo -Kobayashi Masakawa matrix) and
just an overall coupling strength is all that
one is allowed. Since asymptotic single quark
states are never seen, the mass parameters
of quarks are to be seen as just inputs that
figure in getting the masses of hadrons. The
coupling αs(Q

2) = g3(Q
2)/4π~c is large when

Q is less than or of order ΛQCD and fluctua-
tions in gluon dominates the dynamics. Bulk
of the nucleon mass, we may presume, thus
gets built on a tiny chiral symmetry breaking
mass of u and d quarks by the gluon dress-
ings carrying most of energy associated with
the state. This is reminiscent of what was
indeed an old speculation of Lorentz as the
origin of electron mass. He associated rest-
mass/energy of the electron with the energy
in the form of Electric field residing in the
space, 1/(2ε0)

∫
d3xE2(x), sort of radiation

reaction on the motion of the electron. For a
point charge this will be indeed divergent, but
is finite for an electron with a distributed size
of range λ = ~/mc, its Compton wavelength.
We may use this to fix the radius of electron
(which turns out be of order αλ). While this
is not anymore regarded as the origin of elec-
tron mass, (now that α is no longer a fixed
constant and the Higgs coupling rather than
finite size of electron as dictating it) we find
that the hadron masses seem to possess some
features of gluonic radiation reaction as gen-
erating bulk of the mass, in a somewhat sim-
ilar picture as that of Lorentz. It is remark-
able that Lattice framework of QCD pro-
vides dependable ab initio prediction, thanks
to high speed computing resources and very
smart dedicated algorithms available now for
such a computation.
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5 Summary

While classically mass is an extrinsic kine-
matic parameter that signifies the amount of
matter, quantum regime makes mass a dy-
namical input. This feature for mass has two
somewhat different origins. First, we observe
that Quantum Chromo Dynamics (QCD),
that governs interaction among quarks and
gluons, is responsible for the mass to pri-
mary nucleons, the most abundant source of
visible matter in the universe. Next, apart
from the u and d quarks (and the leptons
νe and e) we need at least two more gener-
ation of quarks and leptons to complete the
matter content. All of them were abundant
and in a dynamical equilibrium at the very
early stages of the universe, but now most
(except quarks and leptons of the first gen-
eration) are only seen as short lived interme-
diate particles. These as well as the weak
interaction-mediating bosons W± and Z get
their mass as a result of the coupling with
the Higgs scalar field. We emphasize that
both features point to the notion that mass
is essentially a quantum consequence, which
has no classical analogue.
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Abstract 

A simple method to estimate the pressure of a gas (P) inside a balloon is described.  The basis of this 
method is derived from the principle of floatation – a principle most high school students would be familiar 
with.  In this article we also describe the dynamics of the gas filled balloon as it traverses the depth of the 
liquid in the vessel.  The dynamics of the balloon is described first by neglecting the effects of resistance 
through the liquid.  The effect of resistance or drag is taken into account in subsequent sections of this 
paper.  Expressions for the pressure of the gas in the balloon, the velocity (v) and acceleration (a) at a given 
instant and the terminal velocity (vterminal) of the balloon are derived. 
 
 

Introduction  

 

Simple phenomena can very often hide some very 

interesting physics and studying such phenomena 

can lead to a greater appreciation of how 

seemingly disparate branches of physics come 

together and give rise to the phenomena in 

question.  This paper elucidates the physics of 

linear motion through a resistive media and 

demonstrates how it can be used to determine 

estimates of gas pressures.  The simple experiment 

described brings together kinematics and 

thermodynamics.  It is believed that the 

demonstration of such connections would lead to 

greater appreciation amongst younger readers in 

particular of general physical principles. 

 

Case 1 : Resistance due to Medium Ignored 
The balloon containing the gas whose pressure is 

to be determined is immersed in a liquid (eg 

water) whose density is known (dw) and held there 

with the help of an angled thin rod.  The depth to 

which it is immersed (h) is measured and the 

moment it is released, a stopwatch is started and 

the time (t) the balloon takes to reach the surface 

when released is measured. 

 

In calculating the pressure of the gas within the 

balloon, the following simplifying assumptions are 

made; 

 

 The resistance experienced by the balloon 

as it makes its way to the surface of the 

liquid is negligible.  This is justified by 

noting that the resistive force is 

proportional to the velocity of the balloon 

at any given instant.  As the balloon only 

travels the depth of the vessel, the velocity 

acquired would be small. 

 The weight of the balloon is negligible 

compared to the up thrust (U).  This can be 

easily seen by noting that the numerical 

value of the volume of the balloon is much 

greater than the mass of the balloon. 

 The gas within the balloon behaves as an 

ideal gas.  This assumption is primarily for 

the purpose of calculational ease.  It has to 

be emphasised that most gases only exhibit 

ideal behaviour at high temperatures and 

low pressures.  However, as is evident 
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from the title of this paper, the 

experimental method described provides 

an ‘estimate’ of the pressure of the gas 

within the balloon.  While this 

experimental method may not provide an 

exact value for the pressure, we believe 

that it in no way lessens the educational 

value it provides to the reader by 

connecting seemingly disparate areas of 

physics. 

 

The mass of the gas (M) in the balloon will 

experience an upward force when immersed in the 

water containing vessel giving it an upward 

acceleration (a).  Acceleration due to gravity is 

represented by ‘g’.  Once the relevant 

measurements have been made, the density of the 

gas (dg) can be estimated as follows; 

M a = V dw g – M g 

V dg a = V dw g – V dg g 

a =  

Applying the second equation of motion to the 

balloon travelling the depth of the vessel (h); 

h =   

h =    

dg =       (1) 

 

Once the density of the gas has been calculated 

from the above equation, the ideal gas equation is 

modified as follows (P = pressure, V = volume, n 

= number of moles, M = mass of gas, m = molar 

mass of gas, T = temperature of gas, R = gas 

constant); 

P V = n R T 

 =  

P =     (2) 

Substituting equation 1 in equation 2 we obtain; 

P  =    

The temperature of the gas is assumed to be the 

same as the room temperature.  The method 

described above can be used even if the gas filled 

balloon is suspended in a denser gas (eg helium 

filled balloon in air).   

 

Case 2 : Resistance of liquid taken into account 
 
This part of the theory has an extra level of 

complexity to it and it will be shown that an 

expression for the acceleration is only obtained in 

a transcendental form.  Therefore a modification 

of the experimental method is required.  We start 

by looking at the forces acting on the balloon as it 

travels through the liquid.  We obtain, 

M a = U – Mg -   (3) 

The last term in equation 3 is the drag or 

resistance force experienced by the balloon as a 

result of its motion through the liquid.  This 

expression for the drag is known as the drag 

equation
1
 where ‘A’ is the cross sectional area of 

the balloon (which is taken as circular) and ‘C’ is 

the drag coefficient (0.47).  It must be noted that 

the drag is proportional to the square of the 

velocity and therefore when the balloon is 

stationary the drag is equal to zero.  This fact is 

used to modify the experimental setup. 

 

The balloon is immersed fully in the liquid, but 

this time a sensitive spring balance is inverted and 

attached to the base of the balloon.  The reading 

obtained would be equal to the upward force 

exerted on the balloon when it is stationary or just 

before it is released.  Equation 3 then reduces to; 

        M a = U – M g       (4) 

Substituting the volume and respective densities 

into the above equation we get; 

V dg a = V dw g - V dg g 

This simplifies to; 

a =  

As this is the acceleration of the balloon, the force 

acting on the balloon which can read off the spring 

balance is; 

F = Vdg  

From this equation, an expression for dg can be 

obtained as; 
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dg  = dw –   

This expression for the density of the gas can be 

substituted into equation 2 to obtain an expression 

for the pressure of the gas in the balloon. ie 

P = –    (5) 

 

Dynamics of the Balloon with 
Resistive Forces: 
 

The equation of motion of the balloon is given by 

equation 3; 

M a = U – Mg -  

Replacing the mass terms with the  product of 

volume and the respective densities and 

expressing the volume of the balloon in terms of 

its cross sectional area (A), subsequent 

rearrangement results in; 

a =  -  

where ‘r’ is the radius of the spherical balloon.  As 

acceleration is defined as the rate of change of 

velocity, the above equation can be simplified to 

give; 

   =         (6) 

This differential equation is of the form; 
                    (7) 

Where A =    and B = . 

 

If we define p2 =  and given that v = 0 at t = 0, 

equation 7 can be solved by the method of partial 

fractions to give; 

v =  p   (8) 

This expression gives the velocity of the balloon at 

any instant of time.  Differentiating this equation 

with respect to time we obtain the acceleration; 

  

   a =   -     (9) 

 

The terminal velocity is the constant velocity 

acquired by the balloon when the resistive forces 

equal the upward acting force on the balloon.  The 

terminal velocity can be obtained from equation 8 

by taking the limit of the expression as ‘t’ tends to 

infinity.  This would give; 

vterminal = p 

 

From the definition of p, we obtain; 

vterminal =  

 

Taking the limit of equation 9 as ‘t’ tends to 

infinity we note that 

a= 0 

This is accordance with the balloon acquiring a 

‘constant’ terminal velocity. 

 
Conclusion: 
 

This paper describes a simple experimental setup 

that can be easily replicated in the classroom for 

determining the pressure of a gas inside a balloon.  

The experiment is described and adapted for when 

resistive forces are taken into account.  In 

addition, we work out the dynamics of the balloon 

as it moves through the resistive medium and 

obtain expressions for its velocity, acceleration 

and terminal velocity.  Since the theory of the 

method described ties together seemingly 

disparate areas of physics such as floatation, 

kinematics and gas laws, it can be used to 

illustrate to students, the wide applicability of 

physics and how it can be used to solve problems 

with very basic equipment.  This could potentially 

stimulate interest among students and promote 

learning. 
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