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Abstract 
Student generally observe dielectric breakdown of air 
during  thunderstorm  in  the  form  of  cloud  to  cloud 
and  cloud  to  ground  lightning  bolts.  Same  can  be 
realized  in  the  classroom  or  laboratory  experiment 
with  the help of electronic waste of old cathode  ray 
tube TV set. This paper demonstrates the usefulness 
of electronic waste  to demonstrate multiple physics 
concepts  to  secondary  and  higher  secondary 
students.      
 
 

1. Introduction 
Occurence of lightning during stormy weather is very 
common. In fact such weather condition inspired 
Benjamin Franklin to perform his famous kite 
experiment in 1752 [1]. This experiment proves that 
the thuderclouds are electrified and lightning is just an 
electrical discharge.  In 1906 Russell Alexander 
reported experiments for measurement of dielectric 
strength of air which was found to be around 38 
kV/cm [2]. Many experiments were conducted after 
that for confirming the dielectric strength of 30 kV/cm 
[3]. Sphere gap method is one of the established 

standard method for measuring air breakdown and 
electric field [4]. Under normal temperature and 
pressure condition the current conduction in 
atmospheric gases is approximately equal to 10-10 
A/cm2 which may be because of generation of 
minuscule amount of ionized air due to interaction 
with cosmic radiation and radioactive substances.  
Classroom demonstration of dielectric breakdown of 
air is a challenge in itself as it require the need of high 
voltages and corresponding safety issues. Students 
especially secondary and higher secondary are found 
to be curious about the shape, size and color of 
electric discharge.  Moreover, types of matter is a part 
of curricula of secondary school education. They 
learn, Plasma as the fourth state of matter in this part. 
During the air breakdown plasma is forming for a very 
short duration ranging in few nanoseconds which 
substantially increase electrical conductivity. 
Classroom demonstration of this increase in the 
electrical conductivity is possible if we could 
successfully shows the dielectric breakdown of air. 
Hence in this paper, we demonstrate dielectric air 
breakdown using electronically waste product i.e. an 
old cathod ray tube (CRT) television (TV) set.     

  

 

2. Experimental Set up and Results  

An old CRT TV set with remote was procured from 
the market at a very cheap price. Before making 

purchase, we have ensured that the high voltage (HV) 
plate connected to CRT is intact and in working 
condition. This particular HV plate was giving output 
of 18 kV. After procuring, HV plate was taken off the 
set carefully. Fig. 1 shows the image HV plate. 
Details of the construction and working of TV plate is 
as follows. In the colour T.V plate different sections 
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Abstract 
LASER,  the  noble  invention  of  19th  century  has 
turned  as  a  key  solution  in  several  scientific  and 
engineering domains. Its prominence is well known 
by diverse applications ranging from the ground use 
to the space use. One of such potential applications 
of the laser is in use of sample characterization i.e., 
the  elemental  composition  study  of  a  target 
sample.    Past  two  decades  have  shown  its 
simplicity,  ability  and  versatility  in  performing 
elemental  analyses  of  samples  on  ground  for 
pollutant analysis,  impurity estimations, hazardous 
material  detection  etc.,  from  close  by  and  for 
remote distances. This technique is known as ‘Laser 
Induced Breakdown Spectroscopy (LIBS)’, in which a 
high‐intense  laser  zaps  the  sample  surface. Recent 
decade  has  witnessed  a  rejuvenated  interest  in 
application  of  the  LIBS  for  planetary  surface 
exploration  missions  to  carryout  in‐situ  and/or 
stand‐off  chemical  analysis.  The  space  agencies; 
NASA,  ISRO,  JAXA  and  ESA  are  channelizing  their 
efforts in realization of an instrument based on LIBS 
to  study  planetary  surfaces.  This  article  primarily 
sheds  light  on  concepts  of  LIBS  technique  along 
with  details  in  brief  on  the  realized  experimental 
bench‐top  test  setup  and  carried  out  in‐situ 
investigations on terrestrial soil samples in ambient 
air based on the micro‐LIBS approach.  
 

1. Introduction 
The theory of stimulated emission of radiation 
proposed by Einstein early in 1917 [1], made the 
laser existence possible. Since then, the lasers have 
contributed to humanity as a powerful scientific tool 
for expanding human knowledge and in its many 
applications that help people directly. In the last 5 
decades, they have become ubiquitous, finding 
utility in thousands of highly varied applications in 
every section of modern society, including consumer 
electronics, information technology, science, 
medicine, industry, law enforcement and the 
military. It has assumed many forms ranging in size 
from tiny semiconductor devices no bigger than a 
grain of salt to high-power instruments as large as an 
average living room.  The benefits of lasers in 
various applications stems from their properties such 
as coherency, high monochromaticity and capability 
for reaching extremely high powers. This article is 
associated with the last property of laser beam that 
can be employed to evaporate sample surfaces for 
simultaneous multi-element analysis of matter in 
any of its diverse forms, namely, solid, liquid or gas. 
Analytical techniques based on emission of 
electromagnetic radiation produced after excitation 
of atoms, ions or molecules present in a sample have 
been around for quite a while. Usually, these 
techniques employ some type of energy source to 
promote the species present in the sample to higher 
energy levels from where they decay, emitting 
characteristic radiation that is collected, sent to a 
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wavelength selector and detected. However, some of 
the analytical techniques, namely, atomic absorption 
spectroscopy, mass spectroscopy, EDAX (Energy-
Dispersive X-ray Spectroscopy), XFS (X-ray 
Fluorescence Spectroscopy), APXS (Alpha Proton 
X-ray induced Spectroscpy); cannot deal directly 
with the original samples and sometimes some type 
of sample treatment must be performed prior 
analysis. Although the measurement step is rapid, 
precise and sensitive, sample treatment is often 
slow, cumbersome and prone to induce errors due to 
contamination and losses. Furthermore, the necessity 
of sample treatment limits the use of these 
techniques in the field.  A requirement has been 
increasingly under investigation to match the 
interests of process analytical chemistry, 
environmental chemistry, forensic analysis, 
archaeological analysis, impurity analysis in 
ornaments and many others areas of science that 
present effectual arguments to realize an instrument 
that offer noncontact of sample under investigation. 
This paper describes a modern analytical technique 
based on atomic emission spectroscopy that employs 
a short pulse of high peak power radiation generated 
by a laser focused on a sample, in order to attain 
representative vaporization and excitation to create 
the ‘plasma’, which during its cool down emanates 
signatures of the elements present in sample in form 
of line emissions. This method is popularly known 
as ‘LIBS’ (Laser Induced Breakdown 
Spectroscopy), however in few of literature work 
and review books it is named as LIPS (Laser 
Induced Plasma Spectroscopy), LAAS (Laser 
Ablation Assisted Spectroscopy) [2,3]. 
 
2. Laser  Induced  Breakdown 

Spectroscopy (LIBS) 
LIBS, is one of the atomic emission spectroscopy 
(AES) techniques that uses a short duration laser 
pulse as an excitation source.  Figure-1 shows 
artistic representation of the basic phenomenon 
involved in LIBS technique. As shown in the figure, 
high-powered laser pulse is focused on a sample to 
create a plasma or laser spark. This spark imparts 
enormous power density (typically in order of few 
GW/cm2) on interacting with the target surface that 

heat up the surface, which in turn cause ablation, 
vaporization, atomization and ionization of the 
target. Thus the formation of micro-plasma in the 
focal volume of the laser pulse that excites the 
ablated atoms does occur.  Thus, in the first instants, 
the atomic and molecular structure of the sample 
will be broken and heated, causing vaporization of a 
small fraction of the material (from hundreds of ng 
to a few µg). This vaporized material may contain 
free neutral atoms, ions, molecular fragments and 
free electrons. Further the incoming energy of the 
same laser pulse can sustain high temperature 
plasma (> 10,000 K) in which the vaporized species 
can be excited and return later to their less energetic 
levels by emitting electromagnetic radiation. The 
emitted radiation is analyzed and the intensities are 
recorded by feeding the radiation in to a high-
resolution spectrograph that registers the spectra.  
The LIBS spectrum contains large, redundant and 
complex information describing the elemental 
composition of the target. Each element has its 
unique emission lines working as the “fingerprint” 
of the element. After being spectrally resolved, the 
wavelength of the emission lines is used to identify 
the existence of the elements (qualitative analysis) 
and the background-subtracted peak intensity at the 
chosen emission line wavelength is used to quantify 
the elemental composition of the target (quantitative 
analysis).  
 
 
 
 
 
 
 
 
 
 

FIG. 1: Artistic representation of laser ablation phenomenon 
(Courtesy: https://blogs.maryville.edu) 

Recent years has shown a rejuvenated interest to use 
laser-induced breakdown spectroscopy (LIBS) as a 
field-deployable tool for elemental analysis. The 
analytical interest of the LIBS technique has resulted 
because of the multi-element capability, almost non-
destructive approach, fast response and capability of 
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in situ analysis This technique has dominated the 
analytical atomic spectroscopy scene much like 
mainly because of the significant improvements that 
have been achieved in both laser and detector 
technology.  The last 36 years have witnessed the 
results of the efforts made by a number of 
companies and research laboratories towards the 
development of commercial instruments, of new 
applications and of theoretical models providing a 
profound insight into the fundamentals of LIBS and 
associated phenomena. In addition to the application 
of LIBS for ground applications, the last half decade 
has imprinted the adaptation and realization of LIBS 
based instruments for space applications aiming at 
surface geochemistry by means of landers and/or 
rovers on the Mars and the Moon [4, 5].  In 
particular, through repeated irradiation over the 
same spot, depth profiling of the samples is also 
possible. This aspect is s significant in planetary 
surface analysis in order to investigate the layer 
structured composition, if exist on planetary surface 
as well as aid in removing dust layers on target 
samples prior acquisition of true plasma emission 
spectrum. 
 

3. Typical instrumentation aspects 
The essential requirements for making LIBS 
measurements are a laser source (as an excitation 
medium), an optical system (to focus and transmit 
the high peak power laser radiation to the sample 
and to collect the plasma light emanating from the 
sample surface; diverting it to the spectrograph) and 
a spectrometer (to capture the plasma emission). 
Figure-2 shows the block diagram of LIBS test setup 
realized during experimental investigations at 
author’s end.  

FIG. 2: Cartoon diagram of a typical LIBS setup 

Though, there are varieties of sources that can 
generate plasma, laser has been considered as a 
source because of its ability to generate the majority 
of its output energy within a very narrow spectral 
range. Analytically useful laser plasmas can be 
generated with infrared, visible and ultra-violet 
wavelengths. Properties of lasers important for LIBS 
include wavelength, pulse energy and focused pulse 
power density. A key requirement of the laser and 
associated optical transmission system is that the 
power density at the sample surface shall be 
sufficient enough to produce both ablation of the 
sample and the formation of luminous plasma. 
Typical power density used for LIBS approach 
range from 0.4 GW/cm2 to 4 GW/cm2. Such high 
power densities can easily be achieved using a 
pulsed and q-switched laser having moderate pulse 
energies. Pulse width typically used for LIBS is 
found to be in the range of 5-20 ns. With such pulse 
durations, a mill-joule laser in range of 3 mJ – 10 mJ 
coupled with a focusing optic system than can 
generate a spot size in range of 50 µm to 100 µm 
(diameter) is sufficient enough to produce the 
required powered density on the target sample 
surface to perform close by distance analysis (~ 
from 200 mm to 300 mm).  Traditional LIBS 
systems use either a lens-based or a mirror-based 
system to collect the plasma light from the target 
surface. The collected light is either can be directly 
send to the entrance slit of spectrometer or 
transmitted via fiber optic cable. The spectrometer is 
basically a dispersion system that splits the collected 
light in to discrete wavelengths. Typical spectral 
range for LIBS application can be from 200 nm to 
800 nm.  The dispersed light is then guided to an 
opto-electronic detector (basically a linear/area CCD 
or a photo detector array) and processing system that 
reads the signal and displays the output in form of a 
spectrum (signal versus wavelength). 
 
4. Realized  bench‐top  experimental 

test‐setup and investigations  
This section of the article sheds light on the carried 
out experimental investigations in author’s 
laboratory, based on micro-LIBS approach (means, 



Physics Education                                                                                                                                 Oct – Dec 2017
 

33/4/02                                                                                         4                                                                         www.physedu.in 
 

200 300 400 500 600 700 800
0

33

66

99

0

45

90

135

200 300 400 500 600 700 800

0

43

86

129

In
te

ns
ity

 (a
.u

)

 

In
te

ns
ity

 (a
.u

)

Wavelength (nm)

 SX0911

 

 DOLOMITE

In
te

ns
ity

 (a
.u

)

 

 

 JP1

 

Si
-I

 
M

n-
II

 
M

g-
II

 
M

g-
I 

Si
-I

 

C
r-

I 
M

g-
I 

M
g-

I 

N
a-

I 

O
-I

 

200 300 400 500 600 700 800
0

20

40

60

80

100

120

In
te

ns
ity

Wavelength

spot radius at the target surface is in range of 25 µm 
– 40 µm) for in-situ (from a distance of 200 mm 
from the target surface) elemental analysis of 
terrestrial soil samples.  A low energy pulsed laser 
operating at 1.54 micron is used as excitation 
source. The peak power of laser pulse is 0.4 
MW/cm2. As shown in Figure-2, the laser beam is 
passed through a 3-lens based focusing optics unit 
which is able to generate a spot size of 60 micron 
diameter on the sample kept at a distance of 200 
mm.  The plasma light is collected by means of a 
telescope unit (comprise a pair of lenses) and then 
diverted to the spectrograph system via a fiber optic 
cable of length 1 meter. The spectrometer consists of 
7-channel dispersion modules covering the 
wavelength range from 200 nm to 980 nm providing 
a spectral resolution of 0.1 nm.  Operation control 
data acquisition and data interpretation software 
modules of spectrometer are installed in to a 
computer system, which is mated to the 
spectrometer by means of interface modules. For 
experimental investigations nearly 60 types of 
standard and certified geochemical reference 
samples were procured in powder form in order to 
assess the in-situ ability of low-energy LIBS for 
qualitative and quantitative analysis. For a better 
approach of investigations, prior experiments all 
procured samples are segmented and classified as 
per their category, namely, rocks and stones, fine 
powder, clay, slag, soil, sand, sediments, ore and 
minerals etc. As shown in Figure-3, all these 
samples of pelletized into a circular disc of 13 mm 
diameter and 7 mm thickness for investigations. The 
inset figure at the bottom right corner shows the 
snap shot of procured samples. Experiments are 
carried out both on power as well as pellet stats of 
the sample to find out similarities and vice-versa. 
 
 
 
 
 
 
 
 

 
FIG.3: Powder and Pellets of geological sample GBW07112 

5. Results and discussions 
Figure-4 presents acquired plasma emission spectra 
of 3 geological samples, i.e., JP-1, Dolomite, and 
SX09-11, which vary in composition of elemental 
oxides, namely, SiO2, CaO, MgO, Al2O3, Fe2O3, 
TiO2, Na2O, K2O, Cr2O3 etc. 3-different intensity 
scales can be seen in the figure, due to the 
compositional variation of elements in samples. 
Each peak of the emission spectrum represents the 
presence of respective element. Obtained line 
emission wavelengths are compared with NIST 
atomic data base to find out the elements. Figure-5 
shows the processed and qualitative analyzed 
plasma spectrum of sample JP-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.4:  Plasma spectra of samples JP‐1, Dolomite and SX09‐11 

 
 
 
 
 
 
 
 
 
 

FIG.5: Qualitatively analysed plasma spectrum of JP‐1 sample 
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To assess the quantitative capability of micro-LIBS, 
a set of 6 samples data sets varying in ‘Mg’ 
concentration were analyzed.  

FIG.6: Calibration curve for ‘Mg’ in Geological standard samples 

Figure-6 shows calibration curve for magnesium 
element at emission wavelength of 279.5 nm. Log-
Log linear regression method applied to find the best 
R2 value.  The correlation found was R2 = 0.96, 
which is very satisfactory given the different 
compositions of samples. In order to test the 
robustness of the calibration curve, one reference 
materials was used: the JP-1. The reference value for 
‘Mg’ concentration is 44.6%. The value measured 
by low-energy LIBS is 43.06%.  Thus, a good 
agreement was obtained with the reference values 
within the measurement error. 
 
6. Conclusions 
Over the recent years, the laser induced breakdown 
spectroscopy (LIBS) technique has been applied in 

several fields. The main advantage of LIBS is the 
capability to obtain rapid and relatively non 
expensive measurements with minimum sample 
preparation. Varieties of commercial LIBS based 
instruments are being developed to suit the 
application requirement. LIBS applicability for in-
situ detection of elemental analysis is of current 
interest.  Suitability and analytical capability of 
LIBS for in-situ elemental analysis (at a distance of 
200 mm from sample surface) is explained in this 
work employing a compact laser source of 3-mJ 
energy. A good agreement was obtained with the 
standard values within the measurement error. 
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Abstract

Named after the Dutch Physicist Hendrik

Casimir, The Casimir effect is a physical force

that arises from fluctuations in electromagnetic

field and explained by quantum field theory.

The typical example of this is an apparent

attraction created between two very closely

placed parallel plates within a vacuum. Due

to the nature of the vacuum’s quantized field

having to do with virtual particles, a force

becomes present in the system. This effect

creates ideas and explanations for subjects such

as zero-point energy and relativistic Van der

Waals forces. In this paper I will explore the

Casimir effect and some of the astonishing

mathematical results that originally come about

from quantum field theory that explain it

along side an approach that does not reference

the zero-point energy from quantum field theory.

1 Introduction And History

The Casimir effect is a small attractive force
caused by quantum fluctuations of the elec-
tromagnetic field in vacuum (Figure 1). In
1948 the Dutch physicist Hendrick Casimir
published a paper predicting this effect [1,
2]. According to Quantum field theory,
a vacuum contains particles (photons), the
numbers of which are in a continuous state
of fluctuation and can be thought of as pop-
ping in and out of existence [3]. These par-
ticles can cause a force of attraction. Most
generally, the quantum Casimir effect is
thought about in regards to two closely par-
allel plates. As the plates are brought to-
gether, Casimir realized that between them,
only those virtual photons whose wave-
lengths fit a whole number of times should
be counted whilst calculating the vacuum
energy [1]. This leads to a decrease in en-
ergy density between the plates as they are
moved closer which implies that a small
force is drawing them together. similarly
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you can say that due to the smaller space
between the plates only smaller exotic par-
ticles can exist between them. From this dif-
ference in particles outside the plates and
those between the plates, a small pressure
change can be calculated which creates a
force pushing the plates towards one an-
other [3]. This force is the Casimir effect.

In 1996, the small force was measured to
within 5% uncertainty to that of the theoret-
ical prediction by Steven Lamoreaux [4]. All
bosons make a contribution to the Casimir
force, but fermions make a repulsive con-
tribution to the force. All of these parti-
cles make a contribution to the force though
only that from photons is measurable. The
theory states that the lowest energy state
of a vacuum (the zero-point energy) is in-
finite when considering all possible photon
modes. The original Casimir force deriva-
tion comes about from a situation in which
the differences in infinities cancel out which
arises from very interesting mathematics.
There are inconsistencies and puzzles that
arise from the existence of this effect, espe-
cially when applying it to the theories of
quantum gravity. The solutions to these
inconsistencies are however expected to be
found within the solution to a theory of
quantum gravity [1].

In 2005, Jaffe made it clear that the
zero-point fluctuations formulated in quan-
tum field theory was not observable in any
laboratory experiments though the vacuum
value of the stress tensor (energy density of
the vacuum) 〈Tµv〉 ≡ −εgµv even appears in

Figure 1: A simple diagram of two parallel
plates and a representation of vacuum fluctua-
tions [5].

the right hand side of Einstein’s equation for
gravity in general theory of relativity [6]

1
2

gµvR− Rµv = 8πG(T̃µv − εgµv). (1)

Jaffe also demonstrates in his paper that
you can calculate the Casimir force with-
out reference to the zero-point energy [6],
which suggests that the zero-point energy
may simply just be a nice mathematical con-
struct in this situation to arrive at a measur-
able result. This will be discussed later in
more detail.

2 ’Astounding’ Mathematical

Results.

One of my favorite results I have encoun-
tered in my studies (which led me to the
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Casimir effect) follows as
∞

∑
n=1

n→ − 1
12

. (2)

This result does not explicitly make sense
because the sum in equation (2) is a di-
vergent sum. However, due to a process
known as analytic continuation, some di-
vergent sums can have a finite value. In
1913, this appeared in the work of a very fa-
mous mathematician from India, Srinivasa
Ramanujan and is an important result for
String Theory and other branches of physics.
The Riemann zeta function

ζ(s) =
∞

∑
n=1

1
ns = 1 + 2−s + 3−s + 4−s + · · ·

(3)

is widely studied and used often in physics.
In quantum physics, the energy density of a
vacuum should be proportional to ζ(−3) =
1 + 8 + 27 + 64 + · · · , which is a divergent
series and thus does not make much sense
as an energy density [7]. When we write this
using equation (3) and use the process of an-
alytic continuation, this can be written

ζ(−3) =
∞

∑
n=1

1
n−3 = 1 + 23 + · · · → 1

120
.

(4)

The way Ramanujan expresses functions
that are divergent such as this (from the Rie-
mann zeta function) is

x

∑
k=α

f (k) ∼
∫ x

α
f (t)dt + c +

1
2

f (x)

+
∞

∑
k=1

B2k
(2k)!

f (2k−1)(x), (5)

[8]. This is a process of analytically contin-
uing these divergent series and coming up
with a finite result without any ’magic’. I say
magic because there is a process in which
one can ignore (in a sense) the divergent na-
ture of a sum and come up with these results
as well.

As an example, I will give a ’proof’ of
equation (2) using this method, which was
first shown by Euler around 1735 [9]. Con-
sider the following well defined sum

f (x) = 1 + x + x2 + x3 + x4 + · · · = 1
1− x

,

(6)

for |x| < 1. Differentiating this gives

f ′(x) = 1 + 2x + 3x2 + · · · = 1
(1− x)2 . (7)

If we evaluate the result at x = −1 we get

f ′(−1) = 1− 2 + 3− 4 + · · · = 1
4

. (8)

Note that this is troublesome because we de-
fined f ′(x) based on a function only valid
for when |x| < 1. However, for our pur-
poses suppose we can extend our limits and
make f(x) differentiable at x = −1. Now, if
we take 2−sζ(s) we have

2−sζ(s) = 2−s
∞

∑
n=1

1
ns =

∞

∑
n=1

2−s

ns

= 2−s + 4−s + 6−s + 8−s · · · . (9)

Now, if we take g(s) = [1− 2(2−s)]ζ(s) we
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have

g(s) = [1− 2(2−s)]ζ(s)

= ζ(s)− 2(2−s)ζ(s)

= 1 + 2−s + 3−s + 4−s + 5−s + 6−s + · · ·
− 2( 2−s + 4−s + 6−s + · · · )

= 1− 2−s + 3−s − 4−s + 5−s − 6−s + · · · .
(10)

Finally, if we set s = −1, we can see that
g(−1) = ζ(−1) − 2(2)ζ(−1) = −3ζ(−1)
and evaluating this from equation (10) and
then using our result from equation (8) gives
us

−3ζ(−1) = 1− 2 + 3− 4 + · · · = 1
4

=⇒ ζ(−1) = − 1
12

. (11)

Now, notice that plugging in s = −1 into
the Riemann zeta function gives us the same
result from equation (2) and thus

ζ(−1) = − 1
12

=⇒
∞

∑
n=1

n→ − 1
12

. (12)

This result is very important to obtaining the
24 + 2 = 26 dimensions in bosonic string
theory [10]. It is also a simpler example than
that of equation (4) to illustrate.

3 Casimir Force Derivation.

In Casimir’s original paper, he did not use
the result in equation (4) explicitly, though
in a more recent derivation assuming zeta-
regularization, one can see how it is ob-
tained. Let kx, ky, and kz represent the wave

numbers in the x, y and z directions respec-
tively. If we allow two plates to be parallel
in the x− y plane at a distance a apart, then
we can define the cavity between the plates
by

0 ≤ x ≤
√

A (13)

0 ≤ y ≤
√

A (14)

0 ≤ z ≤ a, (15)

where the plates are a square of area A. If we
adopt a periodic boundary condition, then
we can show

kx =
2πnx√

A
=⇒ dnx =

√
A

2π
dkx (16)

ky =
2πny√

A
=⇒ dny =

√
A

2π
dky (17)

kz =
nzπ

a
, (18)

with (nx, ny, nz) ∈ Z. The frequency of this

wave is ωn = v|~k| = v
√

k2
x + k2

y + k2
z. If we

assume we are in a vacuum, then the speed
of any electromagnetic wave is just c and
thus ωnz = c

√
k2

x + k2
y + k2

z. The vacuum en-
ergy is the sum over all possible modes. The
zero-point (ground state) energy associated
with the nth

z mode is given by Enz = h̄ωnz
2 .

The energy of all combined modes is then
the sum over all nz or E = ∑∞

nz=1
h̄ωnz

2 . For
simplicity we can allow n ≡ nz. Taking the
expectation value of the energy over the en-
tire area of the plates can be done by inte-
grating over all possible values of nx, ny and
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all possible expectation modes which yields

〈E〉 = h̄
2

∫∫ ∞

∑
n=1

ωndnxdny (19)

=
Ah̄
8π2

∫∫ ∞

∑
n=1

ωndkxdky. (20)

This expression is clearly infinite due to the
diverging sum. If we use zeta-regulation,
we can find a finite energy per unit area
by defining a quantity 〈E(s)〉 which goes to
equation (20) when s=0.

〈E(s)〉
A

=
h̄

8π2

∫∫ ∞

∑
n=1

ωn|ωn|−sdkxdky (21)

=
h̄

8π2

∞

∑
n=1

∫∫
ωn|ωn|−sdkxdky.

(22)

Simplifying the above expression (Using
Mathematica to take the integral over dkx

and dky) gives us

〈E(s)〉
A

=
h̄c1−sπ2−s

2a3−s(3− s)

∞

∑
n=1
|n|3−s. (23)

This may then be analytically continued to
s = 0 where it becomes finite when using
equation (4).

〈E〉
A

= lim
s→0

〈E(s)〉
A

= − h̄cπ2

6a3 ζ(−3). (24)

Now, plugging in equation (4) in the above
expression gives us

〈E〉
A

=
−h̄cπ2

720a3 . (25)

The Casimir force per unit area between two
parallel plates within a vacuum is therefore
given by F = −∇〈E〉 which is

Fc

A
= − d

da
〈E〉
A

=
−h̄cπ2

240a4 . (26)

As we can clearly see, this result would not
have come about without the use of ana-
lytical continuation. In a sense, this is due
to nature not containing apparent infinities.
Rather, the continuation allowed us to ar-
rive at a finite solution which is experimen-
tally confirmed. The fact that our expression
came out negative suggests that the force
is an attractive force and due to the pres-
ence of h̄, we can see that the force is of a
quantum origin. In the original derivation,
Casimir computed non-convergent sums us-
ing Euler-Maclaurin summation with a reg-
ularizing function [2].

4 Implications From The

Zero-Point Derivation.

The Casimir effect extends quantum field
theory to allow for negative energy densi-
ties with respect to the ordinary vacuum
energy. It has been suggested by numer-
ous physicists such as Stephen Hawking,
Kip Thorne, and many more that such a
thing will allow the possibilities of stabi-
lizing traversable wormholes [11]. Miguel
Alcubierre, creator of the Alcubierre Drive
has also suggested using the Casimir ef-
fect to obtain negative energy required for
his designs [11]. In many cases, this effect
has been shown to have possible applica-
tions in propulsion drives for space craft.
It also has possible application in nanotech-
nology which has been suggested by some
[11]. Due to the small scale that this force is
observed on, this would make sense that it
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could present possible applications in nan-
otechnology. For instance, the force of at-
traction could be used as an architecture for
moving components on a microscopic scale
or something much more complex.

5 Caimir Force Without

Referencing Zero-Point Energy.

As mentioned earlier, Jaffe argues that the
Casimir force can be constructed without
considering zero-point fluctuations of quan-
tized electromagnetic field and is a result
from the material of the plates and not re-
sulting from zero-point energies. If we
use the Drude model of metals, then the
metal/conductor properties are character-
ized by a plasma frequency ωp and a skin
depth δ. The original result does not de-
pend on anything other than the distance of
the plates and fundamental constants. How-
ever, this result assumed that the plates were
perfect conductors which do not exist in re-
ality. The skin depth of a material is a mea-
sure of how far electromagnetic waves pen-
etrate through a material and thus can cause
a relationship between the waves within the
plates to those outside.

Jaffe argues that both ωp and δ are de-
pendent on the fine structure constant α. He
then argues that the perfect conductor ap-
proximation is good for sufficiently large α

which in the case of the Casimir measure-
ment scales for experimental verification are
satisfied by the physical value of α ≈ 1/137
which is why the original derivation is sup-

ported by experimental results. Similarly, he
also argues that the Casimir force vanishes
as α→ 0.

6 Conclusion

I have shown that while referencing zero-
point energy one can derive the Casimir
force using zeta-function regularization,
however, it can also be calculated without
reference to the zero-point energy which
suggests that it may not be related to the
energies that are suggested to come about
from quantum field theory but instead the
fine structure constant and properties of ma-
terials. It is fascinating to note that the same
experimentally observed result can be ob-
tained through a simple method using zeta-
function regularization and ignoring diver-
gences which may possibly suggest that this
is a useful mathematical construct that could
potentially have many real world applica-
tions. Much like the early use of imaginary
numbers, which appeared to have no phys-
ical application, it may prove to be a useful
method of mathematical manipulation that
could lead us to new unique breakthroughs
much like in the case of the Casimir force.
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Abstract

In everyday life we encounter many complex

fluids, from shear-thinning paint and toothpaste

to shear-thickening starch suspensions. The

study of their properties offers an opportunity

for students to relate sophisticated physical

concepts to their everyday experience. Modern

rheology uses expensive equipment impractical

for the teaching laboratory. Here we describe

a rudimentary rheometer suitable for student

laboratories that can demonstrate and quantify

discontinuous shear thickening, the most dra-

matic property of complex fluids, and use it to

measure the properties of starch suspensions.

The rheometer results agree with theory for a

viscous Newtonian fluid, but the behavior of

shear-thickening starch suspensions is unexpect-

edly complex.

1 Introduction

Simple fluids, such as water, honey, oils,
pitch and liquid nitrogen have the property
that their stress is proportional to their strain
rate (flow rate). Their ratio is a scalar vis-
cosity. This proportionality defines a simple
(or “Newtonian”, because Newton was the
first to formulate this relation) fluid, what-
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ever the value of the viscosity, and describes
equally well fluids of low viscosity (wa-
ter, liquid nitrogen), larger viscosity (oils,
honey) and even fluids whose viscosity is so
high that noticeable flow may require many
years (pitch).

In contrast, there are “non-Newtonian”
fluids with more complicated relations be-
tween stress and strain rate. These flu-
ids may contain polymers, or be suspen-
sions (typically in a Newtonian solvent) of
solid particles, membrane-bound vesicles or
droplets of an immiscible fluid (emulsions).
The study of such fluids is called rheology,
and many complications are possible. Some
have a viscosity that decreases as the rate
of flow increases; these are called “shear-
thinning”, and some of these (“Herschel-
Bulkley” fluids) have a small strength that
must be overcome in order that they flow
at all. Others have a viscosity that in-
creases, either gradually or discontinuously,
as the rate of flow increases; these are called
“shear-thickening”. Yet others, such as
starch suspensions, display combinations of
these behaviors.

Paint, ketchup, toothpaste and corn
starch suspensions are familiar examples of
non-Newtonian fluids [1]. Most of these are
shear-thinning: they may have a small fi-
nite strength at rest (which is why tooth-
paste doesn’t flow out of its tube unless
squeezed, or ketchup out of its bottle, un-
less squeezed, shaken or struck) or a vis-
cosity that decreases as the flow rate is in-
creased (so that paint is easily spread with a

brush, but doesn’t drip once spread). Un-
like these, starch suspensions have the re-
markable property, known to schoolchildren
who gave them the nickname “oobleck” af-
ter a fictional substance, of suddenly turn-
ing stiff, increasing their viscosity by or-
ders of magnitude, if the strain rate exceeds
a threshold. This phenomenon is known
as discontinuous (abrupt) shear thickening
(Brown and Jaeger [2]).

Measurement of the viscosity of New-
tonian fluids is a familiar experiment in
advanced undergraduate laboratories, but
experiments involving non-Newtonian flu-
ids have been few[3, 4, 5, 6, 7, 8], and
none of them have addressed the striking
phenomenon of discontinuous shear thick-
ening. A student laboratory experiment
will excite more interest if it is novel, if
it explores a dramatic phenomenon, if it
is related to students’ everyday experience
and if it reveals a phenomenon at the re-
search frontier that is incompletely under-
stood. The discontinuous shear thickening
of starch suspensions meets these criteria.
Yet quantitative rheometry requires expen-
sive and delicate equipment unavailable in
and unsuitable for the student laboratory.
Here we describe, and report results ob-
tained with, a rudimentary rheometer that
can be assembled from a few dollars’ worth
of equipment. With the aid of a consumer-
grade video camera, it produces quantita-
tive data.
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2 Methods

2.1 Apparatus

The apparatus is shown in Fig. 1. A light-
emitting diode mounted on the top of the
rod was used to determine the position of
the rod against an aligned meter stick with
an attached LED that serves as a reference.
Data were recorded with a video camera
at one or 30 frames per second (the lower
recording rate was used for more slowly
sinking rods because of limited memory),
and the velocity averaged over 20 frames
if recorded at 30 fps and over 5 frames if
recorded at 1 fps. Averaging was necessary
because the rod position was determined to
only ±0.5 line in the video image, or about
±0.1 mm; accuracy was limited by the res-
olution of the video image. Data were pro-
cessed with ImageJ software [9]. The rods
were 36 cm long, rounded to a hemisphere
at their lower ends, with diameters 18.9 mm.
The guide sleeve had an internal diameter of
19.8 mm and was 12.5 cm long. The cylin-
der (a nominal 50 ml graduated cylinder but
with additional volume above the gradua-
tions) had an internal diameter of 23.5 mm
and depth, rim to interior bottom, of 16.5
cm. The aluminum rod had a mass of 271
g and the stainless steel rod a mass of 820
g. The essential parts of the apparatus are
shown schematically in Fig. 2.

2.2 Theory

The flow of fluid around a solid rod sink-
ing in a tube that is only slightly wider than

Figure 1: The rudimentary rheometer con-
sists of a glass cylinder filled (empty in the
photograph) with the fluid whose proper-
ties are to be measured. A metal rod, visi-
ble through the glass, with diameter slightly
less than that of the cylinder sinks into the
fluid, driving fluid up the annulus between
rod and cylinder. The rod is guided and cen-
tered in the cylinder by a cylindrical sleeve
(of copper, visible in the photograph along-
side the meter stick) aligned with the cylin-
der axis. Also visible is the LED, taped to the
upper part of the rod, whose light is used to
measure the sink rate of the rod.
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Figure 2: The essential parts of the rheome-
ter (left) and the flow field in the thin annu-
lus between the rod and the cylinder wall
(right).

the rod itself may be divided into distinct
regions. Underneath the rod is a pool of
fluid whose width is the tube’s diameter and
(until the rod almost reaches the bottom of
the tube) in which the velocity is small be-
cause the cross-sectional area is large. The
shear stress, proportional to the velocity di-
vided by the diameter, is also small, and the
pressure is, to good accuracy, uniform (aside
from the variation of the hydrostatic head
with depth) throughout this pool.

A second region consists of the narrow
annulus between the rod and the tube. Its
narrowness implies that the sinking of the
rod must be accompanied by a much higher
mean fluid velocity as the displaced fluid
moves upward. In this narrow annulus
the fluid velocity implies a large shear rate
(derivative of velocity with respect to the ra-

dial coordinate) because the fluid velocity
on the solid surfaces must equal the veloc-
ities of those surfaces, zero on the tube and
equal to the rod’s sink rate on the rod. The
shear flow implies a shear stress because the
fluid is viscous.

If the width h of the gap between the
rod and the tube is much less than the in-
ner radius r of the tube (h � r) then this
gap may be approximated as a planar duct.
An elementary solution for flow in a planar
duct, including the sinking rate of the rod,
may be found.

The error introduced by these approx-
imations is O(h/r) ∼ 10% in our experi-
ments. This is acceptable because our pur-
pose is to demonstrate qualitative proper-
ties of non-Newtonian shear-thickened flu-
ids (with a Newtonian flow to demonstrate
the validity of the method). The full the-
ory [10] of the flow in a cylindrical annu-
lar duct is cumbersome, too mathematically
complex for student understanding, and not
justified in experiments in which the geom-
etry cannot be controlled precisely.

2.2.1 Newtonian Fluids

The flow of an incompressible Newtonian
viscous fluid is described by the Navier-
Stokes equation [11]

∂~v
∂t

+ (~v · ~∇)~v = − 1
ρ f

~∇p +~g +
η

ρ f
∇2~v, (1)

where ρ f is the fluid density, η is its dy-
namic viscosity, p is the pressure, there is
a gravitational acceleration ~g and ~v is the
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fluid velocity. Because the Reynolds num-
ber is� 1 in our experiments, any transients
are rapidly damped and we consider steady
flow (∂~v/∂t = 0).

Let z be the vertical coordinate, so that
~g = −gẑ, and y be the radial coordinate
(Cartesian, in the planar duct approxima-
tion) in the duct formed by the surface of the
rod and the inner wall of the tube. For con-
venience we take y = 0 midway between
the surface of the rod and the inner wall of
the tube, so that −h/2 ≤ y ≤ h/2. The fluid
velocity ~v = v(y)ẑ is vertical and ~v depends
only on y, so that (~v · ~∇)~v = 0. Taking z = 0
at the surface of the fluid (the open end of
the tube, where displaced fluid overflows;
Fig. 2) and z = zrod < 0 at the bottom of the
rod (of length L and density ρrod, immersed
to a depth |zrod|), the pressure p(0) = patm

and p(zrod) = patm + ρrodgL. In our exper-
iments ρrod = 2.7 g/cm3 for the aluminum
rod and ρrod = 8.0 g/cm3 for the stainless
steel rod.

The Navier-Stokes equation becomes

η
d2v(y)

dy2 =
ρrodgL

zrod
+ ρ f g ≡ dp′

dz
, (2)

where the effective pressure gradient dp′/dz
includes the effect of buoyancy. The solution
takes the form

v(y) = Ay2 + By + C. (3)

Using the boundary conditions v(−h/2) =

vrod and v(h/2) = 0 we find

A =
1

2η

(
ρrodgL

zrod
+ ρ f g

)
(4)

B = −vrod
h

(5)

C = − h2

8η

(
ρrodgL

zrod
+ ρ f g

)
+

vrod
2

. (6)

The volume flow rate per unit length of rod
circumference

q̇ =
∫ h/2

−h/2
v(y) dy

= − h3

12η

(
ρrodgL

zrod
+ ρ f g

)
+

vrodh
2

(7)

and the total volume flow

Q̇ = 2πrq̇

= −πrh3

6η

(
ρrodgL

zrod
+ ρ f g

)
+ πrvrodh.

(8)

Equating Q̇ to the rate −πr2vrod at
which the sinking rod displaces fluid leads
to an equation for the sink rate of the rod:

vrod =
dzrod

dt
=

h3

6η(r + h)

(
ρrodgL

zrod
+ ρ f g

)
.

(9)
From this we find that in Eqs. 7 and 8 the
term involving vrod is smaller than the pre-
ceding term by the factor h/(r + h) � 1.
The stress ηdv(y)/dy on the surface of the
rod exerts an upward force that may be eval-
uated using Eqs. 3–6 and 9. This viscous
force is smaller than the upward force of the
pressure in the pool below the rod by a fac-
tor ≈ h/r � 1.

In order to simplify the integration we
neglect buoyancy, the last term in Eq. 9;
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buoyancy is never more than a 10% correc-
tion to the preceding term, and approaches
0% when |zrod| → 0 (the rod has just entered
the fluid). Integration yields

zrod = −

√
h3gρrodL
3η(r + h)

t1/2 (10)

vrod = −

√
h3gρrodL

12η(r + h)
t−1/2, (11)

where t is measured from the time the rod
enters the fluid.

We use a guide tube to keep the sinking
rod close to and parallel to the axis of the
fluid-filled cylinder, but the positioning and

alignment cannot be perfect. Here we con-
sider the effects of an off-center rod. Because
the gap is everywhere narrow compared to
the rod’s and tube’s radii (h� r), the theory
may also be applied to off-center rods by in-
tegrating q̇ around the rod. If the axis of the
rod is displaced from the axis of the cylin-
der by ∆x (∆x ≤ h) the width of the gap be-
tween rod and cylinder, to lowest order in
the small quantity ∆x/r, is

∆r(θ) ≈ h− ∆x cos θ, (12)

where θ is the angle from the direction of
−→
∆x.

Then

Q̇ =
∫ 2π

0
dθ rq̇(θ) = −πrh3

6η

(
ρrodgL

zrod
+ ρ f g

)[
1 +

3
2

(
∆x
h

)2

− h
r + h

]
. (13)

The last term in the brackets is� 1 and
can be neglected. Then for an off-center rod
Q̇ and vrod = Q̇/πr2 can be as much as 5/2
times greater than for a centered rod (in the
h � r approximation). If the rod is very
close (for some angles θ, the gap ∆r(θ) .

h
√

h/r) to the cylinder wall additional drag
is contributed by the relative motion of rod
and wall.

2.2.2 Shear thickening fluids

In a shear thickening fluid the viscosity is
an increasing function of the strain rate.
The behavior of such fluids is complex, but

is often described as discontinuous shear
thickening in which the viscosity increases
abruptly by orders of magnitude if the strain
rate |γ̇| > γ̇c, where γ̇c is a critical strain
rate[2]. As a result, Eq. 2 breaks down if
it implies |γ̇| = 1

η |
dp′
dz y| > γ̇c, where η is

the viscosity in the unstiffened regime. The
value of γ̇c is generally taken as an empirical
parameter.

What happens if the velocity profile
of Eq. 2 implies the maximum strain rate
|γ̇|max = h

2η |
dp′
dz | > γ̇c? This will first oc-

cur at the duct walls where |γ̇| is greatest.
The suspension will undergo discontinuous
shear thickening there. The high viscosity
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of the thickened suspension makes it behave
almost as a solid, narrowing the effective
duct to the unstiffened region of width h′ =
2 γ̇cη

dp′/dz . However, reducing h to the effective
h′ reduces the maximum strain rate |γ̇|max so
that it is below the threshold of shear thick-
ening; this solution is not self-consistent.

The same conclusion follows if we note
that the shear stress σ must be continu-
ous across the boundary between stiffened
and unstiffened regions because there is no
source or sink of momentum at the bound-
ary. That implies a strain rate γ̇ ≡ dv

dy =

σ/η orders of magnitude less in the stiff-
ened region because η is orders of magni-
tude greater there. This leads to the contra-
diction of a strain rate γ̇ greater (by a large
factor) in the unstiffened region than in the
stiffened region, and also explains why dis-
continuous shear thickening is accompanied
by hystersis[12].

A self-consistent solution is found if |γ̇|
remains at the shear thickening threshold γ̇c

across the duct, aside from the central region
[13]. Then, if this central region is negligibly
thin, Eq. 2 is replaced by

v(y) = γ̇c

(
h
2
− |y|

)
, (14)

q̇ = γ̇c
h2

4
, (15)

Q̇ = γ̇c
πrh2

2
(16)

and

vrod =
Q̇

πr2 = γ̇c
h2

2r
. (17)

This result relates the shear thickening
threshold γ̇c to the measured sinking rate

vrod, and is the source of the values of γ̇c

shown in the Table.
The sink rate is predicted to be indepen-

dent of both the weight of the rod and the
length zrod of the duct between the rod and
cylinder. The reason for this is that the duct
dimensions are uniform along its length if
the rod is parallel to the cylinder axis; if
γ̇ = γ̇c at one depth, that equality holds ev-
erywhere. The sink rate does depend on the
nature of the suspension through the empir-
ical γ̇c.

For an off-center rod the result Eq. 13 for
a Newtonian fluid is replaced by

Q̇ =
∫ 2π

0
rq̇(θ)dθ = γ̇c

πrh2

2

[
1 +

1
2

(
∆x
h

)2
]

.

(18)
Then Q̇ and vrod = Q̇/πr2 can be as much as
3/2 times greater than for a centered rod (in
the h� r approximation).

3 Results

As a test of the method and apparatus, we
used a viscous Newtonian fluid, a solution
of cane sugar in water. The results are
shown in Fig. 3. We fit the exponent α in a
relation vrod ∝ tα to the power law portion of
the data (before the rod approaches the bot-
tom of the cylinder), finding α = −0.49 ±
0.02 for the steel rod and α = −0.47± 0.02
for the aluminum rod, in agreement with the
predicted (Eq. 10) α = −1/2 for a Newto-
nian fluid. The neglect of inertia in Eq. 9
is justified by the self-consistent result that
the Reynolds number Re = hvrod/η � 1
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Figure 3: Sinking rate vrod of aluminum and
stainless steel rods in viscous cane sugar so-
lution. From the measured sink rate and
Eq. 10 the viscosity η ≈ 0.7 Pa-s and the
Reynolds number Re ≈ 0.1 for the Al rod
and Re ≈ 0.3 for the steel rod at t = 1 s.
The data sampling rate was 30/s, but the
points shown represent boxcar averages of
20 points, taken to smooth otherwise noisy
data.

throughout the run (at t = 1 s Re ≈ 0.1 for
the Al rod and Re ≈ 0.3 for the steel rod).

The sinking rates of aluminum and
stainless steel rods in suspensions of corn,
potato and tapioca starches in isopycnic
(density matched) CsCl brines are shown in
Figs. 4–6. All suspensions had starch vol-
ume and mass fractions of 43%, well into
the regime in which discontinuous shear
thickening occurs, but a low enough concen-
tration that the suspensions are shear thin-
ning fluids (rather than pastes with finite
strength) at low strain rates.
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Figure 4: Sink rates of aluminum and steel
rods in a 43% suspension of corn starch.
Data were sampled every second, but each
point shown is a boxcar average over five
seconds.
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Figure 5: Sink rates of aluminum and steel
rods in a 43% suspension of potato starch.
The data sampling rate was 30/s, but the
points shown are boxcar averages over 20
samples.
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Figure 6: Sink rates of aluminum and steel
rods in a 43% suspension of tapioca starch.
The data were sampled at a rate of 30/s, but
each point shown is a boxcar average over
20 samples.

4 Discussion

The results for the starch suspensions are
mixed. In corn starch (Fig. 4) the steel
rod sank at a nearly constant rate, as ex-
pected (Eq. 17) for a shear thickened sus-
pension. The implied thickening threshold
γ̇c ≈ 4/s, typical of previous measurements
of corn starch suspensions [2, 12, 14] (that
are widely scattered, perhaps as a result of
differing properties of this poorly standard-
ized natural product). The varying sink rate
of the aluminum rod might be attributed to
a varying displacement from a centered po-
sition in the cylinder (Eq. 18). The greater
stability of the sink rate of the steel rod was
observed in two other pairs of runs (not
shown).

The generally increasing sink rates in
potato starch suspensions (Fig. 5) may be

attributed to motion of the rods from cen-
tered to off-center positions in the cylin-
der (Eq. 18). The initial decrease might be
the result of a transient phase in which the
suspension is unstiffened, as expected and
found for a Newtonian fluid (Fig. 3). How-
ever, these are only speculations, and even
the reason why corn and potato starch sus-
pensions differ qualitatively is not under-
stood.

In potato starch suspensions the steel
rod sank about 50% faster than the alu-
minum rod through most of its descent, al-
though towards the end the aluminum rod
speeded up to a sink rate as fast as the max-
imum sink rate of the steel rod. The inferred
γ̇c ≈ 20–30/s.

Sink rates in tapioca starch suspensions
(Fig. 6) were close to the predictions of
Eq. 17: They were roughly constant after
an initial increase by a factor of 1.5, con-
sistent with motion of the rods from cen-
tered to near-wall positions (Eq. 18), and
were nearly independent of the weight of
the rod. This offers semi-quantitative sup-
port for the theory, but no explanation of
why different starches behave so differently.
The implied γ̇c ≈ 40/s. We show no results
for rice starch suspensions because they do
not shear stiffen, unlike most other starch
suspensions. We tentatively attribute this to
the different shapes[15] of rice starch grains.

If the rod is initially off-center or tilted,
the gap between it and the tube wall is nar-
rower, and the shear rate greater, on one
side. Shear-thickening will begin first there,
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producing an upward force on that side of
the immersed (lower) end of the rod. The re-
sulting torque will tend to bring that end yet
closer to the tube, increasing the misalign-
ment and (Eq. 18) the sink rate. This is a pos-
sible, though qualitative, explanation of the
increasing sink rates in Figs. 5 and 6.

This result that steel and aluminum
rods behave differently was unexpected.
Eq. 17 predicts not only that the sink rate
should be constant until the rod nears the
bottom of the cylinder, but that it should
be independent of the rod’s weight. The
failure of this prediction indicates that there
may be more to the physics than the model
of Sec. 2.2.2. One possible explanation is
that shear thickening depends on stress as
well as on strain rate. In most rheometric
experiments[2, 12] the stress and strain rate
are not independently controlled, so they do
not test our assumption that discontinuous
shear thickening occurs of a single critical
strain rate γ̇c. Our experiments, with rods
of differing weights, indicate that reality is
not so simple. This is an important lesson
for the student—physics can be more com-
plicated and less certain than the problems
discussed in textbooks.

In one respect, the results for starch
suspensions followed predictions: the sink
rates were approximately independent of
the rod weight, in contrast to a Newtonian
fluid in which the sink rate would be pro-
portional to the rod mass, which is three
times greater for steel (and more so allow-
ing for buoyancy).

The results are summarized in Table 1.
There is no apparent correlation between the
critical strain rates for discontinuous shear
thickening and the size of the starch grains.

5 Conclusion

We have demonstrated a simple rheome-
ter that can be built, or used, by stu-
dents in an advanced laboratory course at
slight expense and without special facili-
ties. This rheometer can demonstrate ba-
sic but unfamiliar properties of Newtonian
fluid flow as well as obtaining significant
novel data about the properties of complex
non-Newtonian fluids. It is suitable both as
a teaching tool in a curriculum that includes
hydrodynamics or rheology and as an intro-
duction to research that produces non-trivial
results without the use of expensive state-of-
the-art apparatus. Students can use it to ob-
tain quantitative data, and learn to deal with
unfamiliar issues of dimensional tolerances.
The most important contribution to their ed-
ucation may be the lesson that the behavior
of real materials and experiments may not
accord with theory; the empirical world is
often more complicated than we can predict.

The reasons for the behavior of rods in
starch suspensions shown in Figs. 4–6 and
Table 1 are not understood. Possible ex-
planations include displacement fo the rods
from the center of the tube, tilting, contact
with the cylinder or guide sleeve, and stress
dependence of the critical strain rate γ̇c. This
behavior is complex enough that no simple
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starch grain diameter γ̇c CsCl fraction
corn 14µ 4/s 52.5%

tapioca 14µ 40/s 52.5%
potato 35µ 20–30/s 54.5%

Table 1: Critical strain rates γ̇c for suspensions of three starches in CsCl brine, inferred from
the measured vrod using Eq. 17. Mean grain diameters are from Snyder[15]. The mass frac-
tions of CsCl in an isopycnic brine, used to prevent sedimentation, are also shown; we found
slightly different densities for the different starches, but these values may be differ among
samples of these natural products.

theory is likely to be satisfactory, and no sat-
isfactory theory exists. This will disappoint
students used to the neat derivations and ex-
planations of textbooks (that rarely confront
predictions with data, and then only in the
minority of cases in which agreement is pre-
cise). However, it is an important lesson that
many phenomena, even those involving ev-
eryday substances and simple experiments,
are beyond the reach of theory. The research
frontier begins in the undergraduate labora-
tory and everyday life.
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Abstract

In this article, we would like to discuss the

implications of sum rules of non-relativistic

quantum mechanics and its various forms used

in atomic physics, solid state physics or nuclear

physics. We also point out the connection

between oscillator strength and the sum rule.

As a verification of these sum rules , we will

indicate their applications in harmonic oscillator

and δ function potential. We would also like to

indicate the apparent violation of this sum rule

in rigid rotator case.

1.Introduction

Sum rules have played an important key
role in the development of many branches
of physics [1, 2, 3, 4, 5] such as solid state
physics, atomic physics and nuclear physics
since the earliest phase of quantum mechan-
ics. This rule is important in considering the
various electron transitions in solid [6]. The

sum rules have been applied in Stark effect
associated with hydrogen atom [7] and in
calculating the electric polarizability [8, 9].

For example, the Thomas- Reiche-Kuhn
(TRK) energy-weighted sum rule [10, 11, 12]

∑
k

(Ek − En) | < n|x|k > |2 =
h̄2

2m
(1)

was used to describe the physics of electric-
dipole interactions with atoms. It was
originally obtained by requiring that the
Kramers-Heisenberg dispersion relation re-
duce to the Thomas scattering formula at
high energies. A straightforward general-
ization of the TRK sum rule to 3d reads as

∑
k

(Ek − En) | < n|r|k > |2 =
3h̄2

2m
(2)

The introduction of sum rules can help stu-
dents appreciate their use in research appli-
cations. The generalized TRK sum rule for
dipole oscillator strengths has been estab-
lished for an arbitrary atomic or molecular
system [14]. In this paper, we will follow
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the pedalogical approach adopted by the au-
thors of [13] and [15].

The paper is organized as follows. In
the next section, we convey the reader the
simplest proof of sum rules. In section 3, we
give the verification of these sum rules in-
troduced in the earlier section. In section 4,
we discuss the connection of the sum rule to
oscillator strength, an important parameter
used in experiment of spectroscopy. In sec-
tion 5, we point out the apparent violation
of sum rule in rigid rotator. In section 6, we
give our conclusions.

2.Proof of Sum Rules

The derivation of non-relativistic sum rules
involves the closure or completeness rela-
tion and the use of double commutator. In
the proof of all the sum rules, we will fol-
low the Heisenberg representation where
the operators are time dependent while the
eigenstates are not explicit function of time.
The stationary energy eigenstates of a typi-
cal non-relativistic one dimensional Hamil-
tonian H = p2

2m + V(x) satisfies the discrete
non-degenerate energy eigenvalue equation
H|n >= En|n >. In this notation, the com-
pleteness can be stated as ∑k |k >< k| =
1. In case of continuous spectra, the dis-
crete sum is replaced by the integral. For
an arbitrary operator O we can write its off-

diagonal matrix elements as

∑
all k

< n|O|k >2

= ∑
all k

< n|O|k >< k|O|n >

=< n|O2|n > (3)

With this basic information in quantum me-
chanics let us proceed to derive the first sum
rule. From the fundamental commutation
relation [x, p] = ih, it is easy to note that

[x, H] =
ih̄
m

p

xH − Hx =
ih̄
m

p (4)

For a stationary state, if we take < n|xH −
Hx|n >= ih̄

m < n|p|n >, because of the Her-
mitian nature of the Hamiltonian, we con-
clude < n|p|n >= 0. If we further consider
the matrix elements of the momentum oper-
ator, then we note that

< n|p|k > =
m(Ek − En)

ih̄
< n|x|k >

=
mωkn

i
< n|x|k > (5)

This equation (5) illustrates how one can
compute the matrix elements of the mo-
mentum operator given the matrix elements
of the position operator provided the dis-
crete energy levels are known. Using the
value of the double commutator [x, [x, H]] =
ih̄
m [x, p] = − h̄2

m and the completeness rela-
tion, we note that

< n|xxH − xHx− xHx + Hxx|n >

= − h̄2

m
(6)
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As a result, the sum rule is recovered as

∑
all k

(Ek − En)| < n|x|k > |2 =
h̄2

2m
(7)

This equation (7) is known as the celebrated
TRK sum rule. Moreover, using equation (5)
and noting that

< n|p2|n >= ∑
all k

< n|p|k >< k|p|n >

(8)
we find a relation

∑
all k

(Ek − En)
2 | < n|x|k > |2

=
h̄2

m2 < n|p2|n >

=
2h̄2

m
(En− < n|V|n >) (9)

This equation (9) can be used to com-
pute the expectation value of squarred mo-
mentum and the potential energy. For ex-
ample, the expectation value of the potential
energy in the ground state of the harmonic
oscillator can be easily computed as

2h̄2

m
< 0|V|0 >=

h̄3ω

2m

< 0|V|0 >=
1
4

h̄ω (10)

where we have used only non-zero matrix

element < 0|x|1 >=
√

h̄
2mω in the LHS sum.

As a generalization to any states |n >, we
can get the expectation value of the potential
energy without invoking the wavefunction

< n|V|n >=
2n + 1

4
h̄ω (11)

Again, noting that [p, H] = −ih̄ ∂V
∂x and

[p, [p, H]] = −h̄2 ∂2V
∂x2 , we can derive another

important sum rule involving the second
derivative of the potential energy as

∑
all k

(Ek − En)
2 | < n|p|k > |2

=
h̄2

2

〈
n
∣∣∣∣∂2V

∂x2

∣∣∣∣ n
〉

(12)

For the special case of harmonic potential
V(x) = 1

2 mω2x2, the above momentum
squarred sum rule (12) reduces to

∑
all k

(Ek − En)
2 | < n|p|k > |2 =

1
2

mω2h̄2

(13)
Futhermore, using (5), we can obtain

another sum rule involving higher power of
energy difference as

∑
all k

(Ek − En)
3 | < n|x|k > |2

=
h̄4

2m2

〈
n
∣∣∣∣∂2V

∂x2

∣∣∣∣ n
〉

(14)

The dimensionwise ∂2V
∂x2 being force ×

momentum, this sum rule (14) is known
as force-momentum one. One can ver-
ify easily the sum rule (14) for har-
monic potential V(x) = 1

2 mω2x2 ( LHS

= (h̄ω)3 × h̄
2mω = h̄4ω2

2m while RHS is simply
h̄4

2m2 ×mω2 = h̄4ω2

2m ).

Again noting that

(pH − Hp)(pH − Hp) = −h̄2
(

∂V
∂x

)2

(15)

and using the completeness relation, we
come across another sum rule involving first

33/4/05 3 www.physedu.in



Physics Education Oct-Dec 2017

derivative of potentail energy

∑
all k

(Ek − En)
2 | < n|p|k > |2

= h̄2

〈
n

∣∣∣∣∣
(

∂V
∂x

)2
∣∣∣∣∣ n

〉
(16)

Since above sum rule is involved with first
derivative of the potential energy, it is some-
times known as the force squarred sum rule.
Another variant of the above sum rule can
be derived using (5) as

∑
all k

(Ek − En)
4 | < n|x|k > |2

=
h̄4

m2

〈
n

∣∣∣∣∣
(

∂V
∂x

)2
∣∣∣∣∣ n

〉
(17)

This sum rule also can be easily verified for
harmonic oscillator potential. From RHS,
we get h̄4

m2 ×m2ω4× < n|x2|n > while from

LHS gives us h̄5ω3

2m (2n + 1). Equating these
two, we conclude that

< n|x2|n >=
h̄

2mω
(2n + 1) (18)

Another form of the above sum rule (17)
is also important for calculation the expecta-
tion value used in nuclear physics and can
be written as

< n|x2|n >=
m

2h̄2 ∑
all k

(Ek−En)
2 | < n|x2|k > |2

(19)
All the above sum rules can easily general-
ized to higher dimensions. Another famous
Bethe sum rule [16] can be derived as fol-
lows by noting the double commutation of

[H, eiq·r], e−iq·r]] with H = p2

2m + V(r) and
H|n >= En|n >. It is easy to visualize that

[p, e±iq·r] = ±h̄qe±iq·r

[V(r), e±iq·r] = 0

[H, e±iq·r] = ± h̄
2m

q ·
(

e±iq·rp + pe±iq·r
)

(20)

Then, considering the expectation value of
the n-th non-degenrate eigenstate of the
both sides of the double commutator, we get

< n|[H, eiq·r], e−iq·r]]|n >

=
h̄2 q2

2m
+

h̄
m

q· < n|p|n >

∑
all k

(Ek − En)
∣∣∣〈n

∣∣∣eiq·r
∣∣∣ k
〉∣∣∣2 =

h̄2q2

2m

(21)

since the second term vanishes for station-
ary states. One can also derive the above
sum rule(21) from the identity

eABe−A = B + [A, B] +
1
2!
[A, [A, B]] + ....

(22)

The TRK sum rule (7) follows from this
sum rule in the limit~q→ 0.

Till now we have considered the sum
rules for position or momentum operator.
Are there any sum rules for the combina-
tion of the position and momentum opera-
tor? Wang [15] generalized the above sum
rules by considering F(r) (F(p)) is a well-
behaved function of position ( momentum).
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It has been shown [15] that

∑
all k

(Ek − E0) | < 0|F(r)|k > |2

=
h̄2

2m
< 0|(∇F) · (∇F)†|0 > (23)

If we choose F(r) = r (F(r) = eiq·r) we can
immediately get TRK (Bethe) sum rule. In
the same spirit, equation (19) can also be de-
rived from this generalized sum rule by as-
suming F(r) = r2. For hermitian character
of F(p), the above sum rule (23) is recast as

∑
all k

(Ek − E0) | < 0|F(p)|k > |2

= −1
2

∞

∑
l,n=1

(−ih̄)l+n

l!n!〈
0

∣∣∣∣∣∂l+nV
∂xl+n

∂nF
∂pn

∂l F
∂pl

∣∣∣∣∣ 0

〉
(24)

Choosing F(p) = p (only allowed values
l = 1, n = 1) we can immediate get back the
sum rule for momentum (12). Now for the
combination of (x, p), the sum rule (for her-
mitian operator) has been generalized [15]
as

∑
all k

(Ek − E0) | < 0|F(x, p)|k > |2

=
h̄2

2m

〈
0

∣∣∣∣∣
(

∂V
∂x

)2
∣∣∣∣∣ 0

〉

−1
2

∞

∑
l,n=1

(−ih̄)l+n

l!n!〈
0

∣∣∣∣∣∂l+nV
∂xl+n

∂nF
∂pn

∂l F
∂pl

∣∣∣∣∣ 0

〉
(25)

and for non-hermitian operator, the sum

rule [15] is given by

∑
all k

(Ek − E0) | < 0|F(x, p)|k > |2

=

〈
0

∣∣∣∣∣
(

ih̄
m

∂F
∂x

p +
h̄2

2m
∂2F
∂x2

)
F†

∣∣∣∣∣ 0

〉

+
∞

∑
l=1

(−ih̄)l

l!

〈
0

∣∣∣∣∣∂lV
∂xl

∂l F
∂pl F†

∣∣∣∣∣ 0

〉
(26)

As practical examples of these two sum
rules we consider two operators one is her-
mitian and other is not. The operator xpx is
not hermitian however, it can be made her-
mitian by choosing Q = xpx+pxx

2 . Using 26),
we find

∑
all k

(Ek − E0) | < 0|xpx|k > |2

=
ih̄
m

< 0|p3
xx|0 >= h̄3ω (27)

The identical result for the sum rule of Q is
obtained using (25). As a second example,
we consider the hermitian operator Lz =

xpy − ypx so that we can use the relation
(25). Thus, the sum rule for the z-component
of angular momentum of 3d harmonic oscil-
lator [15] can be derived as

∑
all k

(Ek − En) | < n|Lz|k > |2

=
h̄2

2m
< n|p2

x + p2
y|n > +

h̄2

2
< n|mω2(x2 + y2)|n >

= h̄3ω(nx + ny + 1) (28)

where nx and ny are the quantum numbers
of 2d harmonic oscillator. If we consider the
transitions from the ground state, then the
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above sum rule reduces to

∑
all k

(Ek − E0) | < 0|Lz|k > |2 = h̄3ω (29)

Another important applicaion of sum rule
can be noticed in discussing the diamag-
netic suceptibility [17] of atoms in connec-
tion with gauge transformation [18]. We
know that two vector potentials resulting
same magnetic field are related to each other
by

~A = ~A′ + ~∇Λ (30)

The invariance of physical quantity under
gauge transformation leads [18] to the fol-
lowing identity

∑
n
(En − E0) | < n|Λ|0 > |2

=
h̄2

2m

(
< 0|(~∇Λ)2|0 >

)
(31)

and can be compared with equation (23).
Now choosing λ = xy, we can easily obtain
the sum rule

∑
n
(En − E0) | < n|xy|0 > |2

=
h̄2

3m

(
< 0|~r2|0 >

)
(32)

The above equation is instrumental in deriv-
ing the negative diamagnetic susceptibility
of atoms as

χ = − e2

6mc2 < 0|~r2|0 > (33)

Because of the arbritrariness of the function
Λ, a variety of sum rules [19] can be ob-
tained from equation (31).

3.Verification of sum rule in δ

function potential

In this section, we would like to verify
TRK sum rule in case of one-dimensional
potential V(x) = −V0δ(x) [13]. Few
things can be noted before we proceed fur-
ther. This being a one-dimensional prob-
lem, there is no degeneracy associated with
it. Pure dimensional analysis confirms that

the binding energy EB ∝ −mV2
0

h̄2 . How-
ever, exact calculation demonstrates [4, 5]
that there is only one bound state of mag-

nitide EB = −mV2
0

2h̄2 and the ground state

Ψ0 =
√

mV0
h̄2 exp

(
−mV0

h̄2 |x|
)

like other quan-
tum mechanical problem is nodeless. For
the continumm states E > 0, the relevant
wave function with free particle energy Ek =
h̄2k2

2m for non-zero dipole matrix element will
be

Ψk(x) =
1√
π

sin(kx) (34)

A careful look into the problem indicates
that there is indeed a lengthscale a0 = 1/K0

(K0 = mV0
h̄2 ) associated with the problem.

In terms of this lengthscale, the ground
state energy as well as the wave function
remarkably match with those of hydrogen
atom problem.

To verify the TRK sum rule (7), we have
to calculate the relevant matrix element
| < 0|x|k > |2 and then perform the integra-
tion instead of discrete sum.

Using the ground state wave function
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and the continuum state free particle wave
function as given above, the matrix element
< 0|x|k > can be computed as

< 0|x|k >

=

√
mV0

πh̄2

∫ ∞

−∞
e−

mV0|x|
h̄2 x sin(kx) dx

= 4

√
K3

0
π

k
(K2

0 + k2)2
(35)

The energy difference in the sum rule is

Ek − E0 =
h̄2

2m
(k2 + K2

0) (36)

Hence, the TRK sum rule (7) can be ver-
ified as

∑
all k

(Ek − E0) | < 0|x|k > |2

=
∫ ∞

0
dk (Ek − E0) | < 0|x|k > |2

=
16h̄2K3

0
2πm

∫ ∞

0

k2 dk
(k2 + K2

0)
3

=
h̄2

2m
(37)

To verify the another variant of TRK sum
rule (19), we need further the expectation
value of < 0|x2|0 > apart from the matrix
element | < 0|x|k > |2. Using the ground
state wave function, it is easy to compute the
expectation value of x2 as

< 0|x2|0 > =

(
mV0

h̄2

) ∫ ∞

−∞
x2 e−

2mV0|x|
h̄2 dx

=
h̄4

2m2V2
0

(38)

With this expectation value, one can easily
verify variant of TRK sum rule (19).

To verify the another sum rule (9), we
note that

< 0|V|0 > = −
mV2

0

h̄2

< 0|p2|0 > =
m2V2

0

h̄2 (39)

Therefore, the RHS of the sum rule (9) is
given by(

h̄2

m2

)
< 0|p2|0 >=

(
h̄2

m2

)
×

m2V2
0

h̄2 = V2
0

(40)
The LHS integral looks as

=
∫ ∞

0
dk (Ek − E0)

2 | < 0|x|k > |2

=
4h̄4K3

0
πm2

∫ ∞

0

k2 dk
(k2 + K2

0)
2

= V2
0 (41)

Thus, the verification of sum rule (9) is com-
pleted. In this manner, other sum rules can
be verified.

4. Oscillator Strength

The oscillator strength between two non-
degenerate single electron energy states is
defined as the two-thirds of the squarred
transition dipole moment multiplied by the
energy gap between the two energy levels.
Mathematically, it can be written as

fkn =
2m
3h̄2 (Ek − En) | < n|r|k > |2 (42)

By its very definition, fkn is a dimensionless
quantity which can be easiliy verified from
the above expression. In fact, it expresses

33/4/05 7 www.physedu.in



Physics Education Oct-Dec 2017

the probability of absorption/emission of
eletromagnetic (EM) radiation in associated
with the transitions between energy levels of
an atom or molecule. In otherwords, it can
be thought of as the ratio between the quan-
tum mechanical transition rate and the clas-
sical absorption/emission rate of a simgle
electron oscillator with the same frequency
as the transition. Physically speaking, it
marks the number of electrons oscillating
per spatial dimensions during an electronic
transitions. Therefore, if r contains all 3N
spatial cordinates of N electrons, then TRK
sum rule can be written in terms of oscilla-
tor strengths as

∑
k

fkn = N (43)

where N is the total number of electrons in
the system. Hence, we notice that the sum
over the oscillator strengths of all the ex-
cited states amounts to the number of elec-
trons. Oscillator strengths are between 0 and
1. In fact, the oscillator strengths counts
how much of the total oscillating potential
is used for a specific transition. If there are
more number of electrons available to oscil-
late, then naturally the transition strengths
will increase. For practical purpose, the os-
cillator strength is usually expressed in term
of frequency ν as

f = 1.44× 10−19
∫

ε(ν) dν (44)

The integral is the area under the curve of
ε(ν) and ν. The transition dipole strength µ

is related to the osciilator strength as

µ2 =
3e2h̄

4πmν
× f (45)

In the above formula, the calculated dipole
moment is expressed in cm unit. As a prac-
tical illustration of the formula, it is seen that
at 800 nm, an oscillator strength of 1 cor-
responds to a transition dipole moment of
roughly 13 Debye.

5. Sum Rule in Rigid Rotator

The sum rule in case of rigid rotator needs
some attention [[20], [21]]. The rigid rota-
tor, often regarded as a simple model of a di-
atomic molecule can be thought as two par-
ticles of mass m1 and m2, rigidly separated at
a fixed distance R. Considering the reduced
mass µ = m1m2

m1+m2
, and its moment of inertia

I = µR2, the quantum Hamiltonian of such
a system can be written as

H =
L2

2µR2 (46)

where L2 is the square of the orbital an-
gular momentum operator depending only
on angles θ and φ. Since L2|Ylm(θ, φ) >=

l(l + 1)h̄2|Ylm(θ, φ) >, the eigenvalues of the
above system is simply

El =
l(l + 1)h̄2

2µR2 (47)

where l = 0, 1, 2.. and the eigenfunctions
Ylm(θ, φ) of the Hamiltonian are the spheri-
cal harmonics. The eigenvalues are however
degenerate with respect to the azimuthal
quantum number m taking values from m =

−l to m = l including zero. Taking the po-
larization along the z-axis, the dipole matrix
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element turns out to be

< Ylm|R cos(θ)|Y00 >=
R√

3
δl1δm0 (48)

As a result, TRK sum rule becomes

∑
k

fk0 = f10 =
2µ

h̄2

(
2h̄2

2µR2

)
R2

3
=

2
3

(49)

Thus, we notice an apparent vilolation of
TRK sum rule due to the missing of addi-
tional 1

3 factor to get the sum to be exactly
one. This violation is due to not consider-
ing the complete Hamiltonian. In fact, the
complete Hamiltonian of the above system
should also include the essential part of the
non-relativistic kinetic energy for the radial
motion and is given by

H =
p2

r
2µ

+
L2

2µR2 + V(R) (50)

And it is the first part of the Hamiltonian
which will contribute the required 1

3 factor
and thus removing the apparent contrac-
diction of TRK sum rule. However, for
a perfect rigid rotator, this kinetic energy
term for radial motion is absent [20] and
therefore, in that case the 1

3 factor will not
appear.

In addition to this sum rule for dipole
moment, there are also sum rules involv-
ing multipoles higher than the dipole devel-
oped essentially for nuclear transitions [22].

6.Conclusions

To conclude, we have discussed the deriva-
tion of the non-relativistic sum rules and its

various invariant forms. A connection be-
tween oscillator strength and the sum rule
useful for atomic transitions has been estab-
lished. The sum rules have been verified
in case of harmonic oscillator and δ func-
tion potential. The apparent violation of this
sum rule in rigid rotator case has also been
discussed.
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